organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(3-Bromo­benz­yl)-1H-isochromen-1-one

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: nhrama@qau.edu.pk

(Received 4 September 2009; accepted 14 September 2009; online 26 September 2009)

In the title compound, C16H11BrO2, the isocoumarin ring system is planar (r.m.s. deviation = 0.015 Å) and subtends a dihedral angle of 88.90 (2)° with the bromo­benzene ring. In the crystal, mol­ecules are linked, forming a three-dimensional packing pattern involving C—H⋯O inter­actions, Br⋯O contacts [3.4734 (10) Å] and ππ stacking inter­actions with centroid–centroid distances ranging from 3.667 (2) to 3.765 (2) Å.

Related literature

For the properties and applications of isocoumarins and 3,4-dihydro­isocoumarins, see: Chinworrungsee et al. (2002[Chinworrungsee, M., Kittakoop, P., Isaka, M., Chanphen, R., Tanticharoen, M. & Thebtaranonth, Y. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 2473-2476.]); Devienne et al. (2002[Devienne, K. F., Raddi, M. S. G., Varanda, E. A. & Vilegas, W. (2002). Z. Naturforsch. Teil C, 57, 85-88.]); Mali & Babu (1998[Mali, R. S. & Babu, K. N. (1998). J. Org. Chem. 63, 2288-2492.]); Rama et al. (1998[Rama, N. H., Iqbal, R. & Zamani, K. (1998). J. Chem. Soc. Pak. 62, 18-21.]); Waters & Kozlowski (2001[Waters, S. P. & Kozlowski, M. C. (2001). Tetrahedron Lett. 42, 3567-3570.]). For related structures, see: Abid et al. (2008[Abid, O.-U.-R., Qadeer, G., Rama, N. H., Ruzicka, A. & Padelkova, Z. (2008). Acta Cryst. E64, o2018.]); Babar et al. (2008[Babar, T. M., Qadeer, G., Abid, O.-R., Rama, N. H. & Ruzicka, A. (2008). Acta Cryst. E64, o2266.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11BrO2

  • Mr = 315.16

  • Triclinic, [P \overline 1]

  • a = 7.4508 (5) Å

  • b = 8.1824 (6) Å

  • c = 11.3663 (8) Å

  • α = 90.130 (6)°

  • β = 98.392 (7)°

  • γ = 113.844 (8)°

  • V = 625.58 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.28 mm−1

  • T = 103 K

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Oxford Xcalibur E diffractometer

  • Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.922, Tmax = 1.000

  • 16250 measured reflections

  • 3449 independent reflections

  • 2899 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.045

  • S = 0.97

  • 3449 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.95 2.58 3.4666 (16) 155
C10—H10A⋯O2ii 0.99 2.50 3.4685 (17) 166
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z+1.

Data collection: CrysAlisPro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, there has been increasing interest in the synthesis of natural products, since they are an excellent and reliable source for the development of new drugs. Isocoumarins and 3,4-dihydroisocoumarins are a class of natural products that often occur as microbial metabolites and that have been found to exhibit interesting biological properties (Mali & Babu, 1998), including anti-fungal, anti-inflammatory, anti-allergic, antiangiogenic, anti-malaria (Chinworrungsee et al., 2002), anti-bacterial (Rama et al., 1998), anti-cancer, anti-virus (Waters & Kozlowski, 2001) and anti-microbial activities (Davienne et al., 2002). In view of the importance of this class of compounds, the title compound, an isocoumarine derivative containing a 3-bromobenzyl substituent, has been synthesized and its crystal structure is reported here. We have previously reported the structures of the analogous fluorine and chlorine derivatives (Babar et al., 2008; Abid et al., 2008), which crystallize with two and three molecules respectively in the asymmetric unit.

The molecule of the title compound is shown in Fig. 1. The structure is not isotypic to either of the analogous derivatives. Bond lengths and angles may be regarded as normal by comparison with the earlier structures (Babar et al., 2008; Abid et al., 2008), although in each structure several bond angles are appreciably different from ideal values [e. g. in the current structure O2—C1—C9 126.19 (12), C3—C2—C10 128.78 (12), O1—C2—C10 109.56 (11), C2—C10—C11 112.98 (11)°]. The isocoumarin ring system and the bromobenzene ring are both planar within r.m.s. deviations of 0.015 Å and subtend a dihedral angle of 88.90 (2)°.

The packing diagram (Fig. 2) shows the molecules to be linked by two C—H···O hydrogen bonds (Table 1) and by ππ stacking interactions between the coumarin units and between the bromobenzene rings, with centroid-to-centroid distances ranging from 3.667 (2) to 3.765 (2) Å. A marginal Br···O interaction [Br···O2i 3.4734 (10) Å; symmetry code: (i) -1 + x, y, -1 + z] is also observed.

Related literature top

For the properties and applications of isocoumarins and 3,4-dihydroisocoumarins, see: Chinworrungsee et al. (2002); Devienne et al. (2002); Mali & Babu (1998); Rama et al. (1998); Waters & Kozlowski (2001). For related structures, see: Abid et al. (2008); Babar et al. (2008).

Experimental top

A mixture of 2-(3-bromophenyl)acetic acid (5 g, 0.023 mol) and oxalyl chloride (2 ml, 0.024 mol) was stirred overnight. Completion of the reaction was indicated by cessation of gas evolution. Excess oxalyl chloride was removed under reduced pressure to afford 2-(3-bromophenyl)acetyl chloride. Homophthalic acid (1.0 g, 0.006 mol) was added and the solution was heated at 473 K for 4 h. The reaction mixture was dissolved in ethyl acetate and aqueous solution of sodium carbonate was added in order to remove the unreacted homophthalic acid. The organic layer was separated, concentrated and chromatographed on silica gel using pet ether as eluent to afford title compound (yield 65%,; m.p. 97–98°C) as a colourless solid. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were placed in calculated positions and refined using a riding model with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed perpendicular to the bc plane. C—H···O hydrogen interactions are indicated by dashed lines. H atoms not involved in hydrogen bonding are omitted.
[Figure 3] Fig. 3. Reaction scheme.
3-(3-Bromobenzyl)-1H-isochromen-1-one top
Crystal data top
C16H11BrO2Z = 2
Mr = 315.16F(000) = 316
Triclinic, P1Dx = 1.673 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4508 (5) ÅCell parameters from 9750 reflections
b = 8.1824 (6) Åθ = 2.7–30.7°
c = 11.3663 (8) ŵ = 3.28 mm1
α = 90.130 (6)°T = 103 K
β = 98.392 (7)°Block, colourless
γ = 113.844 (8)°0.25 × 0.25 × 0.20 mm
V = 625.58 (8) Å3
Data collection top
Oxford Xcalibur E
diffractometer
3449 independent reflections
Radiation source: Enhance (Mo) X-ray Source2899 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.1419 pixels mm-1θmax = 29.6°, θmin = 3.0°
ω scanh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction 2009)
k = 1111
Tmin = 0.922, Tmax = 1.000l = 1515
16250 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.045H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0233P)2]
where P = (Fo2 + 2Fc2)/3
3449 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H11BrO2γ = 113.844 (8)°
Mr = 315.16V = 625.58 (8) Å3
Triclinic, P1Z = 2
a = 7.4508 (5) ÅMo Kα radiation
b = 8.1824 (6) ŵ = 3.28 mm1
c = 11.3663 (8) ÅT = 103 K
α = 90.130 (6)°0.25 × 0.25 × 0.20 mm
β = 98.392 (7)°
Data collection top
Oxford Xcalibur E
diffractometer
3449 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction 2009)
2899 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 1.000Rint = 0.025
16250 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.045H-atom parameters constrained
S = 0.97Δρmax = 0.43 e Å3
3449 reflectionsΔρmin = 0.25 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Non-bonded contact:

3.4734 (0.0010) Br - O2_$5 157.19 (0.04) C13 - Br - O2_$5 144.68 (0.08) Br - O2_$5 - C1_$5 Operator for generating equivalent atoms: $5 x - 1, y, z - 1

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 1.8912 (0.0020) x + 7.3803 (0.0014) y + 4.4053 (0.0037) z = 0.7728 (0.0010)

* 0.0088 (0.0008) C10 * -0.0063 (0.0011) C11 * 0.0058 (0.0010) C12 * 0.0167 (0.0011) C13 * 0.0215 (0.0010) C14 * -0.0036 (0.0009) C15 * -0.0224 (0.0011) C16 * -0.0204 (0.0006) Br

Rms deviation of fitted atoms = 0.0151

7.0134 (0.0011) x - 0.6456 (0.0018) y - 2.6242 (0.0032) z = 3.6495 (0.0018)

Angle to previous plane (with approximate e.s.d.) = 88.90 (0.02)

* -0.0183 (0.0009) C10 * -0.0095 (0.0009) O1 * 0.0027 (0.0011) C1 * -0.0081 (0.0008) O2 * 0.0273 (0.0011) C3 * 0.0129 (0.0012) C4 * -0.0052 (0.0011) C5 * -0.0241 (0.0011) C6 * -0.0078 (0.0012) C7 * 0.0144 (0.0012) C8 * 0.0159 (0.0012) C9

Rms deviation of fitted atoms = 0.0152

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.13942 (2)0.205557 (19)0.113746 (13)0.02023 (5)
O10.70881 (14)0.19099 (12)0.46026 (8)0.0146 (2)
O20.78538 (15)0.22208 (13)0.65672 (8)0.0195 (2)
C10.75969 (19)0.29281 (17)0.56653 (12)0.0141 (3)
C20.67678 (19)0.25762 (17)0.35091 (11)0.0128 (3)
C30.69140 (19)0.42394 (17)0.34239 (11)0.0136 (3)
H30.66990.46620.26610.016*
C40.73964 (18)0.54146 (17)0.44789 (11)0.0124 (3)
C50.7521 (2)0.71742 (18)0.44484 (12)0.0170 (3)
H50.72880.76430.37060.020*
C60.7982 (2)0.82214 (18)0.54931 (13)0.0182 (3)
H60.80450.94040.54650.022*
C70.8354 (2)0.75669 (19)0.65887 (13)0.0185 (3)
H70.86830.83060.73010.022*
C80.8248 (2)0.58509 (18)0.66416 (12)0.0162 (3)
H80.85070.54060.73890.019*
C90.77565 (19)0.47639 (17)0.55899 (11)0.0126 (3)
C100.6231 (2)0.11432 (17)0.25339 (11)0.0161 (3)
H10A0.49720.01380.26390.019*
H10B0.72800.06820.26020.019*
C110.5989 (2)0.17984 (17)0.12982 (11)0.0144 (3)
C120.4136 (2)0.16677 (17)0.07491 (11)0.0146 (3)
H120.30110.11470.11400.018*
C130.39414 (19)0.23009 (17)0.03706 (12)0.0143 (3)
C140.5553 (2)0.30743 (18)0.09635 (12)0.0155 (3)
H140.54010.35180.17260.019*
C150.7391 (2)0.31864 (17)0.04193 (12)0.0165 (3)
H150.85100.37040.08150.020*
C160.7613 (2)0.25498 (17)0.06999 (12)0.0157 (3)
H160.88800.26270.10610.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.01563 (7)0.02239 (8)0.02281 (8)0.00845 (6)0.00152 (5)0.00243 (6)
O10.0220 (5)0.0115 (5)0.0106 (5)0.0075 (4)0.0015 (4)0.0015 (4)
O20.0273 (6)0.0183 (5)0.0130 (5)0.0098 (5)0.0022 (4)0.0048 (4)
C10.0134 (6)0.0152 (7)0.0135 (7)0.0051 (6)0.0033 (5)0.0009 (5)
C20.0130 (6)0.0147 (6)0.0106 (6)0.0051 (5)0.0027 (5)0.0033 (5)
C30.0162 (7)0.0141 (7)0.0107 (6)0.0065 (6)0.0016 (5)0.0022 (5)
C40.0109 (6)0.0123 (6)0.0145 (7)0.0046 (5)0.0033 (5)0.0014 (5)
C50.0191 (7)0.0163 (7)0.0170 (7)0.0087 (6)0.0031 (5)0.0034 (6)
C60.0188 (7)0.0124 (7)0.0246 (8)0.0069 (6)0.0053 (6)0.0005 (6)
C70.0181 (7)0.0183 (7)0.0183 (7)0.0062 (6)0.0045 (6)0.0049 (6)
C80.0164 (7)0.0187 (7)0.0123 (7)0.0054 (6)0.0039 (5)0.0009 (5)
C90.0111 (6)0.0130 (6)0.0138 (7)0.0045 (5)0.0034 (5)0.0013 (5)
C100.0218 (7)0.0117 (6)0.0141 (7)0.0060 (6)0.0028 (5)0.0010 (5)
C110.0208 (7)0.0089 (6)0.0124 (7)0.0053 (6)0.0014 (5)0.0030 (5)
C120.0173 (7)0.0119 (6)0.0140 (7)0.0046 (6)0.0052 (5)0.0014 (5)
C130.0147 (6)0.0121 (6)0.0155 (7)0.0058 (5)0.0001 (5)0.0032 (5)
C140.0196 (7)0.0137 (7)0.0131 (7)0.0068 (6)0.0021 (5)0.0004 (5)
C150.0170 (7)0.0149 (7)0.0170 (7)0.0051 (6)0.0055 (5)0.0019 (6)
C160.0159 (7)0.0145 (7)0.0154 (7)0.0057 (6)0.0002 (5)0.0012 (5)
Geometric parameters (Å, º) top
Br—C131.9001 (13)C11—C161.3947 (19)
O1—C11.3796 (15)C12—C131.3854 (18)
O1—C21.3859 (15)C13—C141.3859 (19)
O2—C11.2073 (15)C14—C151.3842 (18)
C1—C91.4618 (18)C15—C161.3887 (18)
C2—C31.3256 (18)C3—H30.9500
C2—C101.4996 (18)C5—H50.9500
C3—C41.4426 (18)C6—H60.9500
C4—C91.4035 (18)C7—H70.9500
C4—C51.4056 (18)C8—H80.9500
C5—C61.3787 (19)C10—H10A0.9900
C6—C71.392 (2)C10—H10B0.9900
C7—C81.3759 (19)C12—H120.9500
C8—C91.3994 (18)C14—H140.9500
C10—C111.5166 (18)C15—H150.9500
C11—C121.3911 (18)C16—H160.9500
C1—O1—C2122.56 (10)C15—C14—C13118.52 (13)
O2—C1—O1117.22 (12)C14—C15—C16120.63 (13)
O2—C1—C9126.19 (12)C15—C16—C11120.46 (13)
O1—C1—C9116.59 (11)C2—C3—H3119.7
C3—C2—O1121.65 (12)C4—C3—H3119.7
C3—C2—C10128.78 (12)C6—C5—H5119.9
O1—C2—C10109.56 (11)C4—C5—H5119.9
C2—C3—C4120.62 (12)C5—C6—H6119.6
C9—C4—C5118.50 (12)C7—C6—H6119.6
C9—C4—C3118.22 (12)C8—C7—H7119.9
C5—C4—C3123.28 (12)C6—C7—H7119.9
C6—C5—C4120.19 (13)C7—C8—H8120.1
C5—C6—C7120.77 (13)C9—C8—H8120.1
C8—C7—C6120.14 (13)C2—C10—H10A109.0
C7—C8—C9119.74 (13)C11—C10—H10A109.0
C8—C9—C4120.65 (12)C2—C10—H10B109.0
C8—C9—C1119.01 (12)C11—C10—H10B109.0
C4—C9—C1120.34 (12)H10A—C10—H10B107.8
C2—C10—C11112.98 (11)C13—C12—H12120.2
C12—C11—C16119.06 (12)C11—C12—H12120.2
C12—C11—C10120.17 (12)C15—C14—H14120.7
C16—C11—C10120.77 (12)C13—C14—H14120.7
C13—C12—C11119.64 (12)C14—C15—H15119.7
C12—C13—C14121.67 (13)C16—C15—H15119.7
C12—C13—Br119.50 (10)C15—C16—H16119.8
C14—C13—Br118.81 (10)C11—C16—H16119.8
C2—O1—C1—O2179.57 (11)O2—C1—C9—C80.1 (2)
C2—O1—C1—C90.95 (17)O1—C1—C9—C8179.34 (11)
C1—O1—C2—C30.72 (19)O2—C1—C9—C4179.30 (13)
C1—O1—C2—C10179.69 (11)O1—C1—C9—C40.14 (18)
O1—C2—C3—C40.6 (2)C3—C2—C10—C115.0 (2)
C10—C2—C3—C4178.12 (13)O1—C2—C10—C11176.15 (11)
C2—C3—C4—C91.66 (19)C2—C10—C11—C1290.92 (15)
C2—C3—C4—C5178.28 (13)C2—C10—C11—C1688.60 (15)
C9—C4—C5—C60.22 (19)C16—C11—C12—C130.72 (19)
C3—C4—C5—C6179.72 (13)C10—C11—C12—C13178.81 (11)
C4—C5—C6—C70.9 (2)C11—C12—C13—C140.27 (19)
C5—C6—C7—C80.6 (2)C11—C12—C13—Br178.14 (9)
C6—C7—C8—C90.2 (2)C12—C13—C14—C150.9 (2)
C7—C8—C9—C40.9 (2)Br—C13—C14—C15177.54 (10)
C7—C8—C9—C1178.34 (13)C13—C14—C15—C160.50 (19)
C5—C4—C9—C80.63 (19)C14—C15—C16—C110.5 (2)
C3—C4—C9—C8179.43 (12)C12—C11—C16—C151.09 (19)
C5—C4—C9—C1178.56 (12)C10—C11—C16—C15178.44 (12)
C3—C4—C9—C11.38 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.583.4666 (16)155
C10—H10A···O2ii0.992.503.4685 (17)166
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H11BrO2
Mr315.16
Crystal system, space groupTriclinic, P1
Temperature (K)103
a, b, c (Å)7.4508 (5), 8.1824 (6), 11.3663 (8)
α, β, γ (°)90.130 (6), 98.392 (7), 113.844 (8)
V3)625.58 (8)
Z2
Radiation typeMo Kα
µ (mm1)3.28
Crystal size (mm)0.25 × 0.25 × 0.20
Data collection
DiffractometerOxford Xcalibur E
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction 2009)
Tmin, Tmax0.922, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16250, 3449, 2899
Rint0.025
(sin θ/λ)max1)0.694
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.045, 0.97
No. of reflections3449
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.25

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.583.4666 (16)155.3
C10—H10A···O2ii0.992.503.4685 (17)166.0
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.
 

Acknowledgements

TMB is grateful to the Higher Education Commission of Pakistan for financial support for a PhD program.

References

First citationAbid, O.-U.-R., Qadeer, G., Rama, N. H., Ruzicka, A. & Padelkova, Z. (2008). Acta Cryst. E64, o2018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBabar, T. M., Qadeer, G., Abid, O.-R., Rama, N. H. & Ruzicka, A. (2008). Acta Cryst. E64, o2266.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChinworrungsee, M., Kittakoop, P., Isaka, M., Chanphen, R., Tanticharoen, M. & Thebtaranonth, Y. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 2473–2476.  Web of Science CrossRef Google Scholar
First citationDevienne, K. F., Raddi, M. S. G., Varanda, E. A. & Vilegas, W. (2002). Z. Naturforsch. Teil C, 57, 85–88.  CAS Google Scholar
First citationMali, R. S. & Babu, K. N. (1998). J. Org. Chem. 63, 2288–2492.  Web of Science CrossRef Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRama, N. H., Iqbal, R. & Zamani, K. (1998). J. Chem. Soc. Pak. 62, 18–21.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWaters, S. P. & Kozlowski, M. C. (2001). Tetrahedron Lett. 42, 3567–3570.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds