organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2591-o2592

1,6-Bis(di­phenyl­arsino)hexa­ne

aChemical Sciences Programme, Centre for Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: omarsa@usm.my

(Received 8 September 2009; accepted 11 September 2009; online 30 September 2009)

The title diphenyl­arsino compound, C30H32As2 or Ph2As(CH2)6AsPh2, lies about a crystallographic inversion centre located at the mid-point of the central Csp3—Csp3 bond of the methyl­ene chain. The two benzene rings bonded to As are inclined to one another at a dihedral angle of 75.98 (8)°. In the crystal structure, weak inter­molecular C—H⋯π inter­actions stack the mol­ecules down the b axis.

Related literature

For general background to and applications of diphenyl­arsino derivatives, see: Hill et al. (1983[Hill, W. E., Minahan, D. M. A. & McAuliffe, C. A. (1983). Inorg. Chem. 22, 3382-3387.]); Song et al. (2005[Song, L.-C., Jin, G.-X., Wang, H.-T., Zhang, W.-X. & Hu, Q.-M. (2005). Organometallics 24, 6464-6471.]). For the preparation of the title compound, see: Aguiar & Archibald (1967[Aguiar, A. M. & Archibald, T. G. (1967). J. Org. Chem. 32, 2627-2628.]); Burfield et al. (1977[Burfield, D. R., Lee, K.-H. & Smithers, R. H. (1977). J. Org. Chem. 42, 3060-3065.], 1978[Burfield, D. R., Gan, G. H. & Smithers, R. H. (1978). J. Appl. Chem. Biotech. 28, 23-30.]); Tzschach & Lange (1962[Tzschach, A. & Lange, W. (1962). Chem. Ber. 95, 1360-1366.]). For closely related structures, see: Hill et al. (2001[Hill, N. J., Levason, W., Reid, G. & Webster, M. (2001). Acta Cryst. E57, o700-o701.]); Shawkataly et al. (2005[Shawkataly, O., Chong, M.-L., Fun, H.-K., Didierjean, C. & Aubry, A. (2005). Acta Cryst. E61, 3351-3352.]). For information on the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C30H32As2

  • Mr = 542.40

  • Monoclinic, P 21 /c

  • a = 12.3774 (2) Å

  • b = 5.7145 (1) Å

  • c = 18.1263 (3) Å

  • β = 101.076 (1)°

  • V = 1258.20 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.67 mm−1

  • T = 100 K

  • 0.44 × 0.29 × 0.03 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.384, Tmax = 0.919

  • 24043 measured reflections

  • 5572 independent reflections

  • 4144 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.084

  • S = 1.03

  • 5572 reflections

  • 209 parameters

  • All H-atom parameters refined

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15BCg1i 0.97 (3) 2.81 (3) 3.776 (2) 169.9 (18)
C4—H4⋯Cg2ii 0.91 (2) 2.80 (2) 3.708 (2) 173.2 (19)
C9—H9⋯Cg2iii 0.91 (2) 2.97 (2) 3.617 (2) 129.5 (16)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 benzene rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,6-Bis(diphenylarsino)hexane has been used for trans chelation in transition metal complexes (Hill et al., 1983). A search of the November 2008 release of the Cambridge Structural Database (Allen, 2002) revealed no structures of complexes containing the above ligand. Among bis(diphenylarsino)alkanes, only the structure of 1,2-bis(diphenylarsino)ethane (Hill et al., 2001) and complexes of the ligand 1,3-bis(diphenylarsino)propane (Song et al., 2005) are known.

The title compound (Fig. 1), contains a crystallographic inversion centre at the mid-point of the central Csp3—Csp3 (C15—C15A) bond [symmetry code of atoms labellel with suffix A: -x+1, -y+1, -z+1]. The C1-C6 and C7-C12 benzene rings are inclined to one another, with a dihedral angle of 75.98 (8)°. The bond lengths (Allen et al., 1987) are comparable to those found in closely related structures (Hill et al., 2001; Shawkataly et al., 2005). In the crystal structure (Fig. 2), the molecules are stacked down the b axis. The crystal structure is consolidated by intermolecular C15—H15B···Cg1, C4—H4···Cg2 and C9—H9···Cg2 interactions (Table 1).

Related literature top

For general background to and applications of diphenylarsino derivatives, see: Hill et al. (1983); Song et al. (2005). For the preparation of the title compound, see: Aguiar & Archibald (1967); Burfield et al. (1977, 1978); Tzschach & Lange (1962). For closely related structures, see: Hill et al. (2001); Shawkataly et al. (2005). For information on the Cambridge Structural Database, see: Allen (2002). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Solvents were dried by recommended literature routes (Burfield et al., 1977, 1978) and the title compound was prepared by the reaction of diphenylarsino lithium with 1,6-dibromohexane in dry THF at 273 K under nitrogen atmosphere (Aguiar et al., 1967; Tzschach & Lange, 1962). Colourless plates of suitable quality for single crystal X-ray diffraction studies were obtained by slow evaporation from ethanol solution.

Refinement top

All the H atoms were located from difference Fourier map and allowed to refine freely [range of C—H = 0.89 (2) – 0.99 (3) Å].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. The suffix A corresponds to the symmetry code [-x+1, -y+1, -z+1].
[Figure 2] Fig. 2. The crystal structure of the title compound viewed along the b axis, showing stacking of molecules along the b axis.
1,6-Bis(diphenylarsino)hexane top
Crystal data top
C30H32As2F(000) = 556
Mr = 542.40Dx = 1.432 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5477 reflections
a = 12.3774 (2) Åθ = 3.1–32.2°
b = 5.7145 (1) ŵ = 2.67 mm1
c = 18.1263 (3) ÅT = 100 K
β = 101.076 (1)°Plate, colourless
V = 1258.20 (4) Å30.44 × 0.29 × 0.03 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5572 independent reflections
Radiation source: fine-focus sealed tube4144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 35.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1920
Tmin = 0.384, Tmax = 0.919k = 98
24043 measured reflectionsl = 2926
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0344P)2 + 0.3375P]
where P = (Fo2 + 2Fc2)/3
5572 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C30H32As2V = 1258.20 (4) Å3
Mr = 542.40Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.3774 (2) ŵ = 2.67 mm1
b = 5.7145 (1) ÅT = 100 K
c = 18.1263 (3) Å0.44 × 0.29 × 0.03 mm
β = 101.076 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5572 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4144 reflections with I > 2σ(I)
Tmin = 0.384, Tmax = 0.919Rint = 0.052
24043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.084All H-atom parameters refined
S = 1.03Δρmax = 0.58 e Å3
5572 reflectionsΔρmin = 0.47 e Å3
209 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.351354 (13)0.98218 (3)0.284872 (8)0.01668 (5)
C10.29473 (13)0.8690 (3)0.18275 (8)0.0183 (3)
C20.32226 (14)0.6566 (3)0.15347 (9)0.0226 (3)
C30.27896 (15)0.5965 (4)0.07878 (10)0.0264 (4)
C40.20763 (15)0.7469 (4)0.03339 (10)0.0299 (4)
C50.17979 (17)0.9578 (4)0.06212 (10)0.0313 (4)
C60.22374 (16)1.0190 (3)0.13583 (10)0.0257 (3)
C70.20975 (13)0.9750 (3)0.31860 (8)0.0165 (3)
C80.13587 (13)0.7891 (3)0.30118 (9)0.0192 (3)
C90.03431 (14)0.7930 (3)0.32299 (9)0.0224 (3)
C100.00492 (14)0.9838 (3)0.36256 (9)0.0225 (3)
C110.07749 (14)1.1692 (3)0.38019 (9)0.0235 (3)
C120.17944 (14)1.1653 (3)0.35879 (9)0.0208 (3)
C130.41464 (14)0.6910 (3)0.33284 (9)0.0195 (3)
C140.43828 (15)0.7124 (3)0.41818 (9)0.0218 (3)
C150.48951 (15)0.4927 (3)0.45720 (9)0.0234 (3)
H20.3700 (19)0.552 (4)0.1820 (12)0.026 (6)*
H30.303 (2)0.458 (4)0.0593 (13)0.031 (6)*
H40.1799 (19)0.704 (4)0.0149 (13)0.040 (6)*
H50.128 (2)1.066 (5)0.0299 (15)0.048 (7)*
H60.2055 (18)1.172 (4)0.1569 (12)0.034 (6)*
H80.1550 (16)0.654 (4)0.2729 (11)0.026 (5)*
H90.0121 (17)0.669 (4)0.3102 (12)0.033 (6)*
H100.063 (2)0.989 (4)0.3763 (14)0.033 (7)*
H110.0573 (18)1.300 (4)0.4072 (12)0.036 (6)*
H120.2278 (16)1.291 (4)0.3710 (11)0.024 (5)*
H13A0.4768 (18)0.668 (4)0.3164 (12)0.033 (6)*
H13B0.364 (2)0.570 (4)0.3189 (13)0.032 (6)*
H14A0.370 (2)0.752 (5)0.4355 (13)0.043 (7)*
H14B0.4872 (17)0.844 (4)0.4344 (11)0.026 (5)*
H15A0.4390 (19)0.362 (5)0.4414 (13)0.037 (6)*
H15B0.556 (2)0.465 (4)0.4373 (14)0.032 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.01574 (8)0.01865 (8)0.01533 (7)0.00094 (6)0.00222 (5)0.00114 (6)
C10.0172 (6)0.0221 (7)0.0160 (6)0.0017 (6)0.0044 (5)0.0026 (5)
C20.0218 (7)0.0269 (8)0.0194 (7)0.0002 (7)0.0050 (6)0.0007 (6)
C30.0285 (9)0.0296 (9)0.0225 (8)0.0069 (7)0.0087 (7)0.0053 (7)
C40.0283 (9)0.0462 (11)0.0147 (7)0.0115 (8)0.0028 (6)0.0013 (7)
C50.0299 (9)0.0430 (11)0.0185 (7)0.0012 (8)0.0011 (7)0.0079 (7)
C60.0269 (8)0.0299 (9)0.0195 (7)0.0042 (7)0.0027 (6)0.0046 (6)
C70.0169 (6)0.0182 (7)0.0137 (6)0.0008 (5)0.0014 (5)0.0017 (5)
C80.0195 (7)0.0187 (7)0.0188 (7)0.0003 (6)0.0022 (5)0.0016 (5)
C90.0204 (7)0.0243 (8)0.0217 (7)0.0025 (6)0.0018 (6)0.0010 (6)
C100.0173 (7)0.0303 (9)0.0198 (7)0.0033 (6)0.0035 (6)0.0008 (6)
C110.0258 (8)0.0243 (8)0.0200 (7)0.0046 (7)0.0034 (6)0.0030 (6)
C120.0219 (7)0.0195 (7)0.0200 (7)0.0005 (6)0.0013 (6)0.0013 (6)
C130.0186 (7)0.0239 (8)0.0156 (6)0.0047 (6)0.0022 (5)0.0022 (6)
C140.0235 (8)0.0263 (8)0.0149 (6)0.0071 (7)0.0016 (6)0.0015 (6)
C150.0250 (8)0.0283 (9)0.0154 (6)0.0096 (7)0.0003 (6)0.0008 (6)
Geometric parameters (Å, º) top
As1—C11.9590 (15)C8—H80.98 (2)
As1—C71.9644 (16)C9—C101.391 (2)
As1—C131.9688 (16)C9—H90.91 (2)
C1—C21.393 (2)C10—C111.386 (3)
C1—C61.394 (2)C10—H100.93 (3)
C2—C31.400 (2)C11—C121.390 (2)
C2—H20.93 (2)C11—H110.95 (2)
C3—C41.384 (3)C12—H120.94 (2)
C3—H30.94 (2)C13—C141.523 (2)
C4—C51.383 (3)C13—H13A0.89 (2)
C4—H40.91 (2)C13—H13B0.93 (3)
C5—C61.387 (3)C14—C151.519 (2)
C5—H50.99 (3)C14—H14A0.98 (2)
C6—H60.99 (2)C14—H14B0.98 (2)
C7—C81.398 (2)C15—C15i1.525 (3)
C7—C121.399 (2)C15—H15A0.98 (3)
C8—C91.388 (2)C15—H15B0.97 (3)
C1—As1—C796.24 (6)C10—C9—H9121.6 (14)
C1—As1—C13100.26 (7)C11—C10—C9119.72 (16)
C7—As1—C1398.51 (7)C11—C10—H10119.9 (13)
C2—C1—C6118.37 (15)C9—C10—H10120.4 (14)
C2—C1—As1125.33 (12)C10—C11—C12120.41 (16)
C6—C1—As1116.28 (13)C10—C11—H11119.8 (14)
C1—C2—C3120.38 (17)C12—C11—H11119.8 (14)
C1—C2—H2121.8 (14)C11—C12—C7120.44 (16)
C3—C2—H2117.8 (14)C11—C12—H12119.7 (12)
C4—C3—C2120.32 (18)C7—C12—H12119.9 (13)
C4—C3—H3120.8 (14)C14—C13—As1111.29 (11)
C2—C3—H3118.7 (15)C14—C13—H13A110.1 (14)
C5—C4—C3119.60 (16)As1—C13—H13A105.9 (15)
C5—C4—H4121.5 (16)C14—C13—H13B108.8 (15)
C3—C4—H4118.9 (16)As1—C13—H13B108.4 (15)
C4—C5—C6120.16 (18)H13A—C13—H13B112 (2)
C4—C5—H5119.9 (16)C15—C14—C13112.84 (14)
C6—C5—H5119.9 (16)C15—C14—H14A110.5 (15)
C5—C6—C1121.15 (18)C13—C14—H14A109.6 (13)
C5—C6—H6121.0 (13)C15—C14—H14B108.6 (12)
C1—C6—H6117.9 (12)C13—C14—H14B110.8 (12)
C8—C7—C12118.61 (15)H14A—C14—H14B104.2 (19)
C8—C7—As1121.98 (12)C14—C15—C15i113.73 (18)
C12—C7—As1119.36 (12)C14—C15—H15A107.9 (14)
C9—C8—C7120.81 (15)C15i—C15—H15A108.3 (14)
C9—C8—H8119.0 (12)C14—C15—H15B105.7 (14)
C7—C8—H8120.2 (12)C15i—C15—H15B113.3 (15)
C8—C9—C10120.01 (16)H15A—C15—H15B107.6 (19)
C8—C9—H9118.4 (14)
C7—As1—C1—C2114.45 (14)C1—As1—C7—C12134.94 (13)
C13—As1—C1—C214.60 (15)C13—As1—C7—C12123.67 (13)
C7—As1—C1—C667.51 (14)C12—C7—C8—C90.2 (2)
C13—As1—C1—C6167.36 (13)As1—C7—C8—C9177.24 (12)
C6—C1—C2—C30.2 (2)C7—C8—C9—C100.1 (2)
As1—C1—C2—C3178.21 (13)C8—C9—C10—C110.1 (2)
C1—C2—C3—C40.5 (3)C9—C10—C11—C120.2 (3)
C2—C3—C4—C50.4 (3)C10—C11—C12—C70.6 (2)
C3—C4—C5—C60.5 (3)C8—C7—C12—C110.6 (2)
C4—C5—C6—C11.2 (3)As1—C7—C12—C11176.96 (12)
C2—C1—C6—C51.0 (3)C1—As1—C13—C14165.02 (12)
As1—C1—C6—C5179.24 (15)C7—As1—C13—C1467.05 (13)
C1—As1—C7—C842.50 (13)As1—C13—C14—C15178.78 (13)
C13—As1—C7—C858.90 (13)C13—C14—C15—C15i178.14 (19)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···Cg1ii0.97 (3)2.81 (3)3.776 (2)169.9 (18)
C4—H4···Cg2iii0.91 (2)2.80 (2)3.708 (2)173.2 (19)
C9—H9···Cg2iv0.91 (2)2.97 (2)3.617 (2)129.5 (16)
Symmetry codes: (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z3/2; (iv) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC30H32As2
Mr542.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.3774 (2), 5.7145 (1), 18.1263 (3)
β (°) 101.076 (1)
V3)1258.20 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.67
Crystal size (mm)0.44 × 0.29 × 0.03
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.384, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
24043, 5572, 4144
Rint0.052
(sin θ/λ)max1)0.809
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.084, 1.03
No. of reflections5572
No. of parameters209
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.58, 0.47

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···Cg1i0.97 (3)2.81 (3)3.776 (2)169.9 (18)
C4—H4···Cg2ii0.91 (2)2.80 (2)3.708 (2)173.2 (19)
C9—H9···Cg2iii0.91 (2)2.97 (2)3.617 (2)129.5 (16)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z3/2; (iii) x, y1/2, z+1/2.
 

Footnotes

On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research Grant (No. 1001/PJJAUH/811115). HKF and JHG thank USM for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). IAK is grateful to USM for a Postdoctoral Fellowship and Gokhale Centenary College, Ankola, India, for study leave. JHG also thanks USM for the award of a USM fellowship.

References

First citationAguiar, A. M. & Archibald, T. G. (1967). J. Org. Chem. 32, 2627–2628.  CrossRef CAS Web of Science Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurfield, D. R., Gan, G. H. & Smithers, R. H. (1978). J. Appl. Chem. Biotech. 28, 23–30.  CAS Google Scholar
First citationBurfield, D. R., Lee, K.-H. & Smithers, R. H. (1977). J. Org. Chem. 42, 3060–3065.  CrossRef CAS Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHill, N. J., Levason, W., Reid, G. & Webster, M. (2001). Acta Cryst. E57, o700–o701.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHill, W. E., Minahan, D. M. A. & McAuliffe, C. A. (1983). Inorg. Chem. 22, 3382–3387.  CrossRef CAS Web of Science Google Scholar
First citationShawkataly, O., Chong, M.-L., Fun, H.-K., Didierjean, C. & Aubry, A. (2005). Acta Cryst. E61, 3351–3352.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, L.-C., Jin, G.-X., Wang, H.-T., Zhang, W.-X. & Hu, Q.-M. (2005). Organometallics 24, 6464–6471.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTzschach, A. & Lange, W. (1962). Chem. Ber. 95, 1360–1366.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2591-o2592
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds