organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2470-o2471

(E)-2,4,7-Tri­chloro-3-hydr­­oxy-8-meth­­oxy-1,9-di­methyl-6-(1-methyl-1-propen­yl)-11H-dibenzo[b,e][1,4]dioxepin-11-one monohydrate (nidulin monohydrate)

aDepartment of Chemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand, and bChulabhorn Research Institute and Chulabhorn Graduate Institute, Vibhavadi-Rangsit Highway, Bangkok 10210, Thailand
*Correspondence e-mail: thammarat.aree@gmail.com

(Received 3 September 2009; accepted 8 September 2009; online 16 September 2009)

In the title compound, C20H17Cl3O5·H2O, the nidulin mol­ecule consists of three rings, the folded central dioxepin-11-one ring being fused on both sides to phenyl rings. The mol­ecular structure is stabilized by intra­molecular O—H⋯Cl and C—H⋯Cl hydrogen bonds that generate S(6) ring motifs. The crystal structure is stabilized by inter­molecular O—H⋯O and O—H⋯(O,O) hydrogen bonds mediated by two inversion-related water mol­ecules, generating R42(8) ring and C22(4) chain motifs. Weak inter­molecular Cl⋯O halogen bonds are also present with Cl⋯O distances of 3.071 (1) and 3.182 (2) Å.

Related literature

For the structure and synthesis of nidulin, see: Beach & Richards (1961[Beach, W. F. & Richards, J. H. (1961). J. Org. Chem. 26, 1339-1340.], 1963[Beach, W. F. & Richards, J. H. (1963). J. Org. Chem. 28, 2746-2751.]); Bycroft & Roberts (1963[Bycroft, B. W. & Roberts, J. C. (1963). J. Org. Chem. 28, 1429-1430.]). For the crystal structure of anhydrous nidulin, see: McMillan (1964[McMillan, J. A. S. (1964). Diss. Abstr. 25, 868. Order No. 64-8413, 98 pp. Univ. Microfilms, Ann Arbor, Michigan, USA.]). For related structures, see: Brassy et al. (1977[Brassy, C., Bodo, B. & Molho, D. (1977). Acta Cryst. B33, 2559-2562.]); Connolly et al. (1984[Connolly, J. D., Freer, A. A., Kalb, K. & Huneck, S. (1984). Phytochemistry, 23, 857-858.]); Kawahara et al. (1988[Kawahara, N., Nakajima, S., Satoh, Y., Yamazaki, M. & Kawai, K.-I. (1988). Chem. Pharm. Bull. 36, 1970-1975.]); Blaser & Stoeckli-Evans (1991[Blaser, D. & Stoeckli-Evans, H. (1991). Acta Cryst. C47, 2624-2626.]); Xu et al. (2000[Xu, Y. J., Chiang, P. Y., Lai, Y. H., Vittal, J. J., Wu, X. H., Tan, B. K. H., Imiyabir, Z. & Goh, S. H. (2000). J. Nat. Prod. 63, 1361-1363.]); Lang et al. (2007[Lang, G., Cole, A. L. J., Blunt, J. W., Robinson, W. T. & Munro, M. H. G. (2007). J. Nat. Prod. 70, 310-311.]). For the graph-set description of hydrogen-bond patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17Cl3O5·H2O

  • Mr = 461.70

  • Monoclinic, P 21 /c

  • a = 7.7706 (4) Å

  • b = 11.0374 (5) Å

  • c = 23.9428 (10) Å

  • β = 96.707 (2)°

  • V = 2039.45 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 298 K

  • 0.44 × 0.28 × 0.26 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.817, Tmax = 0.846

  • 11735 measured reflections

  • 5969 independent reflections

  • 4193 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.118

  • S = 1.02

  • 5969 reflections

  • 276 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W1⋯O5 0.77 (3) 2.47 (3) 3.069 (3) 135 (3)
O1W—H1W1⋯O1i 0.87 (4) 2.06 (4) 2.929 (3) 177 (3)
O1W—H2W1⋯O1ii 0.77 (3) 2.47 (4) 3.143 (2) 147 (3)
O4—H4⋯O1Wiii 0.82 1.89 2.634 (2) 150
O4—H4⋯Cl2 0.82 2.51 2.9885 (16) 119
C16—H161⋯Cl3 0.96 2.74 3.311 (3) 119
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x-1, y, z; (iii) x+1, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al. 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), (E)-2,4,7-trichloro-3-hydroxy-8-methoxy- 1,9-dimethyl-6-(1-methyl-1-propenyl)-11H-dibenzo[b,e] [1,4]dioxepin-11-one (nidulin) monohydrate, C20H17Cl3O5.H2O (Fig. 1), is a fungal metabolite that was isolated from an identified marine sponge. The structure of the first anhydrous monoclinic crystal form of nidulin was determined and reported without atomic coordinates by McMillan (1964). Here we report a second monoclinic monohydrate crystal form; a water molecule of hydration acts as the centre of hydrogen bonding network stabilizing the entire crystal.

Because the atomic coordinates of the anhydrous form is not available, the two crystal forms of nidulin cannot be structurally compared. The molecular structures of (I) comprises three rings; the central dioxepin-11-one ring in a boat conformation is fused on both sides to the two fully substituted phenyl rings with an interplanar angle of 120.39 (7)°. The substituent atoms all lie close to the planes of the two phenyl rings. Exceptions are atoms C14, C17, Cl2 and Cl3 which deviate from the mean planes, by -0.11 Å. The methoxy C16 atom deviates from the C7···C12 mean plane by 1.229 (4) Å and the C8—C9—O5—C16 torsion angle is 105.26 (23)°. The plane of the 1-methyl-1-propenyl group defined by atoms C17, C18, C19 and C20 makes an angle of 40.23 (6)° with respect to the attached phenyl ring. For the central dioxepin-11-one ring, atoms O1, O2, O3 and C13 are displaced by 1.188 (4), 0.859 (3), 0.584 (2) and 0.669 (3) Å, respectively, from the mean plane through atoms C1, C2, C7 and C12.

The nidulin molecule is stabilized by intramolecular O4—H···Cl2 and C16—H···Cl3 hydrogen bonds each of which generates an S(6) ring motif. (Bernstein et al., 1995) and is linked to the water molecule by an intermolecular O1W—H···O5 hydrogen bond (Fig. 1). The crystal lattice of nidulin is sustained by O—H···O intermolecular hydrogen bonds mediated by two inversion-related water molecules which generate an R42(8) ring motif, (Fig. 2). C22(4) chains (Bernstein et al., 1995) are also formed. The structure is further stabilized by weak intermolecular Cl2···O1W and Cl3···O3 halogen bonds.

Related literature top

For the structure and synthesis of nidulin, see: Beach & Richards (1961, 1963); Bycroft & Roberts (1963). For the crystal structure of anhydrous nidulin, see: McMillan (1964). For related structures, see: Brassy et al. (1977); Connolly et al. (1984); Kawahara et al. (1988); Blaser & Stoeckli-Evans (1991); Xu et al. (2000); Lang et al. (2007). For the graph-set description of hydrogen-bond patterns, see: Bernstein et al. (1995).

Experimental top

The title compound, (I), was extracted from the marine-derived fungus Aspergillus sp. CRI282–03 and single crystals of (I) were obtained from slow evaporation of an acetone-ethylacetate-hexane (1:1:1, v/v) solution at room temperature. It was found later that nidulin contained a water molecule of hydration in the crystal lattice. Water molecules found as traces in the organic solvents, are retained in the sample by strong hydrogen bonding to the nidulin molecules.

Refinement top

The water H-atoms were located in a difference electron density map and refined isotropically. All other H atoms were located and then refined using a riding model: C—H = 0.93 Å (methine), Uiso(H) = 1.2Ueq(C) and C—H = 0.96 Å (methyl), O—H = 0.82 Å (hydroxyl), Uiso(H) = 1.5Ueq(C/O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al. 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) with atom numbering and 50% probability displacement ellipsoids. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. : O—H···O hydrogen bonds generating an R42(8) ring motif from inversion-related nidulin and water molecules. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. : C22(4) chains generated from the two inversion-related nidulin-monohydrate molecules through O—H···O hydrogen bonds. Intermolecular Cl···O halogen bonds are also shown. Hydrogen bonds and Cl···O interactions are shown as dashed lines.
(E)-2,4,7-trichloro-3-hydroxy-8-methoxy-1,9-dimethyl- 6-(1-methyl-1-propenyl)-11H- dibenzo[b,e][1,4]dioxepin-11-one monohydrate top
Crystal data top
C20H17Cl3O5·H2OF(000) = 952
Mr = 461.70Dx = 1.504 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4256 reflections
a = 7.7706 (4) Åθ = 2.6–30.1°
b = 11.0374 (5) ŵ = 0.49 mm1
c = 23.9428 (10) ÅT = 298 K
β = 96.707 (2)°Rod, colourless
V = 2039.45 (16) Å30.44 × 0.28 × 0.26 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5969 independent reflections
Radiation source: fine-focus sealed tube4193 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 30.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 118
Tmin = 0.817, Tmax = 0.846k = 815
11735 measured reflectionsl = 3034
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.801P]
where P = (Fo2 + 2Fc2)/3
5969 reflections(Δ/σ)max < 0.001
276 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C20H17Cl3O5·H2OV = 2039.45 (16) Å3
Mr = 461.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7706 (4) ŵ = 0.49 mm1
b = 11.0374 (5) ÅT = 298 K
c = 23.9428 (10) Å0.44 × 0.28 × 0.26 mm
β = 96.707 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5969 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4193 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 0.846Rint = 0.022
11735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.36 e Å3
5969 reflectionsΔρmin = 0.34 e Å3
276 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.19555 (8)1.09399 (5)0.19154 (2)0.04719 (16)
Cl21.27489 (9)1.13429 (5)0.02688 (2)0.04800 (16)
Cl30.51380 (6)0.74321 (5)0.19233 (2)0.04035 (13)
C11.2062 (2)0.84575 (16)0.07006 (7)0.0260 (3)
C21.1823 (2)0.90311 (15)0.12065 (7)0.0242 (3)
C31.2058 (2)1.02676 (17)0.12732 (8)0.0294 (4)
C41.2405 (2)1.09852 (17)0.08192 (8)0.0318 (4)
C51.2461 (2)1.04181 (17)0.02995 (8)0.0312 (4)
C61.2317 (2)0.91718 (16)0.02277 (8)0.0279 (4)
C71.0090 (2)0.66126 (15)0.12272 (7)0.0254 (3)
C80.8747 (2)0.57758 (16)0.11380 (8)0.0292 (4)
C90.7239 (2)0.60330 (17)0.13765 (8)0.0298 (4)
C100.7088 (2)0.71040 (16)0.16780 (7)0.0269 (4)
C110.8453 (2)0.79319 (15)0.17737 (7)0.0234 (3)
C120.9971 (2)0.76342 (15)0.15515 (7)0.0238 (3)
C131.2414 (2)0.71340 (17)0.06833 (8)0.0291 (4)
C141.2365 (3)0.8636 (2)0.03500 (8)0.0418 (5)
H1431.17060.91380.06240.063*
H1411.18760.78370.03610.063*
H1421.35430.85940.04320.063*
C150.8942 (3)0.46381 (19)0.08076 (10)0.0446 (5)
H1520.86950.48090.04130.067*
H1510.81470.40360.09130.067*
H1531.01060.43420.08860.067*
C160.5569 (4)0.4478 (2)0.17417 (12)0.0629 (7)
H1620.65880.40050.18520.094*
H1630.46110.39480.16300.094*
H1610.53100.49670.20530.094*
C170.8290 (2)0.91073 (16)0.20689 (8)0.0282 (4)
C180.9100 (4)0.9166 (2)0.26682 (9)0.0496 (6)
H1810.90670.99850.28010.074*
H1831.02820.88990.26910.074*
H1820.84710.86520.28960.074*
C190.7478 (3)1.00046 (18)0.17871 (9)0.0404 (5)
H190.70120.98280.14210.061*
C200.7211 (4)1.1273 (2)0.19822 (13)0.0623 (7)
H2010.76631.13470.23710.093*
H2020.59951.14570.19380.093*
H2030.78031.18290.17620.093*
O11.3465 (2)0.67026 (14)0.04114 (6)0.0449 (4)
O21.16197 (17)0.63383 (11)0.10058 (6)0.0321 (3)
O31.14180 (15)0.83871 (11)0.16655 (5)0.0265 (3)
O41.2591 (3)1.21752 (13)0.09119 (7)0.0519 (4)
H41.29501.24970.06390.078*
O50.58658 (19)0.52480 (13)0.12786 (6)0.0418 (4)
O1W0.3826 (3)0.38791 (17)0.02997 (9)0.0617 (6)
H1W10.465 (5)0.372 (3)0.0093 (15)0.089 (12)*
H2W10.396 (4)0.449 (3)0.0451 (14)0.076 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0688 (4)0.0363 (3)0.0391 (3)0.0159 (2)0.0170 (3)0.0148 (2)
Cl20.0726 (4)0.0353 (3)0.0363 (3)0.0106 (3)0.0073 (3)0.0068 (2)
Cl30.0276 (2)0.0440 (3)0.0510 (3)0.0006 (2)0.0115 (2)0.0000 (2)
C10.0256 (8)0.0231 (8)0.0295 (9)0.0007 (6)0.0044 (7)0.0032 (7)
C20.0215 (8)0.0244 (8)0.0268 (8)0.0018 (6)0.0036 (6)0.0019 (6)
C30.0320 (9)0.0270 (9)0.0300 (9)0.0050 (7)0.0075 (7)0.0073 (7)
C40.0348 (10)0.0239 (9)0.0374 (10)0.0070 (7)0.0067 (8)0.0026 (7)
C50.0324 (10)0.0303 (9)0.0307 (9)0.0045 (7)0.0032 (8)0.0034 (7)
C60.0287 (9)0.0279 (9)0.0272 (9)0.0019 (7)0.0029 (7)0.0027 (7)
C70.0272 (8)0.0207 (8)0.0288 (9)0.0032 (6)0.0057 (7)0.0012 (6)
C80.0366 (10)0.0209 (8)0.0293 (9)0.0009 (7)0.0008 (7)0.0009 (7)
C90.0305 (9)0.0259 (9)0.0318 (9)0.0064 (7)0.0017 (7)0.0018 (7)
C100.0241 (8)0.0279 (9)0.0288 (9)0.0004 (7)0.0038 (7)0.0031 (7)
C110.0253 (8)0.0226 (8)0.0225 (8)0.0009 (6)0.0039 (6)0.0010 (6)
C120.0244 (8)0.0210 (8)0.0259 (8)0.0024 (6)0.0026 (6)0.0014 (6)
C130.0320 (9)0.0258 (9)0.0304 (9)0.0013 (7)0.0079 (7)0.0029 (7)
C140.0591 (14)0.0368 (11)0.0298 (10)0.0036 (10)0.0063 (9)0.0035 (8)
C150.0521 (13)0.0299 (11)0.0529 (13)0.0047 (9)0.0107 (11)0.0136 (9)
C160.0649 (17)0.0448 (14)0.0782 (19)0.0249 (12)0.0053 (14)0.0144 (13)
C170.0316 (9)0.0261 (9)0.0281 (9)0.0019 (7)0.0095 (7)0.0044 (7)
C180.0693 (16)0.0460 (13)0.0322 (11)0.0012 (11)0.0007 (11)0.0094 (9)
C190.0502 (12)0.0298 (10)0.0430 (12)0.0058 (9)0.0126 (10)0.0050 (8)
C200.0777 (19)0.0327 (12)0.0809 (19)0.0149 (12)0.0276 (16)0.0084 (12)
O10.0545 (9)0.0367 (8)0.0484 (9)0.0107 (7)0.0267 (8)0.0013 (7)
O20.0348 (7)0.0214 (6)0.0423 (8)0.0042 (5)0.0132 (6)0.0001 (5)
O30.0264 (6)0.0274 (6)0.0260 (6)0.0053 (5)0.0044 (5)0.0020 (5)
O40.0855 (13)0.0249 (7)0.0483 (9)0.0148 (8)0.0211 (9)0.0054 (6)
O50.0374 (8)0.0385 (8)0.0482 (9)0.0166 (6)0.0003 (7)0.0030 (7)
O1W0.0887 (15)0.0334 (9)0.0700 (13)0.0188 (9)0.0389 (12)0.0100 (9)
Geometric parameters (Å, º) top
Cl1—C31.7175 (18)C13—O21.364 (2)
Cl2—C51.7361 (19)C14—H1430.9600
Cl3—C101.7261 (18)C14—H1410.9600
C1—C21.398 (2)C14—H1420.9600
C1—C61.412 (2)C15—H1520.9600
C1—C131.488 (2)C15—H1510.9600
C2—O31.376 (2)C15—H1530.9600
C2—C31.384 (2)C16—O51.437 (3)
C3—C41.397 (3)C16—H1620.9600
C4—O41.337 (2)C16—H1630.9600
C4—C51.398 (3)C16—H1610.9600
C5—C61.389 (3)C17—C191.317 (3)
C6—C141.509 (3)C17—C181.499 (3)
C7—C121.378 (2)C18—H1810.9600
C7—O21.390 (2)C18—H1830.9600
C7—C81.391 (3)C18—H1820.9600
C8—C91.391 (3)C19—C201.498 (3)
C8—C151.501 (3)C19—H190.9300
C9—O51.373 (2)C20—H2010.9600
C9—C101.397 (3)C20—H2020.9600
C10—C111.399 (2)C20—H2030.9600
C11—C121.389 (2)O4—H40.8200
C11—C171.490 (2)O1W—H1W10.87 (4)
C12—O31.399 (2)O1W—H2W10.77 (3)
C13—O11.201 (2)
C2—C1—C6119.13 (16)C6—C14—H141109.5
C2—C1—C13120.81 (16)H143—C14—H141109.5
C6—C1—C13118.85 (16)C6—C14—H142109.5
O3—C2—C3117.18 (15)H143—C14—H142109.5
O3—C2—C1121.60 (15)H141—C14—H142109.5
C3—C2—C1121.16 (16)C8—C15—H152109.5
C2—C3—C4120.29 (16)C8—C15—H151109.5
C2—C3—Cl1120.68 (14)H152—C15—H151109.5
C4—C3—Cl1119.03 (14)C8—C15—H153109.5
O4—C4—C3117.05 (17)H152—C15—H153109.5
O4—C4—C5125.00 (17)H151—C15—H153109.5
C3—C4—C5117.89 (16)O5—C16—H162109.5
C6—C5—C4122.89 (17)O5—C16—H163109.5
C6—C5—Cl2120.08 (15)H162—C16—H163109.5
C4—C5—Cl2117.03 (14)O5—C16—H161109.5
C5—C6—C1118.06 (16)H162—C16—H161109.5
C5—C6—C14119.41 (17)H163—C16—H161109.5
C1—C6—C14122.48 (16)C19—C17—C11118.29 (17)
C12—C7—O2120.62 (15)C19—C17—C18125.47 (19)
C12—C7—C8122.10 (16)C11—C17—C18116.24 (17)
O2—C7—C8117.15 (15)C17—C18—H181109.5
C7—C8—C9117.01 (16)C17—C18—H183109.5
C7—C8—C15121.09 (18)H181—C18—H183109.5
C9—C8—C15121.90 (17)C17—C18—H182109.5
O5—C9—C8118.43 (17)H181—C18—H182109.5
O5—C9—C10120.75 (17)H183—C18—H182109.5
C8—C9—C10120.69 (16)C17—C19—C20128.2 (2)
C9—C10—C11121.96 (16)C17—C19—H19115.9
C9—C10—Cl3118.92 (14)C20—C19—H19115.9
C11—C10—Cl3119.10 (14)C19—C20—H201109.5
C12—C11—C10116.40 (15)C19—C20—H202109.5
C12—C11—C17120.72 (15)H201—C20—H202109.5
C10—C11—C17122.79 (15)C19—C20—H203109.5
C7—C12—C11121.66 (16)H201—C20—H203109.5
C7—C12—O3119.40 (15)H202—C20—H203109.5
C11—C12—O3118.93 (15)C13—O2—C7122.63 (14)
O1—C13—O2115.66 (17)C2—O3—C12113.85 (13)
O1—C13—C1122.90 (17)C4—O4—H4109.5
O2—C13—C1121.33 (15)C9—O5—C16115.65 (17)
C6—C14—H143109.5H1W1—O1W—H2W1112 (3)
C6—C1—C2—O3174.18 (15)O5—C9—C10—Cl30.4 (2)
C13—C1—C2—O318.5 (3)C8—C9—C10—Cl3175.49 (14)
C6—C1—C2—C38.7 (3)C9—C10—C11—C120.1 (3)
C13—C1—C2—C3158.65 (17)Cl3—C10—C11—C12178.12 (13)
O3—C2—C3—C4177.53 (16)C9—C10—C11—C17176.83 (17)
C1—C2—C3—C45.2 (3)Cl3—C10—C11—C171.4 (2)
O3—C2—C3—Cl13.3 (2)O2—C7—C12—C11179.51 (15)
C1—C2—C3—Cl1173.97 (14)C8—C7—C12—C114.8 (3)
C2—C3—C4—O4178.96 (18)O2—C7—C12—O31.1 (2)
Cl1—C3—C4—O41.9 (3)C8—C7—C12—O3174.52 (16)
C2—C3—C4—C51.6 (3)C10—C11—C12—C73.6 (3)
Cl1—C3—C4—C5179.24 (15)C17—C11—C12—C7173.18 (16)
O4—C4—C5—C6177.9 (2)C10—C11—C12—O3175.78 (15)
C3—C4—C5—C65.0 (3)C17—C11—C12—O37.4 (2)
O4—C4—C5—Cl21.4 (3)C2—C1—C13—O1138.3 (2)
C3—C4—C5—Cl2175.76 (15)C6—C1—C13—O129.0 (3)
C4—C5—C6—C11.5 (3)C2—C1—C13—O237.8 (3)
Cl2—C5—C6—C1179.23 (14)C6—C1—C13—O2154.90 (17)
C4—C5—C6—C14179.14 (19)C12—C11—C17—C1998.9 (2)
Cl2—C5—C6—C141.6 (3)C10—C11—C17—C1977.7 (2)
C2—C1—C6—C55.2 (3)C12—C11—C17—C1880.3 (2)
C13—C1—C6—C5162.32 (17)C10—C11—C17—C18103.1 (2)
C2—C1—C6—C14172.29 (18)C11—C17—C19—C20177.4 (2)
C13—C1—C6—C1420.1 (3)C18—C17—C19—C201.7 (4)
C12—C7—C8—C92.1 (3)O1—C13—O2—C7162.93 (18)
O2—C7—C8—C9177.87 (16)C1—C13—O2—C720.7 (3)
C12—C7—C8—C15176.85 (18)C12—C7—O2—C1354.8 (2)
O2—C7—C8—C151.0 (3)C8—C7—O2—C13129.38 (18)
C7—C8—C9—O5177.59 (16)C3—C2—O3—C12129.37 (17)
C15—C8—C9—O53.5 (3)C1—C2—O3—C1253.4 (2)
C7—C8—C9—C101.6 (3)C7—C12—O3—C270.77 (19)
C15—C8—C9—C10179.45 (19)C11—C12—O3—C2109.84 (17)
O5—C9—C10—C11178.63 (16)C8—C9—O5—C16105.3 (2)
C8—C9—C10—C112.8 (3)C10—C9—O5—C1678.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···O50.77 (3)2.47 (3)3.069 (3)135 (3)
O1W—H1W1···O1i0.87 (4)2.06 (4)2.929 (3)177 (3)
O1W—H2W1···O1ii0.77 (3)2.47 (4)3.143 (2)147 (3)
O4—H4···O1Wiii0.821.892.634 (2)150
O4—H4···Cl20.822.512.9885 (16)119
C16—H161···Cl30.962.743.311 (3)119
Symmetry codes: (i) x+2, y+1, z; (ii) x1, y, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H17Cl3O5·H2O
Mr461.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.7706 (4), 11.0374 (5), 23.9428 (10)
β (°) 96.707 (2)
V3)2039.45 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.44 × 0.28 × 0.26
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.817, 0.846
No. of measured, independent and
observed [I > 2σ(I)] reflections
11735, 5969, 4193
Rint0.022
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.118, 1.02
No. of reflections5969
No. of parameters276
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.34

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al. 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···O50.77 (3)2.47 (3)3.069 (3)135 (3)
O1W—H1W1···O1i0.87 (4)2.06 (4)2.929 (3)177 (3)
O1W—H2W1···O1ii0.77 (3)2.47 (4)3.143 (2)147 (3)
O4—H4···O1Wiii0.821.892.634 (2)149.8
O4—H4···Cl20.822.512.9885 (16)118.5
C16—H161···Cl30.962.743.311 (3)118.9
Symmetry codes: (i) x+2, y+1, z; (ii) x1, y, z; (iii) x+1, y+1, z.
 

Acknowledgements

This work was supported by the Department of Chemistry and the Faculty of Science of Chulalongkorn University (grant No. RES A1B1–10) to TA and by the Thailand Research Fund (TRF) to PK.

References

First citationBeach, W. F. & Richards, J. H. (1961). J. Org. Chem. 26, 1339–1340.  CrossRef CAS Web of Science Google Scholar
First citationBeach, W. F. & Richards, J. H. (1963). J. Org. Chem. 28, 2746–2751.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlaser, D. & Stoeckli-Evans, H. (1991). Acta Cryst. C47, 2624–2626.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrassy, C., Bodo, B. & Molho, D. (1977). Acta Cryst. B33, 2559–2562.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBycroft, B. W. & Roberts, J. C. (1963). J. Org. Chem. 28, 1429–1430.  CrossRef CAS Google Scholar
First citationConnolly, J. D., Freer, A. A., Kalb, K. & Huneck, S. (1984). Phytochemistry, 23, 857–858.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKawahara, N., Nakajima, S., Satoh, Y., Yamazaki, M. & Kawai, K.-I. (1988). Chem. Pharm. Bull. 36, 1970–1975.  CrossRef CAS Google Scholar
First citationLang, G., Cole, A. L. J., Blunt, J. W., Robinson, W. T. & Munro, M. H. G. (2007). J. Nat. Prod. 70, 310–311.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcMillan, J. A. S. (1964). Diss. Abstr. 25, 868. Order No. 64-8413, 98 pp. Univ. Microfilms, Ann Arbor, Michigan, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y. J., Chiang, P. Y., Lai, Y. H., Vittal, J. J., Wu, X. H., Tan, B. K. H., Imiyabir, Z. & Goh, S. H. (2000). J. Nat. Prod. 63, 1361–1363.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2470-o2471
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds