organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2564-o2565

11β,13-Di­hydro­lactucin-8-O-acetate hemihydrate

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 16 September 2009; accepted 21 September 2009; online 30 September 2009)

The title structure (systematic name: 9-hydroxy­methyl-3,6-di­methyl-3-methyl­ene-2,7-dioxo-3,3a,4,5,9a,9b-hexa­hydro­azu­leno[4,5-b]furan-4-yl acetate hemihydrate), C17H20O6·0.5H2O, from Lactuca floridana, has two independent sesquiterpene lactone mol­ecules in the asymmetric unit. Both have their seven-membered rings in the chair conformation. In the crystal, the OH groups and the water mol­ecule form classical O—H⋯O hydrogen bonds with O⋯O distances in the range 2.6750 (17)–2.8160 (18) Å.

Related literature

For phytochemical reports of the title compound, see: Bohlmann et al. (1981[Bohlmann, F., Jakupovic, J., Abraham, W.-R. & Zdero, C. (1981). Phytochemistry, 20, 2371-2374.]); Djordjevic et al. (2004[Djordjevic, I., Tesevic, V., Janackovic, P., Milosavljevic, S. & Vajs, V. (2004). Biochem. Syst. Ecol. 32, 209-210.]); Sarg et al. (1982[Sarg, T. M., Omar, A. A., Khafagy, S. M., Grenz, M. & Bohlmann, F. (1982). Phytochemistry, 21, 1163.]); Song et al. (1995[Song, Q., Gomez-Barrios, M. L., Hopper, E. L., Hjortso, M. A. & Fischer, N. H. (1995). Phytochemistry, 40, 1659-1665.]). The crystal structures of several related compounds have been reported: 8-α-hydroxy­achillin (Campos et al., 1989[Campos, V., Silva, M., Watson, W. H. & Nagl, A. (1989). Acta Cryst. C45, 678-680.]); matricarin (Parvez et al., 2002[Parvez, M., Ahmad, V. U., Farooq, U., Jassbi, A. R. & Raziullah, H. S. (2002). Acta Cryst. E58, o324-o325.]); lactucin (Ruban et al., 1978[Ruban, G., Zabel, V., Gensch, K. H. & Smalla, H. (1978). Acta Cryst. B34, 1163-1167.]); lactucopicrin (Ren et al., 2003[Ren, Y.-L., Zhou, Y.-W. & Ye, Y.-H. (2003). Struct. Chem. 14, 581-585.]); absolute configuration of sesquiterpene lactones Fischer et al. (1979[Fischer, N. H., Olivier, E. J. & Fischer, H. D. (1979). Progress in the Chemistry of Organic Natural Products, Vol. 38, edited by W. Hertz, H. Grisebach & G. W. Kirby. Vienna: Springer.]). For analysis of Bijvoet pairs, see: Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20O6·0.5H2O

  • Mr = 329.34

  • Monoclinic, P 21

  • a = 10.9276 (5) Å

  • b = 7.4658 (5) Å

  • c = 19.8571 (10) Å

  • β = 100.850 (5)°

  • V = 1591.05 (15) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.88 mm−1

  • T = 90 K

  • 0.27 × 0.17 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.796, Tmax = 0.917

  • 23565 measured reflections

  • 5642 independent reflections

  • 5513 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.068

  • S = 1.03

  • 5642 reflections

  • 445 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2516 Friedel pairs

  • Flack parameter: −0.01 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6O⋯O7 0.86 (2) 1.85 (2) 2.6750 (17) 160 (2)
O6A—H60A⋯O6 0.85 (2) 1.91 (2) 2.7593 (17) 174 (2)
O7—H72⋯O5Ai 0.89 (2) 1.95 (2) 2.8160 (18) 165 (2)
O7—H71⋯O6Aii 0.89 (3) 1.86 (3) 2.7397 (18) 176 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hairy root cultures of blue-flowered lettice, Lactuca floridana, tribe Lactuceae (Asteraceae) are useful for the study of the biosynthesis of guaianolide-type sesquiterpene lactones (Song et al., 1995). The title guaianolide was isolated from L. floridana and crystallized as the hemihydrate.

The structures of both independent molecules are shown in Fig. 1. The conformations of (1) and (1 A) are very similar. Both seven-membered rings form chair conformations where atoms C5/C6/C8/C9 are nearly coplanar (maximum deviation 0.022 (1) Å for molecule 1 and 0.024 (1) Å for 1 A). Atom C1 is 0.991 (1) Å above the plane, C7 is 0.751 (1) Å below, and C10 is 1.029 (1) Å above. Atom C1A is 0.881 (1) Å above the plane, C7A is 0.773 (1) Å below, and C10A is 0.965 (1) Å above. Lactone ring (C6/C7/C11/C12/O1) has the C7 envelope conformation, with C7 0.582 (1) Å out of the best plane of the other four (maximum deviation 0.022 (1) Å. Lactone ring (C6A/C7A/C11A/C12A/O1A) also has the C7 envelope conformation, with C7A showing deviation 0.580 (1) Å, and maximum deviation 0.007 (1) Å for the other four. The other 5-membered rings (C1—C5 and C1a—C5A,) are essentially planar (maximum deviations 0.011 (1) Å and 0.041 (1) Å, respectively). This conformation is similar to that seen in matricarin (Parvez et al., 2002), which differs only by lacking the OH group at C15.

Hydrogen bonding involves the OH groups, the water molecule, and the acetate CO group, and forms double-strand chains along [0 1 0]. In each chain, the alternation of hydrogen bonds is (O6A—H···O6—H···H2O···)n.

The absolute configuration was determined by refinement of the Flack (1983) parameter, based on resonant scattering of the light atoms. It agrees with that of lactucin (Ruban et al., 1978) and with the accepted configuration of sesquiterpene lactones from higher plants (Fischer et al., 1979). Analysis of the Bijvoet pairs using the method of Hooft et al. (2008) yielded y = 0.03 (4) for this structure, confirming the absolute configuration.

Related literature top

For phytochemical reports of the title compound, see: Bohlmann et al. (1981); Djordjevic et al. (2004); Sarg et al. (1982); Song et al. (1995). The crystal structures of several related compounds have been reported: 8-α-hydroxyachillin (Campos et al., 1989); matricarin (Parvez et al., 2002); lactucin (Ruban et al., 1978); lactucopicrin (Ren et al., 2003). For the configuration of sesquiterpene lactones from higher plants, see: Fischer et al. (1979). For analysis of the Bijvoet pairs, see: Hooft et al. (2008).

Experimental top

Isolation of the title compound from Lactuca floridana has been described (Bohlmann et al., 1981; Song et al., 1995). Crystals were grown by evaporation from ethyl acetate.

Refinement top

H atoms on C were placed in idealized positions with C—H distances 0.95 - 1.00 Å and thereafter treated as riding. Coordinates for the H atoms on O were refined. Uiso for H was assigned as 1.2 times Ueq of the attached atoms (1.5 for methyl and OH). A torsional parameter was refined for each methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoids at the 50% probability level, with H atoms having arbitrary radius. Both molecules are shown in the same orientation.
9-hydroxymethyl-3,6-dimethyl-2,7-dioxo- 3,3a,4,5,9a,9b-hexahydroazuleno[4,5-b]furan-4-yl acetate hemihydrate top
Crystal data top
C17H20O6·0.5H2OF(000) = 700
Mr = 329.34Dx = 1.375 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 9656 reflections
a = 10.9276 (5) Åθ = 2.3–68.3°
b = 7.4658 (5) ŵ = 0.88 mm1
c = 19.8571 (10) ÅT = 90 K
β = 100.850 (5)°Plate, colorless
V = 1591.05 (15) Å30.27 × 0.17 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5642 independent reflections
Radiation source: fine-focus sealed tube5513 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 69.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1213
Tmin = 0.796, Tmax = 0.917k = 98
23565 measured reflectionsl = 2323
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0314P)2 + 0.4082P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.20 e Å3
5642 reflectionsΔρmin = 0.14 e Å3
445 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00101 (13)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2516 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (10)
Crystal data top
C17H20O6·0.5H2OV = 1591.05 (15) Å3
Mr = 329.34Z = 4
Monoclinic, P21Cu Kα radiation
a = 10.9276 (5) ŵ = 0.88 mm1
b = 7.4658 (5) ÅT = 90 K
c = 19.8571 (10) Å0.27 × 0.17 × 0.10 mm
β = 100.850 (5)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5642 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
5513 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.917Rint = 0.031
23565 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068Δρmax = 0.20 e Å3
S = 1.03Δρmin = 0.14 e Å3
5642 reflectionsAbsolute structure: Flack (1983), 2516 Friedel pairs
445 parametersAbsolute structure parameter: 0.01 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36074 (9)0.72760 (16)0.04034 (5)0.0256 (2)
O20.54683 (12)0.8177 (2)0.02323 (6)0.0473 (4)
O30.15403 (9)0.63628 (15)0.05240 (5)0.0255 (2)
O40.19069 (10)0.67077 (15)0.19419 (5)0.0240 (2)
O50.07993 (12)0.91019 (18)0.23883 (6)0.0345 (3)
O60.25725 (10)0.54254 (16)0.22516 (5)0.0252 (2)
H6O0.2544 (19)0.651 (3)0.2400 (10)0.038*
C10.02479 (13)0.5810 (2)0.00331 (8)0.0203 (3)
C20.04236 (14)0.61236 (19)0.05490 (7)0.0211 (3)
C30.05145 (14)0.6056 (2)0.11802 (7)0.0216 (3)
H30.03380.61890.16280.026*
C40.16502 (14)0.5782 (2)0.10450 (7)0.0196 (3)
C50.16294 (13)0.5614 (2)0.02770 (7)0.0191 (3)
H50.19330.44020.01700.023*
C60.23650 (13)0.7063 (2)0.00135 (6)0.0201 (3)
H60.19070.82250.00250.024*
C70.26251 (13)0.6665 (2)0.07304 (7)0.0210 (3)
H70.29010.53900.07420.025*
C80.14873 (13)0.6930 (2)0.12911 (6)0.0210 (3)
H80.11330.81560.12600.025*
C90.04910 (14)0.5504 (2)0.12638 (7)0.0221 (3)
H9A0.00850.54770.17130.026*
H9B0.09030.43190.11950.026*
C100.02665 (14)0.5780 (2)0.07062 (7)0.0210 (3)
C110.37468 (16)0.7875 (3)0.07459 (8)0.0334 (4)
H110.34460.91220.08610.040*
C120.44090 (16)0.7817 (3)0.00012 (8)0.0327 (4)
C130.46307 (17)0.7337 (4)0.12182 (9)0.0504 (6)
H13A0.54170.79930.10890.076*
H13B0.42520.76250.16930.076*
H13C0.47930.60470.11770.076*
C140.16387 (14)0.5988 (2)0.09751 (8)0.0238 (3)
H14A0.20670.62260.05930.036*
H14B0.19670.48840.12090.036*
H14C0.17780.69900.12990.036*
C150.28150 (14)0.5536 (2)0.15730 (7)0.0232 (3)
H15A0.32410.44270.14690.028*
H15B0.33840.65540.15460.028*
C160.14984 (13)0.7902 (2)0.24440 (7)0.0212 (3)
C170.20561 (16)0.7550 (2)0.30617 (7)0.0298 (4)
H17A0.14490.78460.34760.045*
H17B0.22830.62820.30730.045*
H17C0.28030.82900.30420.045*
O1A0.10059 (9)0.30940 (15)0.46612 (5)0.0229 (2)
O2A0.08856 (10)0.34776 (18)0.49033 (5)0.0320 (3)
O3A0.61587 (9)0.19216 (15)0.43180 (5)0.0258 (2)
O4A0.29523 (9)0.22296 (15)0.69401 (5)0.0214 (2)
O5A0.45039 (11)0.39546 (17)0.74928 (5)0.0320 (3)
O6A0.18713 (10)0.21622 (16)0.27100 (5)0.0258 (2)
H60A0.2039 (19)0.317 (3)0.2552 (10)0.039*
C1A0.44199 (13)0.17797 (19)0.49391 (7)0.0188 (3)
C2A0.50439 (13)0.1995 (2)0.43344 (7)0.0205 (3)
C3A0.40492 (14)0.2229 (2)0.37344 (7)0.0215 (3)
H3A0.41870.24430.32830.026*
C4A0.29305 (13)0.2106 (2)0.39010 (7)0.0199 (3)
C5A0.30176 (13)0.1693 (2)0.46618 (7)0.0190 (3)
H5A0.27200.04420.47120.023*
C6A0.22888 (13)0.2972 (2)0.50361 (7)0.0191 (3)
H6A0.26850.41840.50690.023*
C7A0.21326 (12)0.2344 (2)0.57504 (6)0.0196 (3)
H7A0.19570.10280.57280.024*
C8A0.33015 (13)0.2662 (2)0.62853 (7)0.0194 (3)
H8A0.35820.39350.62770.023*
C9A0.43475 (14)0.1374 (2)0.61948 (7)0.0215 (3)
H91A0.49790.13830.66240.026*
H92A0.39950.01500.61380.026*
C10A0.50089 (13)0.17411 (19)0.56004 (7)0.0193 (3)
C11A0.09343 (13)0.3330 (2)0.58339 (7)0.0250 (3)
H11A0.11540.45960.59690.030*
C12A0.02146 (14)0.3323 (2)0.51022 (7)0.0243 (3)
C13A0.01788 (14)0.2562 (3)0.63306 (8)0.0307 (4)
H13D0.06450.31300.62540.046*
H13E0.06090.27930.68020.046*
H13F0.00830.12680.62570.046*
C14A0.63888 (13)0.2030 (2)0.58228 (7)0.0230 (3)
H14D0.67610.22650.54200.034*
H14E0.67680.09570.60590.034*
H14F0.65350.30570.61350.034*
C15A0.17124 (13)0.2246 (2)0.34040 (7)0.0231 (3)
H15C0.11580.12590.34920.028*
H15D0.13030.33910.34810.028*
C16A0.36493 (14)0.2941 (2)0.75074 (7)0.0233 (3)
C17A0.32219 (17)0.2309 (3)0.81365 (8)0.0351 (4)
H17D0.37980.27380.85430.053*
H17E0.32020.09960.81400.053*
H17F0.23850.27760.81400.053*
O70.29309 (12)0.89082 (18)0.25390 (6)0.0333 (3)
H720.371 (2)0.911 (3)0.2489 (11)0.050 (6)*
H710.259 (3)0.997 (4)0.2573 (14)0.077 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0262 (5)0.0319 (6)0.0171 (5)0.0085 (5)0.0001 (4)0.0013 (4)
O20.0361 (7)0.0768 (11)0.0268 (6)0.0292 (7)0.0006 (5)0.0032 (7)
O30.0234 (5)0.0289 (6)0.0248 (5)0.0002 (4)0.0058 (4)0.0015 (4)
O40.0331 (6)0.0249 (6)0.0143 (5)0.0018 (5)0.0053 (4)0.0022 (4)
O50.0432 (7)0.0384 (7)0.0231 (5)0.0132 (6)0.0097 (5)0.0106 (5)
O60.0346 (6)0.0261 (6)0.0145 (5)0.0005 (5)0.0035 (4)0.0008 (4)
C10.0237 (8)0.0170 (7)0.0196 (7)0.0023 (6)0.0025 (6)0.0017 (6)
C20.0261 (8)0.0147 (7)0.0224 (7)0.0015 (6)0.0041 (6)0.0002 (6)
C30.0297 (8)0.0192 (8)0.0165 (7)0.0003 (6)0.0055 (6)0.0001 (6)
C40.0268 (8)0.0164 (7)0.0154 (7)0.0000 (6)0.0032 (6)0.0011 (6)
C50.0244 (7)0.0184 (8)0.0139 (7)0.0004 (6)0.0021 (5)0.0003 (5)
C60.0224 (7)0.0216 (8)0.0142 (6)0.0019 (6)0.0020 (5)0.0007 (6)
C70.0254 (7)0.0225 (8)0.0150 (6)0.0038 (6)0.0035 (5)0.0024 (6)
C80.0298 (7)0.0210 (8)0.0126 (6)0.0001 (6)0.0053 (5)0.0000 (6)
C90.0247 (7)0.0251 (8)0.0149 (7)0.0012 (6)0.0003 (6)0.0013 (6)
C100.0261 (8)0.0172 (7)0.0191 (7)0.0012 (6)0.0025 (6)0.0003 (6)
C110.0371 (9)0.0417 (10)0.0199 (7)0.0173 (8)0.0014 (6)0.0049 (7)
C120.0346 (9)0.0399 (10)0.0225 (8)0.0161 (8)0.0025 (7)0.0027 (7)
C130.0353 (9)0.0924 (17)0.0248 (8)0.0282 (11)0.0085 (7)0.0021 (10)
C140.0266 (8)0.0233 (8)0.0198 (7)0.0003 (6)0.0000 (6)0.0008 (6)
C150.0267 (8)0.0270 (8)0.0154 (7)0.0020 (6)0.0029 (6)0.0001 (6)
C160.0230 (7)0.0226 (8)0.0165 (7)0.0048 (6)0.0002 (5)0.0024 (6)
C170.0395 (9)0.0320 (10)0.0186 (7)0.0007 (7)0.0070 (6)0.0023 (6)
O1A0.0214 (5)0.0301 (6)0.0166 (5)0.0057 (4)0.0020 (4)0.0010 (4)
O2A0.0241 (6)0.0444 (7)0.0266 (6)0.0095 (5)0.0026 (4)0.0035 (5)
O3A0.0242 (5)0.0290 (6)0.0256 (5)0.0001 (5)0.0086 (4)0.0015 (5)
O4A0.0243 (5)0.0254 (5)0.0145 (4)0.0015 (4)0.0037 (4)0.0016 (4)
O5A0.0313 (6)0.0398 (7)0.0234 (5)0.0079 (5)0.0013 (4)0.0044 (5)
O6A0.0361 (6)0.0262 (6)0.0147 (5)0.0022 (5)0.0042 (4)0.0005 (5)
C1A0.0223 (7)0.0138 (7)0.0205 (7)0.0005 (6)0.0045 (5)0.0003 (6)
C2A0.0254 (7)0.0155 (8)0.0214 (7)0.0001 (6)0.0062 (5)0.0007 (6)
C3A0.0301 (7)0.0187 (7)0.0165 (6)0.0012 (6)0.0066 (5)0.0000 (6)
C4A0.0284 (7)0.0144 (7)0.0167 (6)0.0002 (6)0.0035 (5)0.0021 (6)
C5A0.0227 (7)0.0172 (7)0.0169 (6)0.0001 (6)0.0029 (5)0.0004 (6)
C6A0.0193 (7)0.0208 (7)0.0162 (6)0.0012 (6)0.0008 (5)0.0007 (6)
C7A0.0214 (7)0.0223 (8)0.0152 (6)0.0007 (6)0.0038 (5)0.0006 (6)
C8A0.0226 (7)0.0225 (8)0.0132 (6)0.0001 (6)0.0037 (5)0.0007 (5)
C9A0.0236 (7)0.0225 (8)0.0178 (7)0.0016 (6)0.0019 (5)0.0014 (6)
C10A0.0235 (7)0.0140 (7)0.0208 (7)0.0027 (6)0.0052 (5)0.0004 (6)
C11A0.0233 (7)0.0327 (9)0.0184 (7)0.0047 (7)0.0021 (6)0.0023 (6)
C12A0.0266 (8)0.0247 (8)0.0220 (7)0.0054 (6)0.0056 (6)0.0002 (6)
C13A0.0263 (8)0.0437 (11)0.0233 (7)0.0063 (7)0.0080 (6)0.0039 (7)
C14A0.0247 (7)0.0212 (8)0.0224 (7)0.0011 (6)0.0029 (5)0.0007 (6)
C15A0.0283 (8)0.0249 (8)0.0157 (6)0.0001 (7)0.0035 (5)0.0009 (6)
C16A0.0250 (7)0.0257 (8)0.0183 (7)0.0049 (7)0.0013 (6)0.0024 (6)
C17A0.0450 (9)0.0429 (10)0.0175 (7)0.0045 (9)0.0059 (6)0.0025 (7)
O70.0351 (7)0.0283 (7)0.0353 (6)0.0043 (6)0.0031 (5)0.0038 (5)
Geometric parameters (Å, º) top
O1—C121.3568 (19)O1A—C6A1.4612 (16)
O1—C61.4597 (16)O2A—C12A1.1982 (19)
O2—C121.194 (2)O3A—C2A1.2259 (18)
O3—C21.2251 (19)O4A—C16A1.3445 (18)
O4—C161.3496 (18)O4A—C8A1.4586 (16)
O4—C81.4598 (16)O5A—C16A1.207 (2)
O5—C161.196 (2)O6A—C15A1.4224 (16)
O6—C151.4238 (17)O6A—H60A0.85 (2)
O6—H6O0.86 (2)C1A—C10A1.349 (2)
C1—C101.349 (2)C1A—C2A1.4969 (19)
C1—C21.500 (2)C1A—C5A1.5291 (19)
C1—C51.5264 (19)C2A—C3A1.4644 (19)
C2—C31.463 (2)C3A—C4A1.328 (2)
C3—C41.334 (2)C3A—H3A0.9500
C3—H30.9500C4A—C15A1.5041 (19)
C4—C151.500 (2)C4A—C5A1.5271 (18)
C4—C51.5261 (19)C5A—C6A1.5238 (19)
C5—C61.525 (2)C5A—H5A1.0000
C5—H51.0000C6A—C7A1.5337 (18)
C6—C71.5323 (18)C6A—H6A1.0000
C6—H61.0000C7A—C8A1.5182 (19)
C7—C81.5177 (19)C7A—C11A1.538 (2)
C7—C111.527 (2)C7A—H7A1.0000
C7—H71.0000C8A—C9A1.530 (2)
C8—C91.531 (2)C8A—H8A1.0000
C8—H81.0000C9A—C10A1.5206 (19)
C9—C101.516 (2)C9A—H91A0.9900
C9—H9A0.9900C9A—H92A0.9900
C9—H9B0.9900C10A—C14A1.505 (2)
C10—C141.502 (2)C11A—C13A1.513 (2)
C11—C121.520 (2)C11A—C12A1.517 (2)
C11—C131.521 (3)C11A—H11A1.0000
C11—H111.0000C13A—H13D0.9800
C13—H13A0.9800C13A—H13E0.9800
C13—H13B0.9800C13A—H13F0.9800
C13—H13C0.9800C14A—H14D0.9800
C14—H14A0.9800C14A—H14E0.9800
C14—H14B0.9800C14A—H14F0.9800
C14—H14C0.9800C15A—H15C0.9900
C15—H15A0.9900C15A—H15D0.9900
C15—H15B0.9900C16A—C17A1.490 (2)
C16—C171.492 (2)C17A—H17D0.9800
C17—H17A0.9800C17A—H17E0.9800
C17—H17B0.9800C17A—H17F0.9800
C17—H17C0.9800O7—H720.89 (2)
O1A—C12A1.3524 (18)O7—H710.89 (3)
C12—O1—C6109.37 (11)C16A—O4A—C8A117.23 (11)
C16—O4—C8117.62 (11)C15A—O6A—H60A113.1 (14)
C15—O6—H6O107.0 (14)C10A—C1A—C2A125.23 (13)
C10—C1—C2126.38 (13)C10A—C1A—C5A127.71 (13)
C10—C1—C5126.46 (13)C2A—C1A—C5A107.01 (11)
C2—C1—C5107.11 (12)O3A—C2A—C3A124.94 (13)
O3—C2—C3124.87 (13)O3A—C2A—C1A128.43 (13)
O3—C2—C1128.30 (13)C3A—C2A—C1A106.56 (11)
C3—C2—C1106.82 (12)C4A—C3A—C2A111.47 (12)
C4—C3—C2111.18 (13)C4A—C3A—H3A124.3
C4—C3—H3124.4C2A—C3A—H3A124.3
C2—C3—H3124.4C3A—C4A—C15A125.03 (12)
C3—C4—C15125.26 (13)C3A—C4A—C5A111.81 (12)
C3—C4—C5111.98 (13)C15A—C4A—C5A123.08 (12)
C15—C4—C5122.64 (13)C6A—C5A—C4A114.51 (12)
C6—C5—C4114.20 (12)C6A—C5A—C1A112.21 (11)
C6—C5—C1109.34 (11)C4A—C5A—C1A102.67 (11)
C4—C5—C1102.88 (11)C6A—C5A—H5A109.1
C6—C5—H5110.1C4A—C5A—H5A109.1
C4—C5—H5110.1C1A—C5A—H5A109.1
C1—C5—H5110.1O1A—C6A—C5A109.26 (11)
O1—C6—C5111.28 (11)O1A—C6A—C7A103.13 (11)
O1—C6—C7103.45 (11)C5A—C6A—C7A114.76 (12)
C5—C6—C7114.66 (12)O1A—C6A—H6A109.8
O1—C6—H6109.1C5A—C6A—H6A109.8
C5—C6—H6109.1C7A—C6A—H6A109.8
C7—C6—H6109.1C8A—C7A—C6A111.94 (11)
C8—C7—C11117.26 (12)C8A—C7A—C11A118.10 (12)
C8—C7—C6112.75 (12)C6A—C7A—C11A101.45 (11)
C11—C7—C6101.19 (12)C8A—C7A—H7A108.3
C8—C7—H7108.4C6A—C7A—H7A108.3
C11—C7—H7108.4C11A—C7A—H7A108.3
C6—C7—H7108.4O4A—C8A—C7A105.20 (11)
O4—C8—C7106.51 (11)O4A—C8A—C9A107.00 (11)
O4—C8—C9107.23 (11)C7A—C8A—C9A111.62 (12)
C7—C8—C9111.92 (12)O4A—C8A—H8A110.9
O4—C8—H8110.4C7A—C8A—H8A110.9
C7—C8—H8110.4C9A—C8A—H8A110.9
C9—C8—H8110.4C10A—C9A—C8A116.93 (12)
C10—C9—C8114.89 (12)C10A—C9A—H91A108.1
C10—C9—H9A108.5C8A—C9A—H91A108.1
C8—C9—H9A108.5C10A—C9A—H92A108.1
C10—C9—H9B108.5C8A—C9A—H92A108.1
C8—C9—H9B108.5H91A—C9A—H92A107.3
H9A—C9—H9B107.5C1A—C10A—C14A123.41 (13)
C1—C10—C14123.54 (14)C1A—C10A—C9A123.36 (13)
C1—C10—C9122.87 (13)C14A—C10A—C9A113.23 (11)
C14—C10—C9113.58 (12)C13A—C11A—C12A112.04 (13)
C12—C11—C13110.55 (15)C13A—C11A—C7A117.99 (14)
C12—C11—C7101.57 (12)C12A—C11A—C7A101.17 (11)
C13—C11—C7117.49 (16)C13A—C11A—H11A108.4
C12—C11—H11108.9C12A—C11A—H11A108.4
C13—C11—H11108.9C7A—C11A—H11A108.4
C7—C11—H11108.9O2A—C12A—O1A121.52 (13)
O2—C12—O1121.59 (14)O2A—C12A—C11A128.52 (14)
O2—C12—C11128.38 (15)O1A—C12A—C11A109.96 (12)
O1—C12—C11110.02 (13)C11A—C13A—H13D109.5
C11—C13—H13A109.5C11A—C13A—H13E109.5
C11—C13—H13B109.5H13D—C13A—H13E109.5
H13A—C13—H13B109.5C11A—C13A—H13F109.5
C11—C13—H13C109.5H13D—C13A—H13F109.5
H13A—C13—H13C109.5H13E—C13A—H13F109.5
H13B—C13—H13C109.5C10A—C14A—H14D109.5
C10—C14—H14A109.5C10A—C14A—H14E109.5
C10—C14—H14B109.5H14D—C14A—H14E109.5
H14A—C14—H14B109.5C10A—C14A—H14F109.5
C10—C14—H14C109.5H14D—C14A—H14F109.5
H14A—C14—H14C109.5H14E—C14A—H14F109.5
H14B—C14—H14C109.5O6A—C15A—C4A112.23 (12)
O6—C15—C4112.58 (12)O6A—C15A—H15C109.2
O6—C15—H15A109.1C4A—C15A—H15C109.2
C4—C15—H15A109.1O6A—C15A—H15D109.2
O6—C15—H15B109.1C4A—C15A—H15D109.2
C4—C15—H15B109.1H15C—C15A—H15D107.9
H15A—C15—H15B107.8O5A—C16A—O4A123.13 (14)
O5—C16—O4123.69 (13)O5A—C16A—C17A125.78 (14)
O5—C16—C17125.11 (14)O4A—C16A—C17A111.09 (13)
O4—C16—C17111.18 (13)C16A—C17A—H17D109.5
C16—C17—H17A109.5C16A—C17A—H17E109.5
C16—C17—H17B109.5H17D—C17A—H17E109.5
H17A—C17—H17B109.5C16A—C17A—H17F109.5
C16—C17—H17C109.5H17D—C17A—H17F109.5
H17A—C17—H17C109.5H17E—C17A—H17F109.5
H17B—C17—H17C109.5H72—O7—H71106 (2)
C12A—O1A—C6A110.30 (10)
C10—C1—C2—O31.9 (3)C10A—C1A—C2A—O3A11.1 (2)
C5—C1—C2—O3179.40 (15)C5A—C1A—C2A—O3A171.14 (15)
C10—C1—C2—C3179.34 (14)C10A—C1A—C2A—C3A171.77 (15)
C5—C1—C2—C31.83 (16)C5A—C1A—C2A—C3A6.04 (16)
O3—C2—C3—C4179.83 (14)O3A—C2A—C3A—C4A174.67 (15)
C1—C2—C3—C41.35 (17)C1A—C2A—C3A—C4A2.63 (18)
C2—C3—C4—C15176.29 (14)C2A—C3A—C4A—C15A178.68 (14)
C2—C3—C4—C50.30 (18)C2A—C3A—C4A—C5A1.99 (18)
C3—C4—C5—C6117.53 (15)C3A—C4A—C5A—C6A127.48 (14)
C15—C4—C5—C666.36 (18)C15A—C4A—C5A—C6A55.76 (19)
C3—C4—C5—C10.85 (16)C3A—C4A—C5A—C1A5.58 (16)
C15—C4—C5—C1175.27 (13)C15A—C4A—C5A—C1A177.65 (13)
C10—C1—C5—C657.39 (19)C10A—C1A—C5A—C6A47.5 (2)
C2—C1—C5—C6120.12 (13)C2A—C1A—C5A—C6A130.28 (12)
C10—C1—C5—C4179.11 (15)C10A—C1A—C5A—C4A170.90 (15)
C2—C1—C5—C41.60 (15)C2A—C1A—C5A—C4A6.84 (15)
C12—O1—C6—C5149.85 (14)C12A—O1A—C6A—C5A146.40 (12)
C12—O1—C6—C726.24 (17)C12A—O1A—C6A—C7A23.91 (15)
C4—C5—C6—O148.63 (17)C4A—C5A—C6A—O1A52.01 (16)
C1—C5—C6—O1163.25 (11)C1A—C5A—C6A—O1A168.54 (11)
C4—C5—C6—C7165.59 (12)C4A—C5A—C6A—C7A167.24 (12)
C1—C5—C6—C779.78 (15)C1A—C5A—C6A—C7A76.23 (15)
O1—C6—C7—C8163.07 (12)O1A—C6A—C7A—C8A162.59 (12)
C5—C6—C7—C875.57 (16)C5A—C6A—C7A—C8A78.68 (16)
O1—C6—C7—C1136.96 (15)O1A—C6A—C7A—C11A35.75 (14)
C5—C6—C7—C11158.32 (13)C5A—C6A—C7A—C11A154.48 (12)
C16—O4—C8—C7135.67 (13)C16A—O4A—C8A—C7A158.28 (12)
C16—O4—C8—C9104.36 (14)C16A—O4A—C8A—C9A82.89 (15)
C11—C7—C8—O456.71 (17)C6A—C7A—C8A—O4A172.54 (11)
C6—C7—C8—O4173.63 (12)C11A—C7A—C8A—O4A55.30 (16)
C11—C7—C8—C9173.60 (13)C6A—C7A—C8A—C9A71.77 (16)
C6—C7—C8—C969.48 (16)C11A—C7A—C8A—C9A170.99 (13)
O4—C8—C9—C10166.64 (12)O4A—C8A—C9A—C10A170.91 (12)
C7—C8—C9—C1076.91 (16)C7A—C8A—C9A—C10A74.50 (16)
C2—C1—C10—C142.7 (2)C2A—C1A—C10A—C14A4.0 (2)
C5—C1—C10—C14179.77 (14)C5A—C1A—C10A—C14A173.31 (14)
C2—C1—C10—C9178.21 (14)C2A—C1A—C10A—C9A175.04 (13)
C5—C1—C10—C91.2 (2)C5A—C1A—C10A—C9A7.6 (2)
C8—C9—C10—C160.8 (2)C8A—C9A—C10A—C1A59.5 (2)
C8—C9—C10—C14120.02 (14)C8A—C9A—C10A—C14A121.36 (14)
C8—C7—C11—C12156.71 (14)C8A—C7A—C11A—C13A80.60 (18)
C6—C7—C11—C1233.66 (17)C6A—C7A—C11A—C13A156.70 (14)
C8—C7—C11—C1382.6 (2)C8A—C7A—C11A—C12A156.85 (13)
C6—C7—C11—C13154.36 (15)C6A—C7A—C11A—C12A34.14 (15)
C6—O1—C12—O2175.77 (18)C6A—O1A—C12A—O2A179.11 (15)
C6—O1—C12—C114.1 (2)C6A—O1A—C12A—C11A1.34 (17)
C13—C11—C12—O235.0 (3)C13A—C11A—C12A—O2A31.4 (2)
C7—C11—C12—O2160.5 (2)C7A—C11A—C12A—O2A157.96 (17)
C13—C11—C12—O1145.13 (17)C13A—C11A—C12A—O1A148.13 (14)
C7—C11—C12—O119.7 (2)C7A—C11A—C12A—O1A21.55 (16)
C3—C4—C15—O66.5 (2)C3A—C4A—C15A—O6A12.0 (2)
C5—C4—C15—O6169.07 (13)C5A—C4A—C15A—O6A164.31 (13)
C8—O4—C16—O51.4 (2)C8A—O4A—C16A—O5A2.9 (2)
C8—O4—C16—C17177.21 (12)C8A—O4A—C16A—C17A177.12 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···O70.86 (2)1.85 (2)2.6750 (17)160 (2)
O6A—H60A···O60.85 (2)1.91 (2)2.7593 (17)174 (2)
O7—H72···O5Ai0.89 (2)1.95 (2)2.8160 (18)165 (2)
O7—H71···O6Aii0.89 (3)1.86 (3)2.7397 (18)176 (3)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H20O6·0.5H2O
Mr329.34
Crystal system, space groupMonoclinic, P21
Temperature (K)90
a, b, c (Å)10.9276 (5), 7.4658 (5), 19.8571 (10)
β (°) 100.850 (5)
V3)1591.05 (15)
Z4
Radiation typeCu Kα
µ (mm1)0.88
Crystal size (mm)0.27 × 0.17 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.796, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
23565, 5642, 5513
Rint0.031
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.03
No. of reflections5642
No. of parameters445
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.14
Absolute structureFlack (1983), 2516 Friedel pairs
Absolute structure parameter0.01 (10)

Computer programs: APEX2 (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···O70.86 (2)1.85 (2)2.6750 (17)160 (2)
O6A—H60A···O60.85 (2)1.91 (2)2.7593 (17)174 (2)
O7—H72···O5Ai0.89 (2)1.95 (2)2.8160 (18)165 (2)
O7—H71···O6Aii0.89 (3)1.86 (3)2.7397 (18)176 (3)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1, z.
 

Acknowledgements

We are grateful to Rosalind Segesta for financial assistance with the open-access fee.

References

First citationBohlmann, F., Jakupovic, J., Abraham, W.-R. & Zdero, C. (1981). Phytochemistry, 20, 2371–2374.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampos, V., Silva, M., Watson, W. H. & Nagl, A. (1989). Acta Cryst. C45, 678–680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDjordjevic, I., Tesevic, V., Janackovic, P., Milosavljevic, S. & Vajs, V. (2004). Biochem. Syst. Ecol. 32, 209–210.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFischer, N. H., Olivier, E. J. & Fischer, H. D. (1979). Progress in the Chemistry of Organic Natural Products, Vol. 38, edited by W. Hertz, H. Grisebach & G. W. Kirby. Vienna: Springer.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParvez, M., Ahmad, V. U., Farooq, U., Jassbi, A. R. & Raziullah, H. S. (2002). Acta Cryst. E58, o324–o325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRen, Y.-L., Zhou, Y.-W. & Ye, Y.-H. (2003). Struct. Chem. 14, 581–585.  Web of Science CSD CrossRef CAS Google Scholar
First citationRuban, G., Zabel, V., Gensch, K. H. & Smalla, H. (1978). Acta Cryst. B34, 1163–1167.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSarg, T. M., Omar, A. A., Khafagy, S. M., Grenz, M. & Bohlmann, F. (1982). Phytochemistry, 21, 1163.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Q., Gomez-Barrios, M. L., Hopper, E. L., Hjortso, M. A. & Fischer, N. H. (1995). Phytochemistry, 40, 1659–1665.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2564-o2565
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds