organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,8-Bis[3-(tri­eth­oxy­silyl)prop­yl]-1,8-diazo­niatri­cyclo­[9.3.1.14,8]hexa­decane diiodide

aICMUB, UMR5260, CNRS–Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon Cedex, France, bLMPC, UMR 7016, CNRS–ENSCMu–UHA, 3 Rue A. Werner, 68093 Mulhouse cedex, France, and cLCPME, UMR 7564, CNRS–Nancy Université, 405 Rue de Vandoeuvre, 54600 Villers-les-Nancy, France
*Correspondence e-mail: Yoann.Rousselin@u-bourgogne.fr

(Received 10 September 2009; accepted 21 September 2009; online 26 September 2009)

The organic mol­ecule of title compound, C30H66N4O6Si22+·2I, is located around a centre of symmetry. The structure exhibits disorder of the trieth­oxy groups with the ratios 0.78 (1)/0.22 (1), 0.67 (1)/0.33 (1) and 0.58 (1)/0.42 (1).

Related literature

For Si—O bond distances, see: Klapdohr et al. (2000[Klapdohr, S., Dotz, K. H., Assenmacher, W., Hoffbauer, W., Husing, N., Nieger, M., Pfeiffer, J., Popall, M., Schubert, U. & Trimmel, G. (2000). Chem. Eur. J. 6, 3006-3017.]); Bedford et al. (2001[Bedford, R. B., Cazin, C. S. J., Hursthouse, M. B., Light, M. E., Pike, K. J. & Wimperis, S. (2001). J. Organomet. Chem. 633, 173-181.]); Aksin et al. (2006[Aksin, O., Turkmen, H., Artok, L., Cetinkaya, B., Ni, C., Buyukgungor, O. & Ozkal, E. (2006). J. Organomet. Chem. 691, 3027-3036.]).

[Scheme 1]

Experimental

Crystal data
  • C30H66N4O6Si22+·2I

  • Mr = 888.85

  • Monoclinic, P 21 /c

  • a = 15.0484 (2) Å

  • b = 8.4229 (1) Å

  • c = 16.5921 (3) Å

  • β = 101.808 (1)°

  • V = 2058.57 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.63 mm−1

  • T = 115 K

  • 0.21 × 0.21 × 0.15 mm

Data collection
  • Nonius Kappa CCD diffractometer

  • Absorption correction: none

  • 8944 measured reflections

  • 4686 independent reflections

  • 3900 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.076

  • S = 1.03

  • 4686 reflections

  • 208 parameters

  • 17 restraints

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.84 e Å−3

Data collection: COLLECT (Nonius, 2000[Nonius, (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The molecule of title compound, C30H66N4O6Si2.2(I), placed around of centre of symmetry. The Si—O bond distances (Si1—O1 = 1.615 (2), Si1—O2B = 1.629 (7), Si1—O2A = 1.633 (4), Si1—O3A = 1.635 (5), Si1—O3B = 1.644 (6) Å) are in good agreement with those observed in literature - Klapdohr et al., (2000); Bedford et al., (2001); Aksin et al., (2006) - Si—O = 1.611 (10)–1.644 (12)Å. The molecular structure shows a trans–conformation for the two methylenic bridge (Fig. 1).

Related literature top

For Si—O bond distances, see: Klapdohr et al. (2000); Bedford et al. (2001); Aksin et al. (2006).

Experimental top

The 59.5 g of iodopropyltriethoxysilane (2 eq., 0.18 mol) were added to a solution of formaldehyde–cyclam (purchased from CheMatech) (20.07 g, 0.09 mol) in freshly distilled acetonitrile (180 ml) under N2. The white precipitate formed after 3 h was filtered, rinsed with acetonitrile (50 ml). The resulting solid was dried under vacuum. The title compound, I, was obtained as a white solid (m = 42.74 g, 46.5 mmol, yield = 51.6%). No trace of cis–disubstituted macrocycle was detected, indicating a strong selectivity for the trans–disubstitution. Crystals of I suitable for single–crystal X–ray diffraction were selected directly from the sample.

13C [1H] NMR (75 MHz, CDCl3, 300 K): (CH2) 7.2, 15.2, (CH3) 18.7, (CH2) 19.6, 46.8, 46.9, 51.3, (O–CH2) 58.4, (CH2) 59.2, 60.8, 77.0. MALDI–TOF: m/z = 635.02 [M+].

Refinement top

All H atoms were placed at calculated position using a riding model with C—H = 0.98Å (methyl) or 0.99Å (methylene) with Uiso(H) = 1.2Ueq(CH2) or Uiso(H) = 1.5Ueq(CH3).

Two of the triethoxy groups and one ethane group are disordered over two positions. The geometric parameters of three disordered components in each groups were restrained by using SADI restraints and using EADP constraints (Sheldrick, 2008). In the final stages of refinement, the statistical fractions of the major and minor disordered components were held fixed to the nearest rounded values of 0.78/0.22, 0.67/0.33 and 0.58/0.42 for respectively each disordered group. Similar Uij constraints were applied within the disordered parts to maintain a reasonable model. However, these disordered parts of the molecule display rather large ellipsoids with respect to the central core resulting in an Alert C on a Large Non–Solvent H or C Ueq(max)/Ueq(min) ratio.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular view of I with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. Only major molecular moieties for disordered parts are shown. Symmetry codes: (i) -x+1, -y, -z.
1,8-Bis[3-(triethoxysilyl)propyl]-1,8-diazoniatricyclo[9.3.1.14,8]hexadecane diiodide top
Crystal data top
C30H66N4O6Si22+·2IF(000) = 912
Mr = 888.85Dx = 1.434 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4978 reflections
a = 15.0484 (2) Åθ = 1.0–27.5°
b = 8.4229 (1) ŵ = 1.63 mm1
c = 16.5921 (3) ÅT = 115 K
β = 101.808 (1)°Prism, colourless
V = 2058.57 (5) Å30.21 × 0.21 × 0.15 mm
Z = 2
Data collection top
Nonius Kappa CCD
diffractometer
3900 reflections with I > 2σ(I)
Radiation source: fine–focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 27.5°, θmin = 2.9°
Detector resolution: 9 pixels mm-1h = 1919
ϕ and ω scansk = 1010
8944 measured reflectionsl = 2121
4686 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0349P)2 + 1.6474P]
where P = (Fo2 + 2Fc2)/3
4686 reflections(Δ/σ)max = 0.002
208 parametersΔρmax = 0.80 e Å3
17 restraintsΔρmin = 0.84 e Å3
16 constraints
Crystal data top
C30H66N4O6Si22+·2IV = 2058.57 (5) Å3
Mr = 888.85Z = 2
Monoclinic, P21/cMo Kα radiation
a = 15.0484 (2) ŵ = 1.63 mm1
b = 8.4229 (1) ÅT = 115 K
c = 16.5921 (3) Å0.21 × 0.21 × 0.15 mm
β = 101.808 (1)°
Data collection top
Nonius Kappa CCD
diffractometer
3900 reflections with I > 2σ(I)
8944 measured reflectionsRint = 0.030
4686 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03017 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.03Δρmax = 0.80 e Å3
4686 reflectionsΔρmin = 0.84 e Å3
208 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.59893 (17)0.0563 (3)0.11258 (14)0.0219 (5)
H1A0.56380.03920.12150.026*
H1B0.64500.07410.16360.026*
C20.64831 (17)0.0206 (3)0.04340 (14)0.0231 (5)
H2A0.68040.11790.03180.028*
H2B0.69490.06160.06270.028*
C30.64235 (18)0.0542 (3)0.09955 (16)0.0275 (6)
H3A0.68370.14650.08730.033*
H3B0.67930.04170.10320.033*
C40.5753 (2)0.0802 (3)0.18030 (15)0.0289 (6)
H4A0.54140.01950.19620.035*
H4B0.60930.10570.22380.035*
C50.50826 (18)0.2128 (3)0.17557 (14)0.0244 (5)
H5A0.54000.31620.17340.029*
H5B0.45990.21130.22600.029*
C60.54212 (16)0.1799 (3)0.02599 (13)0.0192 (5)
H6A0.51750.17720.02500.023*
H6B0.58390.27150.02270.023*
C70.58228 (17)0.3514 (3)0.08780 (14)0.0214 (5)
H7A0.59700.34900.03230.026*
H7B0.53890.43960.08840.026*
C80.66860 (17)0.3891 (3)0.14980 (15)0.0232 (5)
H8A0.71750.31480.14280.028*
H8B0.65810.37740.20650.028*
C90.69656 (17)0.5607 (3)0.13546 (15)0.0241 (5)
H9A0.64830.63340.14570.029*
H9B0.70090.57260.07700.029*
Si10.80597 (5)0.62166 (9)0.20138 (5)0.02915 (17)
O10.81232 (14)0.5729 (2)0.29651 (11)0.0361 (5)
C11A0.8556 (3)0.4338 (5)0.3373 (2)0.0469 (7)0.78
H11A0.90280.39500.30840.056*0.78
H11B0.81030.34840.33660.056*0.78
C12A0.8981 (3)0.4762 (6)0.4245 (2)0.0469 (7)0.78
H12A0.92750.38210.45300.070*0.78
H12B0.85100.51430.45280.070*0.78
H12C0.94340.55980.42480.070*0.78
O2A0.8055 (5)0.8155 (4)0.1990 (3)0.0331 (13)0.67
C21A0.8750 (5)0.9184 (6)0.2443 (4)0.0513 (14)0.67
H21A0.93270.85920.26080.062*0.67
H21B0.85670.95770.29470.062*0.67
C22A0.8879 (5)1.0565 (6)0.1897 (4)0.0513 (14)0.67
H22A0.93631.12560.21900.077*0.67
H22B0.83121.11690.17540.077*0.67
H22C0.90451.01650.13930.077*0.67
O3A0.8982 (4)0.5450 (14)0.1800 (4)0.0372 (16)0.58
C31A0.9148 (5)0.5705 (8)0.0983 (4)0.0554 (10)0.58
H31A0.97620.61580.10200.066*0.58
H31B0.86990.64700.06830.066*0.58
C32A0.9074 (5)0.4163 (7)0.0524 (4)0.0554 (10)0.58
H32A0.92350.43270.00130.083*0.58
H32B0.84500.37670.04440.083*0.58
H32C0.94890.33860.08410.083*0.58
C11B0.8814 (9)0.5688 (15)0.3700 (7)0.0469 (7)0.22
H11C0.86310.63190.41430.056*0.22
H11D0.93940.61110.35960.056*0.22
C12B0.8901 (12)0.3975 (16)0.3927 (10)0.0469 (7)0.22
H12D0.93340.38550.44520.070*0.22
H12E0.91210.33840.34970.070*0.22
H12F0.83080.35600.39810.070*0.22
O2B0.8147 (12)0.8091 (9)0.1799 (8)0.0331 (13)0.33
C21B0.8921 (11)0.8929 (11)0.2268 (11)0.0513 (14)0.33
H21C0.94710.86570.20560.062*0.33
H21D0.90220.85990.28530.062*0.33
C22B0.8762 (11)1.0688 (11)0.2205 (8)0.0513 (14)0.33
H22D0.93081.12450.24900.077*0.33
H22E0.82501.09650.24590.077*0.33
H22F0.86251.10020.16240.077*0.33
O3B0.8823 (7)0.521 (2)0.1642 (6)0.0372 (16)0.42
C31B0.8901 (7)0.4696 (11)0.0824 (5)0.0554 (10)0.42
H31C0.83500.40950.05680.066*0.42
H31D0.94310.39820.08660.066*0.42
C32B0.9010 (6)0.6094 (10)0.0298 (5)0.0554 (10)0.42
H32D0.90070.57340.02640.083*0.42
H32E0.95880.66250.05220.083*0.42
H32F0.85090.68390.02910.083*0.42
N10.53482 (13)0.1971 (2)0.10041 (11)0.0190 (4)
N20.59027 (13)0.0345 (3)0.03396 (11)0.0205 (4)
I10.660451 (12)0.40929 (2)0.121474 (10)0.03066 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0257 (13)0.0179 (12)0.0204 (11)0.0039 (10)0.0006 (9)0.0014 (9)
C20.0217 (12)0.0210 (13)0.0261 (12)0.0012 (10)0.0039 (10)0.0022 (10)
C30.0302 (14)0.0256 (14)0.0310 (13)0.0024 (11)0.0161 (11)0.0011 (11)
C40.0406 (16)0.0270 (14)0.0229 (12)0.0020 (12)0.0151 (11)0.0014 (10)
C50.0343 (14)0.0242 (13)0.0164 (11)0.0024 (11)0.0094 (10)0.0012 (10)
C60.0202 (12)0.0190 (12)0.0178 (10)0.0016 (9)0.0027 (9)0.0005 (9)
C70.0270 (13)0.0158 (11)0.0208 (11)0.0001 (10)0.0035 (9)0.0001 (9)
C80.0238 (13)0.0221 (13)0.0232 (12)0.0016 (10)0.0038 (10)0.0015 (10)
C90.0248 (13)0.0246 (13)0.0233 (12)0.0007 (10)0.0062 (10)0.0002 (10)
Si10.0226 (4)0.0339 (4)0.0295 (4)0.0054 (3)0.0018 (3)0.0045 (3)
O10.0393 (12)0.0396 (12)0.0270 (10)0.0019 (9)0.0011 (8)0.0013 (8)
C11A0.0436 (16)0.056 (2)0.0373 (16)0.0062 (15)0.0013 (13)0.0084 (13)
C12A0.0436 (16)0.056 (2)0.0373 (16)0.0062 (15)0.0013 (13)0.0084 (13)
O2A0.036 (2)0.0343 (12)0.026 (3)0.0153 (11)0.001 (2)0.0030 (13)
C21A0.044 (3)0.0352 (16)0.066 (3)0.0109 (14)0.009 (2)0.0051 (17)
C22A0.044 (3)0.0352 (16)0.066 (3)0.0109 (14)0.009 (2)0.0051 (17)
O3A0.013 (2)0.066 (4)0.030 (3)0.004 (3)0.002 (2)0.002 (2)
C31A0.047 (2)0.076 (3)0.050 (2)0.005 (2)0.0256 (18)0.001 (2)
C32A0.047 (2)0.076 (3)0.050 (2)0.005 (2)0.0256 (18)0.001 (2)
C11B0.0436 (16)0.056 (2)0.0373 (16)0.0062 (15)0.0013 (13)0.0084 (13)
C12B0.0436 (16)0.056 (2)0.0373 (16)0.0062 (15)0.0013 (13)0.0084 (13)
O2B0.036 (2)0.0343 (12)0.026 (3)0.0153 (11)0.001 (2)0.0030 (13)
C21B0.044 (3)0.0352 (16)0.066 (3)0.0109 (14)0.009 (2)0.0051 (17)
C22B0.044 (3)0.0352 (16)0.066 (3)0.0109 (14)0.009 (2)0.0051 (17)
O3B0.013 (2)0.066 (4)0.030 (3)0.004 (3)0.002 (2)0.002 (2)
C31B0.047 (2)0.076 (3)0.050 (2)0.005 (2)0.0256 (18)0.001 (2)
C32B0.047 (2)0.076 (3)0.050 (2)0.005 (2)0.0256 (18)0.001 (2)
N10.0221 (10)0.0184 (10)0.0164 (9)0.0012 (8)0.0039 (8)0.0008 (8)
N20.0217 (11)0.0202 (10)0.0200 (9)0.0016 (8)0.0051 (8)0.0024 (8)
I10.03902 (12)0.02923 (11)0.02399 (10)0.00690 (8)0.00707 (7)0.00048 (7)
Geometric parameters (Å, º) top
C1—N11.516 (3)C11A—H11B0.9900
C1—C21.520 (3)C12A—H12A0.9800
C1—H1A0.9900C12A—H12B0.9800
C1—H1B0.9900C12A—H12C0.9800
C2—N21.472 (3)O2A—C21A1.446 (5)
C2—H2A0.9900C21A—C22A1.510 (6)
C2—H2B0.9900C21A—H21A0.9900
C3—N21.475 (3)C21A—H21B0.9900
C3—C41.519 (4)C22A—H22A0.9800
C3—H3A0.9900C22A—H22B0.9800
C3—H3B0.9900C22A—H22C0.9800
C4—C51.518 (4)O3A—C31A1.444 (7)
C4—H4A0.9900C31A—C32A1.498 (6)
C4—H4B0.9900C31A—H31A0.9900
C5—N1i1.524 (3)C31A—H31B0.9900
C5—H5A0.9900C32A—H32A0.9800
C5—H5B0.9900C32A—H32B0.9800
C6—N21.443 (3)C32A—H32C0.9800
C6—N1i1.517 (3)C11B—C12B1.490 (8)
C6—H6A0.9900C11B—H11C0.9900
C6—H6B0.9900C11B—H11D0.9900
C7—C81.516 (3)C12B—H12D0.9800
C7—N11.518 (3)C12B—H12E0.9800
C7—H7A0.9900C12B—H12F0.9800
C7—H7B0.9900O2B—C21B1.446 (7)
C8—C91.538 (3)C21B—C22B1.501 (8)
C8—H8A0.9900C21B—H21C0.9900
C8—H8B0.9900C21B—H21D0.9900
C9—Si11.853 (3)C22B—H22D0.9800
C9—H9A0.9900C22B—H22E0.9800
C9—H9B0.9900C22B—H22F0.9800
Si1—O11.6148 (19)O3B—C31B1.452 (7)
Si1—O2B1.629 (7)C31B—C32B1.495 (7)
Si1—O2A1.633 (4)C31B—H31C0.9900
Si1—O3A1.635 (5)C31B—H31D0.9900
Si1—O3B1.644 (6)C32B—H32D0.9800
O1—C11B1.431 (7)C32B—H32E0.9800
O1—C11A1.441 (4)C32B—H32F0.9800
C11A—C12A1.500 (5)N1—C6i1.517 (3)
C11A—H11A0.9900N1—C5i1.524 (3)
N1—C1—C2116.77 (19)H12A—C12A—H12B109.5
N1—C1—H1A108.1C11A—C12A—H12C109.5
C2—C1—H1A108.1H12A—C12A—H12C109.5
N1—C1—H1B108.1H12B—C12A—H12C109.5
C2—C1—H1B108.1C21A—O2A—Si1126.0 (5)
H1A—C1—H1B107.3O2A—C21A—C22A108.5 (5)
N2—C2—C1115.2 (2)O2A—C21A—H21A110.0
N2—C2—H2A108.5C22A—C21A—H21A110.0
C1—C2—H2A108.5O2A—C21A—H21B110.0
N2—C2—H2B108.5C22A—C21A—H21B110.0
C1—C2—H2B108.5H21A—C21A—H21B108.4
H2A—C2—H2B107.5C21A—C22A—H22A109.5
N2—C3—C4108.1 (2)C21A—C22A—H22B109.5
N2—C3—H3A110.1H22A—C22A—H22B109.5
C4—C3—H3A110.1C21A—C22A—H22C109.5
N2—C3—H3B110.1H22A—C22A—H22C109.5
C4—C3—H3B110.1H22B—C22A—H22C109.5
H3A—C3—H3B108.4C31A—O3A—Si1117.6 (6)
C5—C4—C3112.9 (2)O3A—C31A—C32A109.8 (6)
C5—C4—H4A109.0O3A—C31A—H31A109.7
C3—C4—H4A109.0C32A—C31A—H31A109.7
C5—C4—H4B109.0O3A—C31A—H31B109.7
C3—C4—H4B109.0C32A—C31A—H31B109.7
H4A—C4—H4B107.8H31A—C31A—H31B108.2
C4—C5—N1i112.17 (19)C31A—C32A—H32A109.5
C4—C5—H5A109.2C31A—C32A—H32B109.5
N1i—C5—H5A109.2H32A—C32A—H32B109.5
C4—C5—H5B109.2C31A—C32A—H32C109.5
N1i—C5—H5B109.2H32A—C32A—H32C109.5
H5A—C5—H5B107.9H32B—C32A—H32C109.5
N2—C6—N1i108.71 (17)O1—C11B—C12B104.5 (9)
N2—C6—H6A109.9O1—C11B—H11C110.9
N1i—C6—H6A109.9C12B—C11B—H11C110.9
N2—C6—H6B109.9O1—C11B—H11D110.9
N1i—C6—H6B109.9C12B—C11B—H11D110.9
H6A—C6—H6B108.3H11C—C11B—H11D108.9
C8—C7—N1116.57 (19)C11B—C12B—H12D109.5
C8—C7—H7A108.1C11B—C12B—H12E109.5
N1—C7—H7A108.1H12D—C12B—H12E109.5
C8—C7—H7B108.1C11B—C12B—H12F109.5
N1—C7—H7B108.1H12D—C12B—H12F109.5
H7A—C7—H7B107.3H12E—C12B—H12F109.5
C7—C8—C9108.4 (2)C21B—O2B—Si1116.6 (9)
C7—C8—H8A110.0O2B—C21B—C22B110.2 (11)
C9—C8—H8A110.0O2B—C21B—H21C109.6
C7—C8—H8B110.0C22B—C21B—H21C109.6
C9—C8—H8B110.0O2B—C21B—H21D109.6
H8A—C8—H8B108.4C22B—C21B—H21D109.6
C8—C9—Si1114.03 (18)H21C—C21B—H21D108.1
C8—C9—H9A108.7C21B—C22B—H22D109.5
Si1—C9—H9A108.7C21B—C22B—H22E109.5
C8—C9—H9B108.7H22D—C22B—H22E109.5
Si1—C9—H9B108.7C21B—C22B—H22F109.5
H9A—C9—H9B107.6H22D—C22B—H22F109.5
O1—Si1—O2B117.9 (5)H22E—C22B—H22F109.5
O1—Si1—O2A106.10 (19)C31B—O3B—Si1134.5 (8)
O1—Si1—O3A103.2 (3)O3B—C31B—C32B110.4 (11)
O2B—Si1—O3A103.0 (8)O3B—C31B—H31C109.6
O2A—Si1—O3A112.9 (5)C32B—C31B—H31C109.6
O1—Si1—O3B109.3 (5)O3B—C31B—H31D109.6
O2B—Si1—O3B108.8 (9)C32B—C31B—H31D109.6
O2A—Si1—O3B120.3 (7)H31C—C31B—H31D108.1
O1—Si1—C9111.97 (11)C31B—C32B—H32D109.5
O2B—Si1—C9103.9 (6)C31B—C32B—H32E109.5
O2A—Si1—C9105.3 (3)H32D—C32B—H32E109.5
O3A—Si1—C9117.0 (3)C31B—C32B—H32F109.5
O3B—Si1—C9103.9 (4)H32D—C32B—H32F109.5
C11B—O1—C11A53.1 (5)H32E—C32B—H32F109.5
C11B—O1—Si1136.6 (7)C1—N1—C6i113.09 (17)
C11A—O1—Si1126.6 (2)C1—N1—C7112.57 (18)
O1—C11A—C12A108.8 (3)C6i—N1—C7105.79 (17)
O1—C11A—H11A109.9C1—N1—C5i108.91 (17)
C12A—C11A—H11A109.9C6i—N1—C5i107.02 (17)
O1—C11A—H11B109.9C7—N1—C5i109.24 (18)
C12A—C11A—H11B109.9C6—N2—C2114.02 (18)
H11A—C11A—H11B108.3C6—N2—C3108.95 (19)
C11A—C12A—H12A109.5C2—N2—C3111.64 (19)
C11A—C12A—H12B109.5
N1—C1—C2—N267.5 (3)O2A—Si1—O3A—C31A64.5 (8)
N2—C3—C4—C552.3 (3)O3B—Si1—O3A—C31A62 (4)
C3—C4—C5—N1i48.6 (3)C9—Si1—O3A—C31A57.9 (9)
N1—C7—C8—C9170.30 (19)Si1—O3A—C31A—C32A112.4 (8)
C7—C8—C9—Si1175.74 (16)C11A—O1—C11B—C12B9.4 (8)
C8—C9—Si1—O146.8 (2)Si1—O1—C11B—C12B116.4 (10)
C8—C9—Si1—O2B175.2 (6)O1—Si1—O2B—C21B51.5 (14)
C8—C9—Si1—O2A161.7 (2)O2A—Si1—O2B—C21B79 (4)
C8—C9—Si1—O3A72.0 (5)O3A—Si1—O2B—C21B61.4 (13)
C8—C9—Si1—O3B71.0 (6)O3B—Si1—O2B—C21B73.6 (13)
O2B—Si1—O1—C11B70.0 (11)C9—Si1—O2B—C21B176.1 (11)
O2A—Si1—O1—C11B76.2 (9)Si1—O2B—C21B—C22B162.0 (13)
O3A—Si1—O1—C11B42.7 (9)O1—Si1—O3B—C31B154.0 (16)
O3B—Si1—O1—C11B54.8 (10)O2B—Si1—O3B—C31B76.0 (19)
C9—Si1—O1—C11B169.4 (8)O2A—Si1—O3B—C31B83.0 (18)
O2B—Si1—O1—C11A142.4 (8)O3A—Si1—O3B—C31B142 (6)
O2A—Si1—O1—C11A148.7 (4)C9—Si1—O3B—C31B34.3 (19)
O3A—Si1—O1—C11A29.7 (5)Si1—O3B—C31B—C32B67.1 (19)
O3B—Si1—O1—C11A17.6 (7)C2—C1—N1—C6i60.8 (3)
C9—Si1—O1—C11A97.0 (3)C2—C1—N1—C759.0 (3)
C11B—O1—C11A—C12A19.5 (9)C2—C1—N1—C5i179.6 (2)
Si1—O1—C11A—C12A144.5 (3)C8—C7—N1—C149.9 (3)
O1—Si1—O2A—C21A58.1 (6)C8—C7—N1—C6i173.89 (19)
O2B—Si1—O2A—C21A97 (4)C8—C7—N1—C5i71.2 (3)
O3A—Si1—O2A—C21A54.2 (6)N1i—C6—N2—C2162.99 (18)
O3B—Si1—O2A—C21A66.3 (7)N1i—C6—N2—C371.6 (2)
C9—Si1—O2A—C21A177.0 (5)C1—C2—N2—C660.5 (3)
Si1—O2A—C21A—C22A141.1 (5)C1—C2—N2—C3175.5 (2)
O1—Si1—O3A—C31A178.7 (7)C4—C3—N2—C663.8 (3)
O2B—Si1—O3A—C31A55.4 (9)C4—C3—N2—C2169.4 (2)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC30H66N4O6Si22+·2I
Mr888.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)115
a, b, c (Å)15.0484 (2), 8.4229 (1), 16.5921 (3)
β (°) 101.808 (1)
V3)2058.57 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.63
Crystal size (mm)0.21 × 0.21 × 0.15
Data collection
DiffractometerNonius Kappa CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8944, 4686, 3900
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 1.03
No. of reflections4686
No. of parameters208
No. of restraints17
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.84

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported by the French National Research Agency (project No. NT05 3 41602 mesoporelect), the Centre National de la Recherche Scientifique (CNRS), the Ministère de l'Enseignement Supérieur de la Recherche and the Conseil Régional de Bourgogne.

References

First citationAksin, O., Turkmen, H., Artok, L., Cetinkaya, B., Ni, C., Buyukgungor, O. & Ozkal, E. (2006). J. Organomet. Chem. 691, 3027–3036.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBedford, R. B., Cazin, C. S. J., Hursthouse, M. B., Light, M. E., Pike, K. J. & Wimperis, S. (2001). J. Organomet. Chem. 633, 173–181.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKlapdohr, S., Dotz, K. H., Assenmacher, W., Hoffbauer, W., Husing, N., Nieger, M., Pfeiffer, J., Popall, M., Schubert, U. & Trimmel, G. (2000). Chem. Eur. J. 6, 3006–3017.  CrossRef PubMed CAS Google Scholar
First citationNonius, (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds