organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­allyl-2-methyl­benzimidazolium bromide dihydrate

aInstitute of Nanomaterials and Nanotechnology, Avenue de l'Armée Royale, Madinat El Irfane, 10100 Rabat, Morocco, bCNRST Division of UATRS Angle Allal Fassi/FAR, BP 8027, Hay Riad, 10000 Rabat, Morocco, cLaboratoire de Chimie Organique Hétérocyclique, Pôle de compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 24 August 2009; accepted 26 August 2009; online 5 September 2009)

The bonds in the five-membered ring of the title hydrated salt, C14H17N2+·Br·2H2O, are delocalized. The cation lies on a special position of m site symmetry such that the mirror plane passes through the imidazol­yl–methyl bond and is perpendicular to the plane of the cation. The anion lies on another special position of 2 site symmetry. The anion and uncoordinated water mol­ecule are linked into a chain by O—H⋯O hydrogen bonds. One of the water O atoms is disordered over two sites of equal occupancy.

Related literature

For the crystal structure of 1,3-diallyl­benzimidazolium bromide, see: Holtgrewe et al. (2009[Holtgrewe, H., Diedrich, C., Pape, T., Grimme, S. & Hahn, F. E. (2009). Eur. J. Org. Chem. pp. 3116-3124.]). For those of the 1-allyl-3-(cyano­benz­yl)benzimidazolium bromide and its hydrate, see: Xu et al. (2008[Xu, X.-B., Fu, R. & Ye, Q. (2008). Acta Cryst. E64, o109.]); Xu & Ye (2008[Xu, X.-B. & Ye, Q. (2008). Acta Cryst. E64, o23.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17N2+·Br·2H2O

  • Mr = 329.24

  • Monoclinic, C 2/m

  • a = 13.2888 (2) Å

  • b = 16.8763 (2) Å

  • c = 7.3897 (1) Å

  • β = 109.773 (1)°

  • V = 1559.54 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.64 mm−1

  • T = 295 K

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.403, Tmax = 0.590

  • 11870 measured reflections

  • 1851 independent reflections

  • 1497 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.085

  • S = 0.95

  • 1851 reflections

  • 103 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11⋯Br1 0.86 (1) 2.49 (1) 3.351 (2) 178 (2)
O1—H13⋯O1i 0.86 (1) 1.98 (1) 2.822 (5) 166 (4)
O1—H12⋯O1ii 0.85 (1) 1.97 (2) 2.748 (4) 152 (3)
Symmetry codes: (i) -x, y, -z+2; (ii) x, -y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the crystal structure of 1,3-diallylbenzimidazolium bromide, see: Holtgrewe et al. (2009). For those of the 1-allyl-3-(cyanobenzyl)benzimidazolium bromide and its hydrate, see: Xu et al. (2008); Xu & Ye (2008).

Experimental top

2-Methylbenzimidazole (1 g, 7.5 mmol), potassium carbonate (1.55 g, 11.25 mmol) and tetra-n-butylammonium bromide (0.18 g, 0.75 mmol) were stirred in N,N-dimethylformamide (50 ml) for an hour. To this suspension was added ally bromide (1.96 ml, 22.5 mmol); the mixture was stirred for two days. The mixture was filtered and the solvent removed under vacuum. The residue was crystallized from ethanol to give yellow crystals in 60% yield; m.p. 516–518 K. The formulation was established by 1H– and 13C-NMR spectroscopic analysis.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The methyl H-atoms lie on general positions,and are disordered; their occupancies are all 0.5.

The water H-atoms were located in a difference Fourier map and were refined with distance restraints (O–H 0.85±0.01 Å; H···H 1.39±0.01 Å). That hydrogen-bonded to Br1 is ordered whereas the other is disordered over two positions of 0.5 site occupancy. The isotropic temperature factors of the three H-atoms were refined.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [C14H19N2O][Br].H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the water molecule is not shown. The unlabeled atoms are related to the labeled ones by the x, 1 – y, z symmetry operation.
1,3-Diallyl-2-methylbenzimidazolium bromide dihydrate top
Crystal data top
C14H17N2+·Br·2H2OF(000) = 680
Mr = 329.24Dx = 1.402 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 7035 reflections
a = 13.2888 (2) Åθ = 3.6–24.3°
b = 16.8763 (2) ŵ = 2.64 mm1
c = 7.3897 (1) ÅT = 295 K
β = 109.773 (1)°Prism, yellow
V = 1559.54 (4) Å30.4 × 0.3 × 0.2 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
1851 independent reflections
Radiation source: fine-focus sealed tube1497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1417
Tmin = 0.403, Tmax = 0.590k = 2119
11870 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.06P)2 + 0.349P]
where P = (Fo2 + 2Fc2)/3
1851 reflections(Δ/σ)max = 0.001
103 parametersΔρmax = 0.31 e Å3
6 restraintsΔρmin = 0.18 e Å3
Crystal data top
C14H17N2+·Br·2H2OV = 1559.54 (4) Å3
Mr = 329.24Z = 4
Monoclinic, C2/mMo Kα radiation
a = 13.2888 (2) ŵ = 2.64 mm1
b = 16.8763 (2) ÅT = 295 K
c = 7.3897 (1) Å0.4 × 0.3 × 0.2 mm
β = 109.773 (1)°
Data collection top
Bruker APEXII
diffractometer
1851 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1497 reflections with I > 2σ(I)
Tmin = 0.403, Tmax = 0.590Rint = 0.024
11870 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0276 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.31 e Å3
1851 reflectionsΔρmin = 0.18 e Å3
103 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.00000.691870 (15)0.50000.05502 (14)
O10.07379 (17)0.58143 (11)0.9005 (3)0.0787 (5)
H110.055 (2)0.6089 (13)0.796 (2)0.084 (9)*
H120.086 (3)0.5342 (9)0.874 (5)0.075 (18)*0.50
H130.021 (2)0.582 (2)0.942 (5)0.10 (2)*0.50
N10.34476 (11)0.56471 (8)0.6215 (2)0.0381 (3)
C10.1655 (2)0.50000.4821 (5)0.0557 (7)
H1A0.13860.44730.48410.083*0.50
H1B0.14720.51760.35140.083*0.50
H1C0.13430.53510.55070.083*0.50
C20.2831 (2)0.50000.5747 (4)0.0393 (5)
C30.45113 (13)0.54109 (10)0.7010 (2)0.0375 (4)
C40.54525 (15)0.58475 (12)0.7654 (3)0.0487 (5)
H40.54540.63990.76460.058*
C50.63843 (16)0.54125 (14)0.8307 (3)0.0562 (5)
H50.70340.56790.87620.067*
C60.30794 (16)0.64801 (10)0.5930 (3)0.0457 (4)
H6A0.23850.65040.49250.055*
H6B0.35760.67910.55170.055*
C70.30000 (19)0.68243 (11)0.7729 (3)0.0509 (5)
H70.25270.65920.82540.061*
C80.3551 (2)0.74283 (14)0.8607 (3)0.0640 (6)
H8A0.40310.76730.81150.077*
H8B0.34680.76180.97290.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0512 (2)0.04358 (19)0.0763 (2)0.0000.02951 (16)0.000
O10.0922 (14)0.0556 (11)0.0888 (13)0.0055 (9)0.0312 (12)0.0044 (9)
N10.0389 (8)0.0313 (7)0.0430 (8)0.0003 (6)0.0122 (6)0.0006 (6)
C10.0375 (14)0.0427 (15)0.082 (2)0.0000.0133 (14)0.000
C20.0392 (13)0.0351 (13)0.0433 (13)0.0000.0135 (11)0.000
C30.0385 (9)0.0402 (9)0.0329 (8)0.0015 (7)0.0109 (7)0.0002 (7)
C40.0459 (10)0.0509 (11)0.0466 (10)0.0100 (8)0.0124 (8)0.0048 (8)
C50.0398 (10)0.0764 (13)0.0470 (10)0.0110 (10)0.0076 (8)0.0070 (9)
C60.0497 (10)0.0306 (9)0.0526 (10)0.0022 (8)0.0120 (8)0.0076 (7)
C70.0527 (12)0.0383 (10)0.0654 (13)0.0045 (8)0.0248 (10)0.0033 (8)
C80.0748 (15)0.0484 (12)0.0691 (14)0.0005 (11)0.0248 (12)0.0055 (10)
Geometric parameters (Å, º) top
O1—H110.86 (1)C3—C41.390 (3)
O1—H120.85 (1)C4—C51.379 (3)
O1—H130.86 (1)C4—H40.9300
N1—C21.339 (2)C5—C5i1.392 (5)
N1—C31.393 (2)C5—H50.9300
N1—C61.480 (2)C6—C71.487 (3)
C1—C21.479 (4)C6—H6A0.9700
C1—H1A0.9600C6—H6B0.9700
C1—H1B0.9600C7—C81.294 (3)
C1—H1C0.9600C7—H70.9300
C2—N1i1.339 (2)C8—H8A0.9300
C3—C3i1.387 (4)C8—H8B0.9300
H11—O1—H12108.7 (16)C5—C4—C3115.81 (19)
H11—O1—H13106.6 (16)C5—C4—H4122.1
H12—O1—H13109.4 (17)C3—C4—H4122.1
C2—N1—C3108.70 (15)C4—C5—C5i122.17 (12)
C2—N1—C6126.45 (16)C4—C5—H5118.9
C3—N1—C6124.84 (15)C5i—C5—H5118.9
C2—C1—H1A109.5N1—C6—C7111.34 (15)
C2—C1—H1B109.5N1—C6—H6A109.4
H1A—C1—H1B109.5C7—C6—H6A109.4
C2—C1—H1C109.5N1—C6—H6B109.4
H1A—C1—H1C109.5C7—C6—H6B109.4
H1B—C1—H1C109.5H6A—C6—H6B108.0
N1—C2—N1i109.3 (2)C8—C7—C6123.8 (2)
N1—C2—C1125.33 (11)C8—C7—H7118.1
N1i—C2—C1125.33 (11)C6—C7—H7118.1
C3i—C3—C4122.02 (12)C7—C8—H8A120.0
C3i—C3—N1106.63 (9)C7—C8—H8B120.0
C4—C3—N1131.31 (17)H8A—C8—H8B120.0
C3—N1—C2—N1i0.3 (2)C6—N1—C3—C42.1 (3)
C6—N1—C2—N1i179.79 (12)C3i—C3—C4—C50.5 (2)
C3—N1—C2—C1178.4 (2)N1—C3—C4—C5177.78 (17)
C6—N1—C2—C11.0 (4)C3—C4—C5—C5i0.5 (2)
C2—N1—C3—C3i0.20 (15)C2—N1—C6—C798.5 (2)
C6—N1—C3—C3i179.67 (13)C3—N1—C6—C782.1 (2)
C2—N1—C3—C4177.40 (19)N1—C6—C7—C8118.6 (2)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···Br10.86 (1)2.49 (1)3.351 (2)178 (2)
O1—H13···O1ii0.86 (1)1.98 (1)2.822 (5)166 (4)
O1—H12···O1i0.85 (1)1.97 (2)2.748 (4)152 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC14H17N2+·Br·2H2O
Mr329.24
Crystal system, space groupMonoclinic, C2/m
Temperature (K)295
a, b, c (Å)13.2888 (2), 16.8763 (2), 7.3897 (1)
β (°) 109.773 (1)
V3)1559.54 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.64
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.403, 0.590
No. of measured, independent and
observed [I > 2σ(I)] reflections
11870, 1851, 1497
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.085, 0.95
No. of reflections1851
No. of parameters103
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.18

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···Br10.86 (1)2.49 (1)3.351 (2)178 (2)
O1—H13···O1i0.86 (1)1.98 (1)2.822 (5)166 (4)
O1—H12···O1ii0.85 (1)1.97 (2)2.748 (4)152 (3)
Symmetry codes: (i) x, y, z+2; (ii) x, y+1, z.
 

Acknowledgements

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHoltgrewe, H., Diedrich, C., Pape, T., Grimme, S. & Hahn, F. E. (2009). Eur. J. Org. Chem. pp. 3116–3124.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationXu, X.-B., Fu, R. & Ye, Q. (2008). Acta Cryst. E64, o109.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, X.-B. & Ye, Q. (2008). Acta Cryst. E64, o23.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds