organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2410-o2411

(E)-3-[(3-Bromo­phen­yl)imino­meth­yl]benzene-1,2-diol: a combined X-ray and computational structural study

aDepartment of Physics, Ondokuz Mayıs University, Samsun, Turkey, bSinop Faculty of Education, Sinop University, Sinop, Turkey, and cChemical Technology Program, Denizli Higher Vocational School, Pamukkale University, Denizli, Turkey
*Correspondence e-mail: zeynep.kelesoglu@omu.edu.tr

(Received 13 August 2009; accepted 31 August 2009; online 9 September 2009)

The title compound, C13H10BrNO2, exists as an enol–imine form in the crystal and adopts an E configuration with respect to the C=N double bond. The mol­ecule is close to planar, with a dihedral angle of 6.88 (14)° between the aromatic rings. Intra­molecular O—H⋯N and O—H⋯O hydrogen bonds generate S(6) and S(5) ring motifs, respectively. The crystal structure is stabilized by inter­molecular O—H⋯O hydrogen-bond inter­actions, forming R22(10) and R22(20) chains along [100]. ab initio Hartree–Fock (HF), density-functional theory (DFT) and semi-empirical (AM1 and PM3) calculations and full-geometry optimizations were also performed. Although there are some discrepancies between the experimental and calculated parameters, caused presumably by the O—H⋯O hydrogen-bond inter­actions, there is an acceptable general agreement between them.

Related literature

For general background to Schiff base compounds in coordination chemistry, see: Chen et al. (2008[Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170-2171.]); May et al. (2004[May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145-4156.]); Weber et al. (2007[Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159-1162.]). For background to DFT calculations, see: Becke (1988[Becke, A. D. (1988). Phys. Rev. A, 38, 3098-100.], 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]); Lee et al. (1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.]); Schmidt & Polik et al. (2007[Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA; available from http://www.webmo.net.]); Friesner et al. (2005[Friesner, R. A. (2005). Proc. Natl Acad. Sci. USA, 102, 6648-6653.]); Liu et al. (2004[Liu, H., Bandeira, N. A. G., Calhorda, M. J., Drew, M. G. B., Felix, V., Novosad, J., De Biani, F. F. & Zanello, P. (2004). J. Organomet. Chem. 689, 2808-2819.]). For a related structure, see: Cao et al. (2009[Cao, G.-B. & Wang, X.-Y. (2009). Acta Cryst. E65, o1725.]); Temel et al. (2007[Temel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o1319-o1320.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10BrNO2

  • Mr = 292.13

  • Orthorhombic, P b c a

  • a = 4.7411 (2) Å

  • b = 18.9447 (6) Å

  • c = 26.1417 (10) Å

  • V = 2348.01 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.50 mm−1

  • T = 296 K

  • 0.66 × 0.38 × 0.10 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.229, Tmax = 0.735

  • 7185 measured reflections

  • 2212 independent reflections

  • 1764 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.078

  • S = 1.05

  • 2212 reflections

  • 162 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.87 (4) 1.81 (4) 2.606 (3) 151 (3)
O2—H2⋯O1 0.78 (4) 2.31 (5) 2.718 (3) 113 (4)
O2—H2⋯O2i 0.78 (4) 2.48 (5) 3.124 (3) 141 (5)
O2—H2⋯O1ii 0.78 (4) 2.46 (4) 2.986 (3) 126 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Table 2
Selected geometric parameters (Å, °) from the X-ray structure and calculated by AM1, PM3, HF and DFT methods

Parameters X-ray AM1 PM3 HF* DFT/B3LYP*
C1—C7 1.447 (4) 1.4659 1.4592 1.4655 1.4472
C8—N1 1.416 (3) 1.4103 1.431 1.4082 1.4071
C7—N1 1.278 (3) 1.2923 1.3028 1.2626 1.2947
C2—O1 1.355 (3) 1.3711 1.3612 1.3414 1.35
C3—O2 1.358 (3) 1.3749 1.3695 1.3472 1.3601
C10—Br1 1.900 (2) 1.8743 1.8676 1.899 1.9138
O1—C2—C1 122.8 (2) 126.384 124.0177 124.2818 123.5134
N1—C7—C1 122.1 (2) 123.752 119.6344 123.297 121.9975
O2—C3—C4 119.9 (2) 117.2553 115.9182 119.9887 120.7548
O1—C2—C3 117.5 (2) 113.7932 116.4985 115.8053 116.4318
O2—C3—C2 120.5 (2) 122.181 123.9237 119.978 119.4331
C7—N1—C8 121.6 (2) 121.8246 122.1744 120.3634 121.3341
C12—C13—H13 119.6 119.7856 119.8376 120.8687 121.0058
C8—C13—H13 119.6 120.1274 120.1469 119.0149 118.759
C1—C7—N1—C8 179.7 (2) −179.2308 179.9974 −178.6515 −177.5099
C9—C8—N1—C7 7.9 (4) 34.1092 0.0009 44.5418 35.1166
C2—C1—C7—N1 −1.6 (4) 2.6542 0.0087 0.8066 0.3196
N1—C8—C9—C10 −179.9 (2) −177.3895 179.9976 179.3862 179.4699
C8—C9—C10—Br1 −179.41 (19) −179.8397 −180.0011 −179.9136 −179.7804
*6-31G(d,p).

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and GAUSSIAN (Frisch et al., 2004[Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT 06492, USA.]).

Supporting information


Comment top

Schiff base compounds have received considerable attention for many years, primarily due to their importance in the development of coordination chemistry related to magnetism (Weber et al., 2007), catalysis (Chen et al., 2008) and biological process (May et al., 2004). In general, O-hydroxy Schiff bases exhibit two possible tautomeric forms, the enol-imine and keto-amine forms. Depending on the tautomers, two types of intra-molecular hydrogen bonds are possible: O—H···N in enol-imine and N—H···O in keto-amine form.

The molecule adopts an E configuration with respect to the C7=N1 double bond, with a C1—C7=N1—C8 torsion angle of 179.7 (2)° and a C7=N1—C8 angle of 121.6 (2)°. Similar results were observed for (E)-3-[(2-Bromophenyl) iminomethyl]-benzene-1,2-diol [178.4 (2) and 123.4 (2)°; Temel et al.,2007]. The C7=N1 bond length is 1.278 (3) Å, and agree with the corresponding distance in (E)-)-3-Bromo-N'-(4-hydroxy-3-nitrobenzylidene) benzohydrazide[1.276 (4) Å; Cao et al.,2009]. Intramolecular O—H···N and O—H···O hydrogen bonds generate S(6) and S(5) ring motifs (Bernstein et al., 1995) (Fig. 1). The intermolecular O2—H2..O2 and O2—H2..O1 hydrogen bonds in the molecule at (x + 1/2, y, -z + 1/2)and (x - 1/2, y, -z + 1/2), forming R22(10) and R22(20) chains at [100] direction.(Table 1, Fig.2). The dihedral angle between benzene rings A(C1—C6) and B(C8—C13) is 6.88 (15)°. The planar S(6) ring C(O1/H1/N1/C1/C2/C7) is oriented with respect to rings A and B at dihedral angles of 0.16 (44)° and 6.88 (41)°, respectively. These dihedral angles show that the molecule of (I) is almost planar. It is known that Schiff bases may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the molecule, respectively. Since the title molecule is planar, one can expect thermochromic properties in title compound.

Ab-initio Hartree-Fock (HF), density-functional theory (DFT) (Schmidt & Polik, 2007) and semi-empirical (AM1 and PM3) calculations and full-geometry optimizations were performed by means of GAUSSIAN 03 W package (Frisch et al., 2004). The selected bond lengths and angles together with the torsion angles are compared with the obtained ones from semi-empirical, ab-initio HF and DFT/B3-LYP (Becke 3 parameter Lee-Yang-Parr) (Becke, 1988, 1993; Lee et al., 1988) (Table 2). We observe an acceptable general agreement between them. Although the DFT molecular orbital theory was considered as the most accurate method for geometry optimization for free and complex ligands (Friesner, 2005; Liu et al., 2004), the HF method led to better results in regard to the bond lengths and angles.

Related literature top

For general background to Schiff base compounds in coordination chemistry, see: Chen et al. (2008); May et al. (2004); Weber et al. (2007). For background to DFT calculations, see: Becke (1988, 1993); Lee et al. (1988); Schmidt & Polik et al. (2007); Friesner et al. (2005); Liu et al. (2004). For a related structure, see: Cao et al. (2009); Temel et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

For the preparation of compound (I) the mixture of 2,3-dihydroxybenzaldehyde (0.5 g, 3.6 mmol) in ethanol (20 ml) and 3-bromoaniline (0.62 g, 3.6 mmol) in ethanol (20 ml) was stirred for 1 h under reflux. The crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation (yield; %88, m.p.; 402–403 K).

Refinement top

Due to their taking part in H-bonding interactions, the hydroxyl H atoms were preferred to locate in difference Fourier map and refined freely with Uiso(H) = 1.5 Ueq(O). All other H-atoms were refined using a riding model with d(C—H)= 0.93 Å and Uiso(H)= 1.2 Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and GAUSSIAN (Frisch et al., 2004).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids. Dashed lines indicate H-bonds.
[Figure 2] Fig. 2. A packing diagram for (I), showing the O—H···O hydrogen bonds, forming R22(10) and R22(20) chains at [100]. [Symmetry codes; (i): x + 1/2, y, -z + 1/2; (ii): x - 1/2, y, -z + 1/2]. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
(E)-3-[(3-Bromophenyl)iminomethyl]benzene-1,2-diol top
Crystal data top
C13H10BrNO2F(000) = 1168
Mr = 292.13Dx = 1.653 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7185 reflections
a = 4.7411 (2) Åθ = 1.3–26.2°
b = 18.9447 (6) ŵ = 3.50 mm1
c = 26.1417 (10) ÅT = 296 K
V = 2348.01 (15) Å3Plate, red
Z = 80.66 × 0.38 × 0.10 mm
Data collection top
Stoe IPDS-II
diffractometer
2212 independent reflections
Radiation source: fine-focus sealed tube1764 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 6.67 pixels mm-1θmax = 25.6°, θmin = 1.6°
rotation method scansh = 55
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2222
Tmin = 0.229, Tmax = 0.735l = 3131
7185 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0356P)2 + 0.8167P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
2212 reflectionsΔρmax = 0.33 e Å3
162 parametersΔρmin = 0.42 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0
Crystal data top
C13H10BrNO2V = 2348.01 (15) Å3
Mr = 292.13Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 4.7411 (2) ŵ = 3.50 mm1
b = 18.9447 (6) ÅT = 296 K
c = 26.1417 (10) Å0.66 × 0.38 × 0.10 mm
Data collection top
Stoe IPDS-II
diffractometer
2212 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1764 reflections with I > 2σ(I)
Tmin = 0.229, Tmax = 0.735Rint = 0.040
7185 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.33 e Å3
2212 reflectionsΔρmin = 0.42 e Å3
162 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2287 (5)0.59650 (12)0.38493 (9)0.0430 (5)
C20.1687 (5)0.56587 (13)0.33762 (9)0.0441 (5)
C30.0340 (6)0.51215 (13)0.33440 (10)0.0480 (6)
C40.1727 (6)0.49065 (14)0.37771 (11)0.0543 (7)
H40.30820.45530.37530.065*
C50.1148 (6)0.52049 (15)0.42490 (11)0.0556 (7)
H50.21060.50520.45390.067*
C60.0848 (6)0.57283 (14)0.42865 (10)0.0524 (6)
H60.12480.59270.46030.063*
C70.4352 (5)0.65240 (13)0.38933 (9)0.0451 (6)
H70.46740.67260.42120.054*
C80.7753 (5)0.72987 (12)0.35557 (9)0.0409 (5)
C90.8643 (5)0.75859 (13)0.40177 (9)0.0461 (6)
H90.79180.74190.43250.055*
C101.0603 (6)0.81192 (13)0.40147 (9)0.0475 (6)
C111.1712 (6)0.83889 (14)0.35705 (10)0.0520 (6)
H111.30310.87520.35780.062*
C121.0810 (6)0.81048 (15)0.31139 (10)0.0572 (7)
H121.15100.82830.28080.069*
C130.8888 (6)0.75614 (15)0.31054 (10)0.0513 (6)
H130.83420.73680.27940.062*
N10.5747 (4)0.67489 (11)0.35080 (8)0.0442 (5)
O10.2990 (5)0.58565 (11)0.29377 (7)0.0583 (5)
O20.0900 (5)0.48050 (12)0.28892 (8)0.0684 (6)
Br11.18395 (9)0.85040 (2)0.464746 (12)0.08086 (16)
H10.415 (8)0.619 (2)0.3026 (13)0.088 (12)*
H20.007 (10)0.499 (2)0.2666 (14)0.113 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0352 (13)0.0422 (12)0.0517 (13)0.0035 (10)0.0009 (10)0.0026 (10)
C20.0396 (13)0.0415 (13)0.0513 (13)0.0004 (11)0.0019 (11)0.0055 (11)
C30.0454 (14)0.0416 (13)0.0570 (14)0.0023 (11)0.0068 (12)0.0033 (11)
C40.0431 (15)0.0433 (14)0.0764 (18)0.0048 (12)0.0014 (13)0.0124 (13)
C50.0503 (16)0.0549 (16)0.0616 (16)0.0008 (13)0.0088 (13)0.0107 (13)
C60.0495 (15)0.0553 (15)0.0525 (14)0.0032 (13)0.0019 (12)0.0019 (12)
C70.0432 (13)0.0457 (13)0.0465 (12)0.0027 (11)0.0039 (11)0.0036 (10)
C80.0359 (12)0.0393 (12)0.0476 (12)0.0023 (10)0.0044 (10)0.0006 (9)
C90.0475 (15)0.0472 (14)0.0436 (12)0.0054 (12)0.0012 (11)0.0028 (10)
C100.0485 (15)0.0441 (14)0.0498 (13)0.0009 (12)0.0058 (12)0.0038 (11)
C110.0490 (15)0.0440 (14)0.0630 (15)0.0050 (12)0.0027 (13)0.0010 (11)
C120.0615 (18)0.0578 (16)0.0524 (14)0.0089 (14)0.0103 (13)0.0035 (12)
C130.0551 (16)0.0548 (16)0.0441 (13)0.0062 (13)0.0012 (12)0.0012 (11)
N10.0396 (11)0.0440 (11)0.0490 (11)0.0024 (9)0.0028 (9)0.0001 (9)
O10.0626 (12)0.0612 (12)0.0512 (10)0.0231 (10)0.0022 (9)0.0014 (9)
O20.0769 (15)0.0665 (14)0.0618 (12)0.0291 (12)0.0049 (11)0.0011 (10)
Br10.1009 (3)0.0846 (2)0.05706 (19)0.0355 (2)0.01118 (17)0.01177 (16)
Geometric parameters (Å, º) top
C1—C21.395 (3)C8—C131.387 (3)
C1—C61.405 (4)C8—C91.390 (3)
C1—C71.447 (4)C8—N11.416 (3)
C2—O11.355 (3)C9—C101.373 (4)
C2—C31.402 (3)C9—H90.9300
C3—O21.358 (3)C10—C111.373 (4)
C3—C41.371 (4)C10—Br11.900 (2)
C4—C51.384 (4)C11—C121.377 (4)
C4—H40.9300C11—H110.9300
C5—C61.374 (4)C12—C131.375 (4)
C5—H50.9300C12—H120.9300
C6—H60.9300C13—H130.9300
C7—N11.278 (3)O1—H10.87 (4)
C7—H70.9300O2—H20.78 (4)
C2—C1—C6119.3 (2)C13—C8—C9118.6 (2)
C2—C1—C7120.9 (2)C13—C8—N1116.7 (2)
C6—C1—C7119.8 (2)C9—C8—N1124.6 (2)
O1—C2—C1122.8 (2)C10—C9—C8119.2 (2)
O1—C2—C3117.5 (2)C10—C9—H9120.4
C1—C2—C3119.7 (2)C8—C9—H9120.4
O2—C3—C4119.9 (2)C9—C10—C11122.5 (2)
O2—C3—C2120.5 (2)C9—C10—Br1119.09 (19)
C4—C3—C2119.7 (2)C11—C10—Br1118.4 (2)
C3—C4—C5121.3 (3)C10—C11—C12117.9 (2)
C3—C4—H4119.4C10—C11—H11121.0
C5—C4—H4119.3C12—C11—H11121.0
C6—C5—C4119.6 (3)C13—C12—C11120.8 (3)
C6—C5—H5120.2C13—C12—H12119.6
C4—C5—H5120.2C11—C12—H12119.6
C5—C6—C1120.5 (3)C12—C13—C8120.8 (2)
C5—C6—H6119.8C12—C13—H13119.6
C1—C6—H6119.8C8—C13—H13119.6
N1—C7—C1122.1 (2)C7—N1—C8121.6 (2)
N1—C7—H7118.9C2—O1—H1105 (2)
C1—C7—H7118.9C3—O2—H2111 (3)
C6—C1—C2—O1179.8 (2)C6—C1—C7—N1178.8 (2)
C7—C1—C2—O10.6 (4)C13—C8—C9—C100.1 (4)
C6—C1—C2—C30.1 (4)N1—C8—C9—C10179.9 (2)
C7—C1—C2—C3179.5 (2)C8—C9—C10—C110.7 (4)
O1—C2—C3—O21.6 (4)C8—C9—C10—Br1179.41 (19)
C1—C2—C3—O2178.3 (2)C9—C10—C11—C120.4 (4)
O1—C2—C3—C4179.6 (2)Br1—C10—C11—C12179.8 (2)
C1—C2—C3—C40.5 (4)C10—C11—C12—C130.9 (4)
O2—C3—C4—C5178.2 (3)C11—C12—C13—C81.7 (4)
C2—C3—C4—C50.6 (4)C9—C8—C13—C121.3 (4)
C3—C4—C5—C60.2 (4)N1—C8—C13—C12178.7 (2)
C4—C5—C6—C10.4 (4)C1—C7—N1—C8179.7 (2)
C2—C1—C6—C50.5 (4)C13—C8—N1—C7172.2 (2)
C7—C1—C6—C5179.0 (2)C9—C8—N1—C77.9 (4)
C2—C1—C7—N11.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.87 (4)1.81 (4)2.606 (3)151 (3)
O2—H2···O10.78 (4)2.31 (5)2.718 (3)113 (4)
O2—H2···O2i0.78 (4)2.48 (5)3.124 (3)141 (5)
O2—H2···O1ii0.78 (4)2.46 (4)2.986 (3)126 (4)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H10BrNO2
Mr292.13
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)4.7411 (2), 18.9447 (6), 26.1417 (10)
V3)2348.01 (15)
Z8
Radiation typeMo Kα
µ (mm1)3.50
Crystal size (mm)0.66 × 0.38 × 0.10
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.229, 0.735
No. of measured, independent and
observed [I > 2σ(I)] reflections
7185, 2212, 1764
Rint0.040
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.078, 1.05
No. of reflections2212
No. of parameters162
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.42

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and GAUSSIAN (Frisch et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.87 (4)1.81 (4)2.606 (3)151 (3)
O2—H2···O10.78 (4)2.31 (5)2.718 (3)113 (4)
O2—H2···O2i0.78 (4)2.48 (5)3.124 (3)141 (5)
O2—H2···O1ii0.78 (4)2.46 (4)2.986 (3)126 (4)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x1/2, y, z+1/2.
Selected geometric parameters (Å, °) from the X-ray structure and calculated by AM1, PM3, HF and DFT methods top
ParametersX-rayAM1PM3HF*DFT/B3LYP*
C1—C71.447 (4)1.46591.45921.46551.4472
C8—N11.416 (3)1.41031.4311.40821.4071
C7—N11.278 (3)1.29231.30281.26261.2947
C2—O11.355 (3)1.37111.36121.34141.35
C3—O21.358 (3)1.37491.36951.34721.3601
C10—Br11.900 (2)1.87431.86761.8991.9138
O1—C2—C1122.8 (2)126.384124.0177124.2818123.5134
N1—C7—C1122.1 (2)123.752119.6344123.297121.9975
O2—C3—C4119.9 (2)117.2553115.9182119.9887120.7548
O1—C2—C3117.5 (2)113.7932116.4985115.8053116.4318
O2—C3—C2120.5 (2)122.181123.9237119.978119.4331
C7—N1—C8121.6 (2)121.8246122.1744120.3634121.3341
C12—C13—H13119.6119.7856119.8376120.8687121.0058
C8—C13—H13119.6120.1274120.1469119.0149118.759
C1—C7—N1—C8179.7 (2)-179.2308179.9974-178.6515-177.5099
C9—C8—N1—C77.9 (4)34.10920.000944.541835.1166
C2—C1—C7—N1-1.6 (4)2.65420.00870.80660.3196
N1—C8—C9—C10-179.9 (2)-177.3895179.9976179.3862179.4699
C8—C9—C10—Br1-179.41 (19)-179.8397-180.0011-179.9136-179.7804
*6-31G(d,p).
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationBecke, A. D. (1988). Phys. Rev. A, 38, 3098–100.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCao, G.-B. & Wang, X.-Y. (2009). Acta Cryst. E65, o1725.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFriesner, R. A. (2005). Proc. Natl Acad. Sci. USA, 102, 6648–6653.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFrisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT 06492, USA.  Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Web of Science Google Scholar
First citationLiu, H., Bandeira, N. A. G., Calhorda, M. J., Drew, M. G. B., Felix, V., Novosad, J., De Biani, F. F. & Zanello, P. (2004). J. Organomet. Chem. 689, 2808–2819.  Web of Science CrossRef CAS Google Scholar
First citationMay, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145–4156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA; available from http://www.webmo.net.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTemel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o1319–o1320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWeber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159–1162.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2410-o2411
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds