organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(2-quinolylcarbon­yl)hydrazine

aCollege of Chemistry and Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhudr@njut.edu.cn

(Received 10 September 2009; accepted 18 September 2009; online 26 September 2009)

The title compound, C20H14N4O2, crystallizes in the ortho­rhom­bic system with a crystallographic twofold axis through the N—N bond. The mol­ecule is non-planar and the dihedral angle between two amide groups is 74.9 (2)°. An intra­molecular N—H⋯N hydrogen bond is present. In the crystal, the mol­ecules are packed in chains running along the c axis through inter­molecular N—H⋯O hydrogen bonds. These chains are further stabilized by inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions leading to the formation of a three-dimensional network.

Related literature

For general background to the chemistry of N,N′-diacyl­hydrazines, see: Zhao & Bruke (1997[Zhao, H. & Bruke, T. R. J. (1997). Tetrahedron, 53, 4219-4230.]); Knödler et al. (2004[Knödler, K., Fiedler, J. & Kaim, W. (2004). Polyhedron, 23, 701-707.]); Bernhardt et al. (2005[Bernhardt, P. V., Chin, P., Sharpe, P. C., Wang, J.-Y. C. & Richardson, D. R. (2005). J. Biol. Inorg. Chem. 10, 761-777.]). For the syntheses and structures of related compounds, see: Jasinskas et al. (1975[Jasinskas, L., Urbonas, A. & Latakas, V. (1975). Liet. TSR Aukš. Mokyklu Mokslo Darb. Chem. Chem. Technol. 17, 143-145.]); Shao et al. (1999[Shao, S., Zhu, D., Song, Y., You, X. Z., Shanmuga Sundara Raj, S. & Fun, H.-K. (1999). Acta Cryst. C55, 1841-1843.]); Xu et al. (2006[Xu, R.-H., Zhou, J., Xu, Y., Qi, L., Shen, X. & Zhu, D.-R. (2006). Acta Cryst. E62, o5234-o5235.]); Zheng et al. (2007[Zheng, Z.-B., Wu, R.-T., Li, J.-K. & Sun, Y.-F. (2007). Acta Cryst. E63, o4658.]); Shanmuga Sundara Raj et al. (2000[Shanmuga Sundara Raj, S., Yamin, B. M., Boshaala, A. M. A., Tarafder, M. T. H., Crouse, K. A. & Fun, H.-K. (2000). Acta Cryst. C56, 1011-1012.]). For the synthesis of the title compound, see: Xie et al. (2009[Xie, D.-J., Lu, W., Wang, Z.-X. & Zhu, D.-R. (2009). Acta Cryst. E65, o1177-o1178.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]);

[Scheme 1]

Experimental

Crystal data
  • C20H14N4O2

  • Mr = 342.35

  • Orthorhombic, P c c n

  • a = 11.649 (4) Å

  • b = 17.023 (6) Å

  • c = 8.349 (3) Å

  • V = 1655.6 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.26 × 0.12 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.993

  • 10346 measured reflections

  • 1629 independent reflections

  • 816 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.115

  • S = 0.95

  • 1629 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1 0.86 2.31 2.689 (2) 107
N2—H2A⋯O1ii 0.86 2.35 2.978 (3) 130
C5—H5A⋯O1iii 0.93 2.45 3.177 (3) 135
C8—H8ACg1iv 0.93 2.64 3.449 146
Symmetry codes: (ii) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x-{\script{1\over 2}}, y, z-{\script{3\over 2}}]. Cg1 is the centroid of the N1/C1–C4/C9 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

(Un)symmetrical N,N'-diacylhydrazines are of interest because they are the basic structural components in heterocyclic chemistry and may be used as bridging ligands in coordination chemistry (Zhao & Bruke, 1997; Knödler et al., 2004; Bernhardt et al., 2005). We have reported the structure of N,N'-bis(2-picolinoyl)hydrazine (Shao et al., 1999). As a continuation of our investigations of the structure of N,N'-diacylhydrazines and their derivatives, herein, we report the crystal structure of the title compound. It was first prepared by aroylation of 2-quinolylcarbonylhydrazine with 2-quinolinecarbonyl chloride in dry pyridine (Jasinskas et al., 1975).

The X-ray analysis of the title compound (Fig. 1) indicates that the molecule is non-planar. The dihedral angle between the quinolyl ring and the amide group is 15.3 (2)° and that between the amide groups is 74.9 (2)°. Similarly to N,N'-bis(2-picolinoyl)hydrazine, the asymmetric unit contains half the molecule and the other half is related by a crystallographic twofold axis passing through the N2—N2i bond [symmetry code: (i) 3/2 - x, 1/2 - y, z]. The bond lengths and angles (Table 1) in the structure are in the normal ranges (Xu et al., 2006; Zheng et al., 2007). The C10—N2—N2i—C10i torsion angle is -87.7 (2)°. The two carbonyl groups and the H atoms of the N—N bond are in a trans orientation with respect to each other. This conformation is due mainly to the intramolecular N—H···N hydrogen bonds.

In the crystal (Fig. 2), each molecule is connected to another by a pair of intermolecular N—H···O hydrogen bonds (Table 2) between the amide H atoms and the O atoms of neighbouring carbonyl groups to form a ten-membered ring with the graph-set motif C4R22(10) (Bernstein et al., 1995). The same feature is also found in N,N'-bis(2-picolinoyl)hydrazine and 1,2-dibenzoylhydrazine (Shanmuga Sundara Raj et al., 2000). Due to presence of these intermolecular N—H···O hydrogen bonds, the molecules are packed into chains running along the c axis. These chains are further stabilized by intermolecular C—H···O hydrogen bonds and C—H···π interactions (Table 2) leading to the formation of a three-dimensional network.

Related literature top

For general background to the chemistry of N,N'-diacylhydrazines, see: Zhao & Bruke (1997); Knödler et al. (2004); Bernhardt et al. (2005). For the syntheses and structures of related compounds, see: Jasinskas et al. (1975); Shao et al. (1999); Xu et al. (2006); Zheng et al. (2007); Shanmuga Sundara Raj et al. (2000). For the synthesis of the title compound, see: Xie et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995);

Experimental top

The title compound was obtained unexpectedly in the synthesis of 3-methyl-4-(p-methylphenyl)-5-(2-quinolyl)-1,2,4-triazole by the reaction of N-formyl-N'-(2-quinolylcarbonyl)hydrazine (1 mmol) with 4,4'-dimethylphenylphosphazoanilide (1 mmol) in N,N-dimethylaniline (20 ml) at 463–473 K (Xie et al., 2009). It also can be prepared by literature method (Jasinskas et al., 1975). Diffraction quality crystals were obtained by recrystallization from ethanol (yield 31%).

Refinement top

All H atoms were located in a difference Fourier map and allowed to ride on their parent atoms at distances of 0.96Å (aromatic), 0.93Å (pyridyl), and with Uiso(H) values of 1.2 or 1.5 times of Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 50% probability displacement ellipsoids and atom-numbering scheme [symmetry code: (i) 3/2 - x, 1/2 - y, z].
[Figure 2] Fig. 2. The three-dimensional network formed via hydrogen bonds (dashed lines) and C—H···π interactions [symmetry code: (i) 1 - x, 1/2 + y, 1/2 - z].
N,N'-Bis(2-quinolylcarbonyl)hydrazine top
Crystal data top
C20H14N4O2F(000) = 712
Mr = 342.35Dx = 1.374 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 28 reflections
a = 11.649 (4) Åθ = 2.1–26.6°
b = 17.023 (6) ŵ = 0.09 mm1
c = 8.349 (3) ÅT = 296 K
V = 1655.6 (10) Å3Block, colourless
Z = 40.26 × 0.12 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
1629 independent reflections
Radiation source: fine-focus sealed tube816 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1414
Tmin = 0.976, Tmax = 0.993k = 2118
10346 measured reflectionsl = 910
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0525P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
1629 reflectionsΔρmax = 0.17 e Å3
119 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (2)
Crystal data top
C20H14N4O2V = 1655.6 (10) Å3
Mr = 342.35Z = 4
Orthorhombic, PccnMo Kα radiation
a = 11.649 (4) ŵ = 0.09 mm1
b = 17.023 (6) ÅT = 296 K
c = 8.349 (3) Å0.26 × 0.12 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
1629 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
816 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.993Rint = 0.082
10346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 0.95Δρmax = 0.17 e Å3
1629 reflectionsΔρmin = 0.19 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61559 (14)0.28662 (9)0.3812 (2)0.0651 (5)
N10.69622 (14)0.44375 (10)0.1318 (2)0.0424 (5)
N20.73777 (18)0.28973 (9)0.1733 (2)0.0605 (6)
H2A0.77450.31970.10800.073*
C10.62868 (17)0.40522 (13)0.2314 (3)0.0432 (6)
C20.52811 (18)0.43630 (14)0.2994 (3)0.0520 (7)
H2B0.48410.40630.36940.062*
C30.49611 (18)0.51056 (15)0.2615 (3)0.0549 (7)
H3A0.42900.53170.30370.066*
C40.56521 (18)0.55552 (12)0.1576 (3)0.0450 (6)
C50.5394 (2)0.63312 (13)0.1127 (3)0.0599 (7)
H5A0.47390.65730.15300.072*
C60.6091 (2)0.67300 (14)0.0114 (3)0.0663 (8)
H6A0.59080.72430.01720.080*
C70.7083 (2)0.63781 (14)0.0508 (3)0.0615 (7)
H7A0.75520.66580.12050.074*
C80.73620 (19)0.56297 (13)0.0097 (3)0.0498 (6)
H8A0.80250.54010.05090.060*
C90.66544 (17)0.51985 (12)0.0947 (3)0.0401 (6)
C100.65956 (19)0.32223 (14)0.2702 (3)0.0471 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0692 (11)0.0517 (10)0.0743 (13)0.0141 (9)0.0059 (10)0.0116 (10)
N10.0396 (11)0.0382 (11)0.0495 (12)0.0009 (8)0.0004 (9)0.0006 (9)
N20.0861 (15)0.0349 (10)0.0605 (14)0.0080 (12)0.0094 (12)0.0031 (10)
C10.0407 (13)0.0388 (13)0.0501 (15)0.0023 (11)0.0059 (11)0.0051 (11)
C20.0404 (14)0.0547 (17)0.0610 (17)0.0066 (12)0.0063 (12)0.0029 (13)
C30.0387 (13)0.0605 (18)0.0657 (17)0.0031 (12)0.0043 (12)0.0063 (14)
C40.0379 (13)0.0428 (14)0.0543 (16)0.0046 (10)0.0049 (11)0.0065 (12)
C50.0508 (15)0.0484 (16)0.080 (2)0.0138 (13)0.0026 (14)0.0058 (15)
C60.0691 (18)0.0403 (15)0.089 (2)0.0079 (13)0.0075 (16)0.0060 (15)
C70.0599 (16)0.0489 (16)0.076 (2)0.0021 (13)0.0032 (14)0.0091 (14)
C80.0459 (14)0.0458 (15)0.0577 (16)0.0004 (11)0.0014 (11)0.0027 (12)
C90.0362 (12)0.0358 (12)0.0483 (14)0.0012 (10)0.0064 (11)0.0033 (11)
C100.0489 (14)0.0433 (15)0.0491 (15)0.0100 (12)0.0030 (12)0.0013 (12)
Geometric parameters (Å, º) top
O1—C101.220 (3)C3—H3A0.9300
N1—C11.319 (3)C4—C51.406 (3)
N1—C91.379 (2)C4—C91.417 (3)
N2—C101.338 (3)C5—C61.354 (3)
N2—N2i1.382 (3)C5—H5A0.9300
N2—H2A0.8600C6—C71.401 (3)
C1—C21.405 (3)C6—H6A0.9300
C1—C101.493 (3)C7—C81.359 (3)
C2—C31.355 (3)C7—H7A0.9300
C2—H2B0.9300C8—C91.406 (3)
C3—C41.409 (3)C8—H8A0.9300
C1—N1—C9116.98 (18)C6—C5—H5A119.7
C10—N2—N2i123.0 (2)C4—C5—H5A119.7
C10—N2—H2A118.5C5—C6—C7120.7 (2)
N2i—N2—H2A118.5C5—C6—H6A119.6
N1—C1—C2124.4 (2)C7—C6—H6A119.6
N1—C1—C10117.6 (2)C8—C7—C6120.3 (2)
C2—C1—C10118.0 (2)C8—C7—H7A119.8
C3—C2—C1119.1 (2)C6—C7—H7A119.8
C3—C2—H2B120.5C7—C8—C9120.3 (2)
C1—C2—H2B120.5C7—C8—H8A119.8
C2—C3—C4119.5 (2)C9—C8—H8A119.8
C2—C3—H3A120.2N1—C9—C8118.5 (2)
C4—C3—H3A120.2N1—C9—C4122.2 (2)
C5—C4—C3123.5 (2)C8—C9—C4119.3 (2)
C5—C4—C9118.7 (2)O1—C10—N2122.7 (2)
C3—C4—C9117.8 (2)O1—C10—C1122.3 (2)
C6—C5—C4120.6 (2)N2—C10—C1115.1 (2)
Symmetry code: (i) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N10.862.312.689 (2)107
N2—H2A···O1ii0.862.352.978 (3)130
C5—H5A···O1iii0.932.453.177 (3)135
C8—H8A···Cg1iv0.932.643.449146
Symmetry codes: (ii) x+3/2, y, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x1/2, y, z3/2.

Experimental details

Crystal data
Chemical formulaC20H14N4O2
Mr342.35
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)296
a, b, c (Å)11.649 (4), 17.023 (6), 8.349 (3)
V3)1655.6 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.26 × 0.12 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.976, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
10346, 1629, 816
Rint0.082
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.115, 0.95
No. of reflections1629
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
O1—C101.220 (3)N2—C101.338 (3)
N1—C11.319 (3)N2—N2i1.382 (3)
N1—C91.379 (2)
C10—N2—N2i123.0 (2)O1—C10—C1122.3 (2)
O1—C10—N2122.7 (2)N2—C10—C1115.1 (2)
Symmetry code: (i) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N10.86002.31002.689 (2)107.00
N2—H2A···O1ii0.86002.35002.978 (3)130.00
C5—H5A···O1iii0.93002.45003.177 (3)135.00
C8—H8A···Cg1iv0.93002.64003.449146.00
Symmetry codes: (ii) x+3/2, y, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x1/2, y, z3/2.
 

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 20771059) and the Natural Science Foundation of Jiangsu Province (BK2008371).

References

First citationBernhardt, P. V., Chin, P., Sharpe, P. C., Wang, J.-Y. C. & Richardson, D. R. (2005). J. Biol. Inorg. Chem. 10, 761–777.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJasinskas, L., Urbonas, A. & Latakas, V. (1975). Liet. TSR Aukš. Mokyklu Mokslo Darb. Chem. Chem. Technol. 17, 143–145.  CAS Google Scholar
First citationKnödler, K., Fiedler, J. & Kaim, W. (2004). Polyhedron, 23, 701–707.  Google Scholar
First citationShanmuga Sundara Raj, S., Yamin, B. M., Boshaala, A. M. A., Tarafder, M. T. H., Crouse, K. A. & Fun, H.-K. (2000). Acta Cryst. C56, 1011–1012.  CSD CrossRef IUCr Journals Google Scholar
First citationShao, S., Zhu, D., Song, Y., You, X. Z., Shanmuga Sundara Raj, S. & Fun, H.-K. (1999). Acta Cryst. C55, 1841–1843.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, D.-J., Lu, W., Wang, Z.-X. & Zhu, D.-R. (2009). Acta Cryst. E65, o1177–o1178.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, R.-H., Zhou, J., Xu, Y., Qi, L., Shen, X. & Zhu, D.-R. (2006). Acta Cryst. E62, o5234–o5235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, H. & Bruke, T. R. J. (1997). Tetrahedron, 53, 4219–4230.  CrossRef CAS Web of Science Google Scholar
First citationZheng, Z.-B., Wu, R.-T., Li, J.-K. & Sun, Y.-F. (2007). Acta Cryst. E63, o4658.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds