organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Methyl­sulfanyl-4H-pyrimido[1,6-a]pyrimidin-4-one

aPfizer Global Research and Development, La Jolla Labs, 10770 Science Center Drive, San Diego, CA 92121, USA, and bDepartment of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: alex.yanovsky@pfizer.com

(Received 18 September 2009; accepted 23 September 2009; online 30 September 2009)

Reaction of 2-(methyl­sulfan­yl)pyrimidin-4-amine with the 5-(methoxy­vinyl­idene) derivative of Meldrum's acid and subsequent heating of the product in Dowtherm fluid yielded the title compound, C8H7N3OS, which was proven to contain a bicyclic 4H-pyrimido[1,6-a]pyrimidine system. All non-H atoms of the mol­ecule are coplanar within 0.15 Å. The bond-length distribution in the bicyclic core shows localization of the double bonds. The geometry of the intra­molecular S⋯O 1,5-contact [2.534 (2) Å] is consistent with the existence of an attractive inter­action.

Related literature

For the structure of a compound with a similar bicyclic carbon–nitro­gen core, see: Olomucki et al. (1984[Olomucki, M., Le Gall, J. Y., Colinart, S., Durant, F., Norberg, B. & Evrard, G. (1984). Tetrahedron Lett. 25, 3471-3474.]). For statistical studies of the geometry of S⋯O inter­actions, see: Rosenfield et al. (1977[Rosenfield, R. E. Jr, Parthasarathy, R. & Dunitz, J. D. (1977). J. Am. Chem. Soc. 99, 4860-4862.]); Iwaoka et al. (2002[Iwaoka, M., Takemoto, S. & Tomoda, S. (2002). J. Am. Chem. Soc. 124, 10613-10620.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7N3OS

  • Mr = 193.23

  • Monoclinic, P 21 /c

  • a = 9.7621 (8) Å

  • b = 4.1725 (3) Å

  • c = 20.4092 (16) Å

  • β = 100.106 (1)°

  • V = 818.42 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 123 K

  • 0.48 × 0.14 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.849, Tmax = 0.972

  • 6497 measured reflections

  • 1498 independent reflections

  • 1333 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.097

  • S = 1.13

  • 1498 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-32 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound was obtained by reaction of 2-(methylsulfanyl)pyrimidin-4-amine with 5-(methoxyvinylidene) derivative of Meldrum's acid and subsequent heating of the product in Dowtherm fluid (Fig. 1).

All non-hydrogen atoms of the molecule of the title compound (Fig. 2) are approximately coplanar; maximum deviation of the C1 atom from the least-squares plane is 0.143 (2) Å. The bond length values indicate localization of double bonds in the bicyclic core (N1–C2, 1.298 (3) Å; N3–C5, 1.308 (3) Å; C3–C4, 1.351 (3) Å; C6–C7, 1.355 (3) Å;), which is consistent with the fact that no resonance structures can be drawn. Surprisingly, to the best of our knowledge no other isolated bicyclic carbon-nitrogen system with the same positions of the N atoms was structurally studied. Similar bond lengths were observed in dihydropyrimido(1,2 - c)purine derivative, where analogous bicyclic core makes up a part of the tricyclic system (Olomucki et al., 1984).

The S1···O1 distance [2.534 (2) Å] and the O1···S1—C1 angle [177.5 (1)°] are consistent with the existence of the intramolecular attractive interaction (Rosenfield et al., 1977; Iwaoka et al., 2002).

Related literature top

For the structure of a compound with a similar bicyclic carbon–nitrogen core, see: Olomucki et al. (1984). For statistical studies of the geometry of S···O interactions, see: Rosenfield et al. (1977); Iwaoka et al. (2002).

Experimental top

A mixture of (2-methylsulfanyl)pyrimidin-4-ylamine (5.0 g, 35 mmol, 1.0 eq), 5-(methoxyvinylidene) derivative of Meldrum's acid (9.23 g, 49.6 mmol, 1.4 eq), and 2-PrOH (100 ml) was refluxed at 85°C for 1 h to reach reaction completion. The resulting suspension was cooled to 25°C, filtered, and washed with EtOH to afford 10 g of the displacement product as a yellow solid in 96% yield. LC—MS (APCI, M+1) 296.0; 1H NMR (400 MHz, DMSO-d6) δ p.p.m. 1.69 (s, 6 H) 2.55 (s, 3 H) 7.43 (d, J = 5.54 Hz, 1 H) 8.57 (d, J = 5.54 Hz, 1 H) 9.20 (s, 1 H) 11.35 (s, 1 H).

The generated 5-[(2-methylsulfanyl)pyrimidin-4-ylaminovinylidene] derivative of Meldrum's acid (6.5 g, 22 mmol, 1.0 eq) was added portionwise to 130 ml of preheated Dowtherm A at 220°C (inner temperature). After being reacted at 220°C for 10 min, LC—MS indicated that reaction was complete. The reaction mixture was cooled to 25°C and diluted with 1 L heptane. The resulting suspension was left to stand overnight. The solid was filtered, washed with heptane, and dried under vacuum to afford 3.4 g of the target compound as a yellow solid in (80% yield). LC—MS (APCI, M+1) 194.0; 1H NMR (400 MHz, DMSO-d6) δ p.p.m. 2.40 (s, 3 H) 6.35 (d, J = 6.55 Hz, 1 H) 7.04 (d, J = 6.29 Hz, 1 H) 8.08 (t, J = 6.55 Hz, 2 H). The product was recrystallized from EtOAc/hexane to yield single crystals suitable for X-ray diffraction studies.

Refinement top

All H atoms were placed in geometrically calculated positions (C—H = 0.95 Å and 0.98 Å for aromatic and methyl H atoms respectively) and included in the refinement in riding motion approximation. The Uiso(H) were set to 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Synthesis of the title compound.
[Figure 2] Fig. 2. Molecular structure of the title compound, showing 50% probability displacement ellipsoids and atom numbering scheme. H atoms are drawn as circles with arbitrary small radius.
6-Methylsulfanyl-4H-pyrimido[1,6-a]pyrimidin-4-one top
Crystal data top
C8H7N3OSF(000) = 400
Mr = 193.23Dx = 1.568 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4134 reflections
a = 9.7621 (8) Åθ = 3.2–25.4°
b = 4.1725 (3) ŵ = 0.35 mm1
c = 20.4092 (16) ÅT = 123 K
β = 100.106 (1)°Blade, brown
V = 818.42 (11) Å30.48 × 0.14 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1498 independent reflections
Radiation source: fine-focus sealed tube1333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.849, Tmax = 0.972k = 45
6497 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.045P)2 + 0.5615P]
where P = (Fo2 + 2Fc2)/3
1498 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C8H7N3OSV = 818.42 (11) Å3
Mr = 193.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7621 (8) ŵ = 0.35 mm1
b = 4.1725 (3) ÅT = 123 K
c = 20.4092 (16) Å0.48 × 0.14 × 0.08 mm
β = 100.106 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
1498 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1333 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.972Rint = 0.022
6497 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.13Δρmax = 0.43 e Å3
1498 reflectionsΔρmin = 0.19 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.56563 (5)0.91748 (12)0.81678 (2)0.02069 (19)
O10.80408 (15)0.9008 (4)0.78390 (7)0.0276 (4)
N10.59517 (17)0.5753 (4)0.92701 (8)0.0203 (4)
N20.79659 (16)0.5851 (4)0.87620 (7)0.0172 (4)
N30.99408 (17)0.2689 (4)0.92351 (8)0.0238 (4)
C10.3990 (2)0.9169 (5)0.84302 (11)0.0280 (5)
H1A0.33331.04740.81230.042*
H1B0.40891.00640.88800.042*
H1C0.36420.69660.84310.042*
C20.65797 (19)0.6714 (5)0.87950 (9)0.0183 (4)
C30.6652 (2)0.3762 (5)0.97497 (10)0.0209 (4)
H3B0.61930.30941.01000.025*
C40.7959 (2)0.2700 (5)0.97507 (9)0.0203 (4)
H4A0.83920.12841.00890.024*
C50.8678 (2)0.3717 (5)0.92427 (9)0.0186 (4)
C61.0583 (2)0.3766 (5)0.87347 (11)0.0254 (5)
H6A1.14950.30100.87190.030*
C70.9993 (2)0.5853 (5)0.82589 (9)0.0199 (4)
H7A1.05060.65120.79270.024*
C80.8652 (2)0.7063 (5)0.82424 (9)0.0219 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0177 (3)0.0225 (3)0.0219 (3)0.00111 (19)0.0038 (2)0.0028 (2)
O10.0237 (8)0.0363 (9)0.0241 (7)0.0002 (7)0.0079 (6)0.0095 (7)
N10.0196 (8)0.0199 (9)0.0220 (8)0.0009 (7)0.0053 (7)0.0002 (7)
N20.0184 (8)0.0176 (8)0.0164 (8)0.0021 (6)0.0050 (6)0.0017 (6)
N30.0199 (8)0.0240 (9)0.0278 (9)0.0015 (7)0.0047 (7)0.0014 (8)
C10.0201 (11)0.0335 (12)0.0312 (11)0.0032 (9)0.0068 (9)0.0059 (10)
C20.0169 (9)0.0178 (9)0.0201 (10)0.0015 (8)0.0026 (8)0.0037 (8)
C30.0211 (10)0.0232 (10)0.0190 (10)0.0025 (8)0.0052 (8)0.0004 (8)
C40.0233 (10)0.0189 (10)0.0184 (10)0.0007 (8)0.0026 (8)0.0006 (8)
C50.0179 (10)0.0173 (9)0.0200 (10)0.0016 (8)0.0022 (8)0.0041 (8)
C60.0180 (10)0.0264 (11)0.0326 (11)0.0005 (9)0.0068 (9)0.0070 (9)
C70.0253 (11)0.0186 (10)0.0183 (10)0.0042 (8)0.0108 (8)0.0040 (8)
C80.0234 (10)0.0245 (11)0.0186 (10)0.0066 (9)0.0059 (8)0.0026 (9)
Geometric parameters (Å, º) top
S1—C21.761 (2)C1—H1B0.9800
S1—C11.799 (2)C1—H1C0.9800
O1—C81.233 (2)C3—C41.351 (3)
N1—C21.298 (3)C3—H3B0.9500
N1—C31.371 (3)C4—C51.415 (3)
N2—C21.413 (2)C4—H4A0.9500
N2—C51.414 (2)C6—C71.355 (3)
N2—C81.442 (2)C6—H6A0.9500
N3—C51.308 (3)C7—C81.398 (3)
N3—C61.365 (3)C7—H7A0.9500
C1—H1A0.9800
C2—S1—C199.03 (9)N1—C3—H3B118.2
C2—N1—C3118.60 (17)C3—C4—C5119.37 (18)
C2—N2—C5119.08 (16)C3—C4—H4A120.3
C2—N2—C8121.20 (16)C5—C4—H4A120.3
C5—N2—C8119.70 (16)N3—C5—N2123.26 (18)
C5—N3—C6117.29 (18)N3—C5—C4119.98 (18)
S1—C1—H1A109.5N2—C5—C4116.76 (17)
S1—C1—H1B109.5C7—C6—N3123.66 (19)
H1A—C1—H1B109.5C7—C6—H6A118.2
S1—C1—H1C109.5N3—C6—H6A118.2
H1A—C1—H1C109.5C6—C7—C8121.85 (18)
H1B—C1—H1C109.5C6—C7—H7A119.1
N1—C2—N2122.57 (17)C8—C7—H7A119.1
N1—C2—S1118.33 (15)O1—C8—C7126.55 (18)
N2—C2—S1119.10 (14)O1—C8—N2119.26 (18)
C4—C3—N1123.53 (18)C7—C8—N2114.19 (17)
C4—C3—H3B118.2

Experimental details

Crystal data
Chemical formulaC8H7N3OS
Mr193.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)9.7621 (8), 4.1725 (3), 20.4092 (16)
β (°) 100.106 (1)
V3)818.42 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.48 × 0.14 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.849, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
6497, 1498, 1333
Rint0.022
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.13
No. of reflections1498
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.19

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-32 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationIwaoka, M., Takemoto, S. & Tomoda, S. (2002). J. Am. Chem. Soc. 124, 10613–10620.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOlomucki, M., Le Gall, J. Y., Colinart, S., Durant, F., Norberg, B. & Evrard, G. (1984). Tetrahedron Lett. 25, 3471–3474.  CSD CrossRef CAS Web of Science Google Scholar
First citationRosenfield, R. E. Jr, Parthasarathy, R. & Dunitz, J. D. (1977). J. Am. Chem. Soc. 99, 4860–4862.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds