organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2H-Tetra­zol-5-yl)pyridinium tri­fluoro­acetate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 23 June 2009; accepted 19 August 2009; online 9 September 2009)

In the cation of the title compound, C6H6N5+·CF3COO, the pyridine and tetra­zole rings are nearly coplanar, making a dihedral angle of 2.49 (19)°. In the crystal, the cations and anions are connected by inter­molecular N—H⋯O and N—H⋯(F,O) hydrogen bonds, forming centrosymmetric [2 + 2] aggregates, which stack along the a axis.

Related literature

For the applications of metal-organic coordination compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.]); Huang et al. (1999[Huang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95-98.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]); Liu et al. (1999[Liu, C.-M., Yu, Z., Xiong, R.-G., Liu, K. & You, X.-Z. (1999). Inorg. Chem. Commun. 2, 31-34.]); Xie et al. (2003[Xie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712-3715.]); Zhang et al. (2000[Zhang, J., Xiong, R.-G., Zuo, J.-L. & You, X.-Z. (2000). Chem. Commun. 16, 1495-1496.], 2001[Zhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118-4121.]). For tetra­zole derivatives, see: Fu et al. (2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.]); Wang, et al. (2005[Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N5+·C2F3O2

  • Mr = 261.18

  • Triclinic, [P \overline 1]

  • a = 4.8564 (10) Å

  • b = 9.5989 (19) Å

  • c = 11.917 (2) Å

  • α = 90.02 (3)°

  • β = 101.34 (3)°

  • γ = 98.55 (3)°

  • V = 538.35 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.96, Tmax = 1.00 (expected range = 0.931–0.970)

  • 5516 measured reflections

  • 2434 independent reflections

  • 1074 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.241

  • S = 0.93

  • 2434 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 1.79 2.651 (4) 176
N4—H4A⋯O1ii 0.86 1.87 2.716 (4) 167
N4—H4A⋯F3ii 0.86 2.53 3.053 (4) 120
Symmetry codes: (i) -x, -y, -z+1; (ii) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of metal-organic coordination compounds has attracted much attention owing to their potential functions, such as permittivity, fluorescence, magnetism and optical properties. (Fu et al., 2007; Huang et al., 1999; Fu & Xiong, 2008; Liu et al., 1999; Xie et al., 2003; Zhang et al., 2001; Zhang et al., 2000). Tetrazole derivatives are a class of excellent ligands because of their multiple coordination modes and for the construction of novel metal-organic frameworks. (Wang, et al. 2005; Fu et al., 2008). We report herein on the crystal structure of the title compound, 3-(2H-tetrazol-5-yl)pyridinium Trifluoroacetate.

In the title compound (Fig. 1), the pyridine N atoms are protonated. The pyridine and tetrazole rings are nearly coplanar and twisted with respect to one another by only 2.49 (19) °. The geometric parameters of the tetrazole rings are comparable to those in related molecules (Wang, et al., 2005; Fu et al., 2008).

The crystal packing is stabilized by intermolecular N—H···O and N—H···F hydrogen bonds forming centrosymmetric [2 + 2] aggregates, which stack along the a axis (Fig. 2 and Table 1). The pyridine rings [Cg···Cgi] of neighbouring cation systems are separated by 4.856 (2) Å [Cg is the centroid of the pyridine rings, symmetry code (i) = x + 1, y, z].

Related literature top

For the applications of metal-organic coordination compounds, see: Fu et al. (2007); Huang et al. (1999); Fu & Xiong (2008); Liu et al. (1999); Xie et al. (2003); Zhang et al. (2000, 2001). For tetrazole derivatives, see: Fu et al. (2008); Wang, et al. (2005).

Experimental top

Isonicotinonitrile (30 mmol), NaN3 (45 mmol), NH4Cl (33 mmol) and DMF (50 ml) were added in a flask under a nitrogen atmosphere and the mixture stirred at 383 K for 20 h. The resulting solution was then poured into ice-water (100 ml), and a white solid was obtained after adding HCl (6 M) and adjusting the pH = 6. The precipitate was filtered off and washed with distilled water. Colourless block-shaped crystals, suitable for X-ray analysis, were obtained from the crude product by slow evaporation of an ethanol/CF3COOH [10:1 v/v] solution.

Refinement top

The H-atoms were included in calculated positions and treated as riding atoms: N–H = 0.86 Å, C–H = 0.93 Å, with Uiso(H) = 1.2Ueq(parent N- or C-atom).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of themolecular structure of the title compound, showing the displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately along the a axis, showing the π···π, N—H···O and N—H···F interactions as dotted lines [see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity].
3-(2H-Tetrazol-5-yl)pyridinium trifluoroacetate top
Crystal data top
C6H6N5+·C2F3O2Z = 2
Mr = 261.18F(000) = 264
Triclinic, P1Dx = 1.611 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.8564 (10) ÅCell parameters from 1074 reflections
b = 9.5989 (19) Åθ = 3.5–27.5°
c = 11.917 (2) ŵ = 0.15 mm1
α = 90.02 (3)°T = 298 K
β = 101.34 (3)°Block, colorless
γ = 98.55 (3)°0.30 × 0.25 × 0.20 mm
V = 538.35 (19) Å3
Data collection top
Rigaku Mercury2
diffractometer
2434 independent reflections
Radiation source: fine-focus sealed tube1074 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.5°
CCD profile fitting scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.96, Tmax = 1.00l = 1515
5516 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.241H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.1213P)2]
where P = (Fo2 + 2Fc2)/3
2434 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C6H6N5+·C2F3O2γ = 98.55 (3)°
Mr = 261.18V = 538.35 (19) Å3
Triclinic, P1Z = 2
a = 4.8564 (10) ÅMo Kα radiation
b = 9.5989 (19) ŵ = 0.15 mm1
c = 11.917 (2) ÅT = 298 K
α = 90.02 (3)°0.30 × 0.25 × 0.20 mm
β = 101.34 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2434 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1074 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 1.00Rint = 0.061
5516 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.241H-atom parameters constrained
S = 0.93Δρmax = 0.27 e Å3
2434 reflectionsΔρmin = 0.26 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1751 (8)0.1275 (4)0.6775 (3)0.0573 (10)
H10.00720.06670.65020.069*
C20.2548 (7)0.2409 (3)0.6141 (3)0.0513 (9)
C30.5092 (7)0.3283 (4)0.6578 (3)0.0584 (9)
H30.56950.40550.61690.070*
C40.6729 (8)0.3005 (4)0.7619 (3)0.0643 (10)
H40.84210.35930.79120.077*
C50.5847 (8)0.1867 (4)0.8213 (3)0.0652 (11)
H50.69460.16660.89080.078*
C60.0725 (7)0.2678 (4)0.5049 (3)0.0532 (9)
N10.3391 (6)0.1041 (3)0.7789 (2)0.0632 (9)
H1A0.28370.03350.81770.076*
N20.1380 (7)0.3773 (3)0.4385 (3)0.0715 (10)
N30.0790 (7)0.3696 (4)0.3500 (3)0.0745 (10)
N40.2582 (6)0.2577 (3)0.3670 (3)0.0663 (9)
H4A0.41630.23090.32020.080*
N50.1752 (6)0.1894 (3)0.4621 (2)0.0628 (9)
O10.2404 (5)0.1352 (3)0.2369 (2)0.0703 (8)
F10.2471 (6)0.2764 (3)0.0109 (2)0.1132 (11)
F20.0045 (6)0.3887 (3)0.0715 (2)0.1058 (10)
F30.4227 (5)0.3786 (3)0.1514 (2)0.1008 (10)
C70.0877 (8)0.1692 (4)0.1485 (3)0.0590 (10)
C80.1930 (8)0.3036 (4)0.0912 (3)0.0673 (11)
O20.1502 (6)0.1066 (3)0.0989 (2)0.0862 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.070 (2)0.055 (2)0.0397 (19)0.0043 (18)0.0015 (17)0.0042 (16)
C20.059 (2)0.052 (2)0.0383 (18)0.0025 (17)0.0044 (15)0.0029 (14)
C30.068 (2)0.058 (2)0.045 (2)0.0004 (18)0.0074 (17)0.0002 (15)
C40.066 (2)0.070 (3)0.048 (2)0.0051 (19)0.0014 (17)0.0073 (18)
C50.072 (2)0.071 (3)0.045 (2)0.001 (2)0.0020 (18)0.0044 (18)
C60.065 (2)0.053 (2)0.0375 (18)0.0037 (17)0.0048 (16)0.0015 (15)
N10.077 (2)0.0609 (19)0.0447 (18)0.0009 (16)0.0026 (15)0.0043 (13)
N20.080 (2)0.075 (2)0.0441 (18)0.0107 (17)0.0072 (16)0.0092 (15)
N30.083 (2)0.082 (2)0.0460 (19)0.0026 (19)0.0043 (16)0.0089 (15)
N40.0649 (19)0.077 (2)0.0476 (19)0.0049 (17)0.0008 (15)0.0014 (15)
N50.0648 (19)0.072 (2)0.0421 (17)0.0028 (16)0.0021 (14)0.0045 (14)
O10.0763 (17)0.0729 (18)0.0502 (15)0.0032 (13)0.0092 (13)0.0106 (12)
F10.149 (3)0.127 (2)0.0600 (17)0.014 (2)0.0378 (17)0.0015 (14)
F20.118 (2)0.0849 (18)0.114 (2)0.0232 (16)0.0168 (17)0.0347 (15)
F30.109 (2)0.0907 (18)0.0755 (17)0.0302 (15)0.0140 (15)0.0169 (13)
C70.069 (2)0.057 (2)0.044 (2)0.0018 (18)0.0005 (17)0.0020 (16)
C80.075 (3)0.069 (3)0.047 (2)0.005 (2)0.0023 (19)0.0037 (18)
O20.0905 (19)0.084 (2)0.0585 (17)0.0209 (16)0.0200 (14)0.0166 (14)
Geometric parameters (Å, º) top
C1—N11.349 (4)C6—N21.354 (4)
C1—C21.376 (5)N1—H1A0.8600
C1—H10.9300N2—N31.329 (4)
C2—C31.393 (4)N3—N41.321 (4)
C2—C61.470 (4)N4—N51.333 (4)
C3—C41.384 (5)N4—H4A0.8600
C3—H30.9300O1—C71.237 (4)
C4—C51.363 (5)F1—C81.328 (4)
C4—H40.9300F2—C81.336 (5)
C5—N11.337 (4)F3—C81.313 (4)
C5—H50.9300C7—O21.253 (4)
C6—N51.327 (4)C7—C81.528 (5)
N1—C1—C2120.4 (3)C5—N1—C1122.3 (3)
N1—C1—H1119.8C5—N1—H1A118.8
C2—C1—H1119.8C1—N1—H1A118.8
C1—C2—C3117.8 (3)N3—N2—C6105.9 (3)
C1—C2—C6120.2 (3)N4—N3—N2105.4 (3)
C3—C2—C6122.0 (3)N3—N4—N5114.9 (3)
C4—C3—C2120.3 (3)N3—N4—H4A122.5
C4—C3—H3119.9N5—N4—H4A122.5
C2—C3—H3119.9C6—N5—N4100.9 (3)
C5—C4—C3119.7 (3)O1—C7—O2127.7 (3)
C5—C4—H4120.2O1—C7—C8117.9 (3)
C3—C4—H4120.2O2—C7—C8114.3 (3)
N1—C5—C4119.6 (3)F3—C8—F1107.4 (3)
N1—C5—H5120.2F3—C8—F2106.4 (3)
C4—C5—H5120.2F1—C8—F2105.3 (3)
N5—C6—N2113.0 (3)F3—C8—C7114.1 (3)
N5—C6—C2123.8 (3)F1—C8—C7111.9 (3)
N2—C6—C2123.2 (3)F2—C8—C7111.3 (3)
N1—C1—C2—C30.7 (5)C2—C6—N2—N3178.0 (3)
N1—C1—C2—C6178.7 (3)C6—N2—N3—N40.5 (4)
C1—C2—C3—C40.3 (5)N2—N3—N4—N50.2 (5)
C6—C2—C3—C4179.0 (3)N2—C6—N5—N40.6 (4)
C2—C3—C4—C50.4 (6)C2—C6—N5—N4178.1 (3)
C3—C4—C5—N10.9 (6)N3—N4—N5—C60.2 (4)
C1—C2—C6—N51.4 (5)O1—C7—C8—F38.1 (5)
C3—C2—C6—N5178.0 (3)O2—C7—C8—F3171.3 (4)
C1—C2—C6—N2179.9 (3)O1—C7—C8—F1114.1 (4)
C3—C2—C6—N20.6 (6)O2—C7—C8—F166.5 (5)
C4—C5—N1—C11.2 (6)O1—C7—C8—F2128.5 (4)
C2—C1—N1—C51.1 (5)O2—C7—C8—F250.9 (5)
N5—C6—N2—N30.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.861.792.651 (4)176
N4—H4A···O1ii0.861.872.716 (4)167
N4—H4A···F3ii0.862.533.053 (4)120
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC6H6N5+·C2F3O2
Mr261.18
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)4.8564 (10), 9.5989 (19), 11.917 (2)
α, β, γ (°)90.02 (3), 101.34 (3), 98.55 (3)
V3)538.35 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.96, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
5516, 2434, 1074
Rint0.061
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.241, 0.93
No. of reflections2434
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.26

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.861.792.651 (4)176
N4—H4A···O1ii0.861.872.716 (4)167
N4—H4A···F3ii0.862.533.053 (4)120
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95–98.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, C.-M., Yu, Z., Xiong, R.-G., Liu, K. & You, X.-Z. (1999). Inorg. Chem. Commun. 2, 31–34.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712–3715.  Web of Science CSD CrossRef Google Scholar
First citationZhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118–4121.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J., Xiong, R.-G., Zuo, J.-L. & You, X.-Z. (2000). Chem. Commun. 16, 1495–1496.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds