organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Bromo­anilino­methyl­ene)-2,2-di­methyl-1,3-dioxane-4,6-dione

aDepartment of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China, and bState Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: jlyang01@163.com

(Received 10 August 2009; accepted 4 September 2009; online 12 September 2009)

In the title compound, C13H12BrNO4, the dihedral angles between the amino­methyl­ene group and the dioxane ring and between the benzyl ring and the amino­methyl­ene unit are 7.96 (4) and 12.15 (4)°, respectively. The dioxane ring shows a half-boat conformation, in which the C atom between the dioxane ring O atoms is 0.460 (8) Å out of the plane through the remaining ring atoms. An intra­molecular N—H⋯O hydrogen bond may stabilize the planar conformation of the mol­ecule. An inter­molecular C—H⋯O inter­action is also present.

Related literature

For the synthesis of related compounds, see: Cassis et al. (1985[Cassis, R., Tapia, R. & Valderrama, J. A. (1985). Synth. Commun. 15, 125-133.]). For the synthesis of related anti­tumor precursors, see: Ruchelman et al. (2003[Ruchelman, A. L., Singh, S. K., Ray, A., Wu, X. H., Yang, J. M., Li, T. K., Liu, A., Liu, L. F. & LaVoie, E. J. (2003). Bioorg. Med. Chem. 11, 2061-2073.]). For the crystal structures of related 5–aryl­amino­methyl­ene–2,2–dimeth­yl–1,3–dioxane–4,6–dione derivatives, see: Li et al. (2009a[Li, R., Ding, Z.-Y., Wei, Y.-Q. & Ding, J. (2009a). Acta Cryst. E65, o1296.],b[Li, R., Ding, Z.-Y., Wei, Y.-Q. & Ding, J. (2009b). Acta Cryst. E65, o1297.],c[Li, R., Shi, J.-Y., Ding, Z.-Y., Wei, Y.-Q. & Ding, J. (2009c). Acta Cryst. E65, o1298-o1299.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12BrNO4

  • Mr = 326.14

  • Monoclinic, P 21 /c

  • a = 13.837 (3) Å

  • b = 13.019 (3) Å

  • c = 7.4900 (15) Å

  • β = 105.24 (3)°

  • V = 1301.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.17 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.04 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.570, Tmax = 0.884

  • 9108 measured reflections

  • 2279 independent reflections

  • 1063 reflections with I > 2σ(I)

  • Rint = 0.113

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.160

  • S = 0.99

  • 2279 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.96 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4 0.98 (7) 2.06 (8) 2.770 (7) 128 (6)
C9—H9⋯O3i 0.93 2.49 3.345 (8) 152
Symmetry code: (i) -x+2, -y, -z+2.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The 4(1H)quinolone structure plays an extremely important role in the field of pharmaceutical chemistry. The 5–arylaminomethylene–2,2–dimethyl–1,3–dioxane–4,6–diones are the key intermediates which can be used to synthesize the 4(1H)quinolone derivatives by thermolysis (Cassis et al., 1985), that can be used as precursors foranti–malarial agents, anticancer agents, and reversible (H+/K+) ATPase inhibitors (Ruchelman et al., 2003). The conformation of the title compound is similar with those reported early by Li et al., (2009a,b,c), which is almost planar with the dihedral angles of 7.96 (4)° and 12.15 (4)° between the aminomethylene group and the dioxane ring, and between the benzyl ring and the aminomethylene unit, respectively. Besides, the dioxane ring of the title compound exhibits a half–boat conformation, in which the C atom between the dioxane oxygen atoms is -0.460 (8) Å out–of–plane. The intramolecular N—H···O hydrogen bond (Table 1) is stabilizing the planar conformation in the molecule.

Related literature top

For the synthesis of related compounds, see: Cassis et al. (1985). For the synthesis of related antitumor precursors, see: Ruchelman et al. (2003). For the crystal structures of related 5–arylaminomethylene–2,2–dimethyl–1,3–dioxane–4,6–dione derivatives, see: Li et al. (2009a,b,c).

Experimental top

A solution of 2,2–dimethyl–1,3–dioxane–4,6–dione (1.44 g, 0.01 mol) and methylorthoformate (1.27 g, 0.012 mol) was heated to reflux for 2.5 h, then the arylamine (1.32 g, 0.01 mol) was added into the above solution. The mixture was heated under reflux for another 4 h and then filtered. Single crystals were obtained from the filtrate after 2 days.

Refinement top

The imino H atom was located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically with C—H = 0.93Å for aromatic or 0.96Å for methyl, and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing the intermolecular hydrogen bonds as dashed lines. H atoms not involved in these interactions have been omitted. Symmetry code: (i) -x+2, -y, -z+2.
5-(4-Bromoanilinomethylene)-2,2-dimethyl-1,3-dioxane-4,6-dione top
Crystal data top
C13H12BrNO4F(000) = 656
Mr = 326.14Dx = 1.664 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4079 reflections
a = 13.837 (3) Åθ = 2.2–27.7°
b = 13.019 (3) ŵ = 3.17 mm1
c = 7.4900 (15) ÅT = 113 K
β = 105.24 (3)°Plate, colourless
V = 1301.8 (5) Å30.20 × 0.18 × 0.04 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2279 independent reflections
Radiation source: rotating anode1063 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.113
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω and ϕ scansh = 1616
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1515
Tmin = 0.570, Tmax = 0.884l = 78
9108 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.0585P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
2279 reflectionsΔρmax = 0.97 e Å3
179 parametersΔρmin = 0.96 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (3)
Crystal data top
C13H12BrNO4V = 1301.8 (5) Å3
Mr = 326.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.837 (3) ŵ = 3.17 mm1
b = 13.019 (3) ÅT = 113 K
c = 7.4900 (15) Å0.20 × 0.18 × 0.04 mm
β = 105.24 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2279 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1063 reflections with I > 2σ(I)
Tmin = 0.570, Tmax = 0.884Rint = 0.113
9108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.97 e Å3
2279 reflectionsΔρmin = 0.96 e Å3
179 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.55042 (5)0.35263 (5)1.07667 (10)0.0385 (4)
O11.2599 (3)0.2261 (3)0.9075 (6)0.0281 (11)
O21.2115 (3)0.0519 (3)0.8410 (5)0.0263 (11)
O31.0562 (3)0.0009 (3)0.8058 (6)0.0335 (12)
O41.1515 (3)0.3439 (3)0.9505 (6)0.0310 (12)
N10.9664 (4)0.2768 (4)0.9800 (7)0.0235 (13)
H1N1.008 (7)0.337 (5)0.978 (11)0.08 (3)*
C11.0970 (5)0.1708 (4)0.9159 (8)0.0232 (16)
C21.1680 (5)0.2526 (5)0.9294 (8)0.0269 (16)
C31.2909 (5)0.1209 (5)0.9352 (9)0.0270 (16)
C41.1175 (5)0.0689 (5)0.8546 (8)0.0260 (16)
C51.3741 (5)0.1084 (5)0.8402 (9)0.0324 (17)
H5A1.35000.12750.71240.049*
H5B1.39550.03800.84850.049*
H5C1.42940.15160.89940.049*
C61.3222 (5)0.0959 (5)1.1391 (8)0.0351 (18)
H6A1.37250.14381.20180.053*
H6B1.34900.02751.15620.053*
H6C1.26520.10041.18900.053*
C71.0035 (5)0.1867 (5)0.9435 (8)0.0250 (16)
H70.96240.12940.93620.030*
C80.8705 (5)0.2914 (5)1.0096 (7)0.0212 (15)
C90.8101 (5)0.2096 (5)1.0358 (8)0.0294 (17)
H90.83400.14261.03880.035*
C100.7156 (5)0.2274 (5)1.0571 (8)0.0284 (16)
H100.67550.17301.07460.034*
C110.6813 (5)0.3276 (5)1.0521 (8)0.0241 (16)
C120.7412 (5)0.4097 (4)1.0325 (8)0.0259 (16)
H120.71800.47661.03390.031*
C130.8362 (5)0.3912 (5)1.0109 (8)0.0252 (16)
H130.87680.44590.99730.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0334 (6)0.0385 (6)0.0460 (6)0.0036 (3)0.0148 (4)0.0078 (3)
O10.038 (3)0.020 (2)0.031 (3)0.000 (2)0.019 (2)0.000 (2)
O20.030 (3)0.022 (2)0.032 (3)0.001 (2)0.016 (2)0.004 (2)
O30.042 (3)0.022 (3)0.044 (3)0.005 (2)0.024 (3)0.001 (2)
O40.040 (3)0.018 (3)0.038 (3)0.000 (2)0.016 (2)0.006 (2)
N10.028 (4)0.019 (3)0.025 (3)0.001 (3)0.010 (3)0.003 (2)
C10.035 (5)0.019 (4)0.019 (3)0.003 (3)0.013 (3)0.004 (3)
C20.037 (5)0.027 (4)0.019 (3)0.006 (3)0.012 (3)0.005 (3)
C30.029 (5)0.020 (4)0.034 (4)0.008 (3)0.012 (3)0.003 (3)
C40.030 (4)0.023 (4)0.027 (4)0.003 (3)0.010 (3)0.006 (3)
C50.034 (5)0.023 (4)0.043 (4)0.002 (3)0.014 (4)0.006 (3)
C60.047 (5)0.030 (4)0.024 (4)0.015 (3)0.002 (3)0.004 (3)
C70.034 (5)0.024 (4)0.019 (3)0.002 (3)0.010 (3)0.005 (3)
C80.030 (4)0.020 (4)0.014 (3)0.004 (3)0.008 (3)0.002 (3)
C90.047 (5)0.018 (4)0.028 (4)0.009 (3)0.019 (3)0.000 (3)
C100.037 (5)0.030 (4)0.022 (3)0.006 (3)0.014 (3)0.005 (3)
C110.028 (4)0.022 (4)0.022 (4)0.001 (3)0.007 (3)0.003 (3)
C120.042 (5)0.013 (3)0.023 (4)0.008 (3)0.010 (3)0.005 (3)
C130.041 (5)0.016 (3)0.022 (4)0.001 (3)0.014 (3)0.000 (3)
Geometric parameters (Å, º) top
Br1—C111.895 (6)C5—H5B0.9600
O1—C21.369 (7)C5—H5C0.9600
O1—C31.433 (7)C6—H6A0.9600
O2—C41.350 (7)C6—H6B0.9600
O2—C31.449 (7)C6—H6C0.9600
O3—C41.214 (7)C7—H70.9300
O4—C21.229 (6)C8—C131.385 (8)
N1—C71.338 (7)C8—C91.399 (8)
N1—C81.415 (8)C9—C101.378 (8)
N1—H1N0.98 (7)C9—H90.9300
C1—C71.378 (8)C10—C111.386 (8)
C1—C21.434 (8)C10—H100.9300
C1—C41.455 (8)C11—C121.383 (8)
C3—C61.509 (8)C12—C131.386 (8)
C3—C51.513 (8)C12—H120.9300
C5—H5A0.9600C13—H130.9300
C2—O1—C3118.4 (5)C3—C6—H6B109.5
C4—O2—C3118.9 (5)H6A—C6—H6B109.5
C7—N1—C8125.2 (6)C3—C6—H6C109.5
C7—N1—H1N117 (5)H6A—C6—H6C109.5
C8—N1—H1N118 (5)H6B—C6—H6C109.5
C7—C1—C2122.1 (6)N1—C7—C1126.0 (6)
C7—C1—C4116.9 (6)N1—C7—H7117.0
C2—C1—C4120.8 (6)C1—C7—H7117.0
O4—C2—O1118.0 (6)C13—C8—C9119.7 (6)
O4—C2—C1125.5 (6)C13—C8—N1117.7 (5)
O1—C2—C1116.4 (5)C9—C8—N1122.6 (6)
O1—C3—O2111.2 (5)C10—C9—C8120.5 (6)
O1—C3—C6110.4 (5)C10—C9—H9119.7
O2—C3—C6109.8 (5)C8—C9—H9119.7
O1—C3—C5105.7 (5)C9—C10—C11119.0 (6)
O2—C3—C5106.1 (5)C9—C10—H10120.5
C6—C3—C5113.6 (6)C11—C10—H10120.5
O3—C4—O2117.9 (6)C12—C11—C10121.3 (6)
O3—C4—C1125.5 (6)C12—C11—Br1119.5 (5)
O2—C4—C1116.4 (6)C10—C11—Br1119.2 (5)
C3—C5—H5A109.5C11—C12—C13119.5 (6)
C3—C5—H5B109.5C11—C12—H12120.3
H5A—C5—H5B109.5C13—C12—H12120.3
C3—C5—H5C109.5C8—C13—C12120.0 (6)
H5A—C5—H5C109.5C8—C13—H13120.0
H5B—C5—H5C109.5C12—C13—H13120.0
C3—C6—H6A109.5
C3—O1—C2—O4162.6 (5)C2—C1—C4—O210.3 (8)
C3—O1—C2—C120.6 (8)C8—N1—C7—C1179.4 (6)
C7—C1—C2—O46.4 (10)C2—C1—C7—N12.0 (10)
C4—C1—C2—O4167.6 (6)C4—C1—C7—N1172.3 (6)
C7—C1—C2—O1177.0 (5)C7—N1—C8—C13168.0 (5)
C4—C1—C2—O18.9 (8)C7—N1—C8—C911.5 (9)
C2—O1—C3—O246.4 (7)C13—C8—C9—C102.0 (9)
C2—O1—C3—C675.7 (7)N1—C8—C9—C10177.5 (5)
C2—O1—C3—C5161.1 (5)C8—C9—C10—C110.1 (9)
C4—O2—C3—O144.9 (7)C9—C10—C11—C122.3 (9)
C4—O2—C3—C677.5 (6)C9—C10—C11—Br1178.8 (5)
C4—O2—C3—C5159.4 (5)C10—C11—C12—C132.3 (9)
C3—O2—C4—O3166.3 (5)Br1—C11—C12—C13178.7 (4)
C3—O2—C4—C117.6 (7)C9—C8—C13—C121.9 (8)
C7—C1—C4—O38.9 (9)N1—C8—C13—C12177.6 (5)
C2—C1—C4—O3165.4 (6)C11—C12—C13—C80.2 (8)
C7—C1—C4—O2175.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.98 (7)2.06 (8)2.770 (7)128 (6)
C9—H9···O3i0.932.493.345 (8)152
Symmetry code: (i) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC13H12BrNO4
Mr326.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)13.837 (3), 13.019 (3), 7.4900 (15)
β (°) 105.24 (3)
V3)1301.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.17
Crystal size (mm)0.20 × 0.18 × 0.04
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.570, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
9108, 2279, 1063
Rint0.113
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.160, 0.99
No. of reflections2279
No. of parameters179
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.97, 0.96

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.98 (7)2.06 (8)2.770 (7)128 (6)
C9—H9···O3i0.932.493.345 (8)152
Symmetry code: (i) x+2, y, z+2.
 

References

First citationCassis, R., Tapia, R. & Valderrama, J. A. (1985). Synth. Commun. 15, 125–133.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLi, R., Ding, Z.-Y., Wei, Y.-Q. & Ding, J. (2009a). Acta Cryst. E65, o1296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, R., Ding, Z.-Y., Wei, Y.-Q. & Ding, J. (2009b). Acta Cryst. E65, o1297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, R., Shi, J.-Y., Ding, Z.-Y., Wei, Y.-Q. & Ding, J. (2009c). Acta Cryst. E65, o1298–o1299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationRuchelman, A. L., Singh, S. K., Ray, A., Wu, X. H., Yang, J. M., Li, T. K., Liu, A., Liu, L. F. & LaVoie, E. J. (2003). Bioorg. Med. Chem. 11, 2061–2073.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds