metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1221-m1222

catena-Poly[[[bis­­(1,10-phenanthroline-κ2N,N′)manganese(II)]-μ-2,2′-di­thio­dibenzoato-κ2O,O] methanol hemisolvate monohydrate]

aZhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface & Interface Science, Henan, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: humin@zzuli.edu.cn

(Received 20 July 2009; accepted 21 August 2009; online 16 September 2009)

The title complex, {[Mn(C14H8O4S2)(C12H8N2)2]·0.5CH3OH·H2O}n, has a one-dimensional chain structure in which the MnII atom is six-coordinated by four N atoms from two 1,10-phenanthroline (phen) ligands and two O atoms from two 2,2′-dithio­dibenzoate (L) ligands. The L ligands adopt a bis­(monodentate) (syn–anti) coordination mode and bridge adjacent MnII centres, generating a chain running along [201]. Adjacent chains are linked into a two-dimensional network, parallel to (10[\overline{1}]), via inter­chain C—H⋯π and ππ stacking [centroid–centroid distance = 3.477 (1) Å] inter­actions. The structure also contains numerous hydrogen-bonding interactions, which further link the two-dimensional entities into a three-dimensional supramolecular network.

Related literature

For related literature on the preparation of functional coordination architectures, see: Robin & Fromm (2006[Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.]); Tanaka et al. (2008[Tanaka, D., Nakagawa, K., Higuchi, M., Horike, S., Kubota, Y., Kobayashi, T. C., Takata, M. & Kitagawa, S. (2008). Angew. Chem. Int. Ed. 47, 3914-3918.]). For related literature on complexes of 2,2′-dithio­dibenzoic acid, see: Hu et al. (2009[Hu, M., Ma, S.-T., Guo, L.-Q. & Fang, S.-M. (2009). Acta Cryst. E65, m538-m539.]); Humphrey et al. (2004[Humphrey, S. M., Mole, R. A., Rawson, J. M. & Wood, P. T. (2004). Dalton Trans. pp. 1670-1678.]); Li et al. (2007[Li, X.-H., Jia, S.-C. & Jalbout, A. F. (2007). Z. Kristallogr. New Cryst. Struct. 222, 117-118.]); Murugavel et al. (2001[Murugavel, R., Baheti, K. & Anantharaman, G. (2001). Inorg. Chem. 40, 6870-6878.]); Zhang et al. (2006[Zhang, L.-Y., Zhang, J.-P., Lin, Y.-Y. & Chen, X.-M. (2006). Cryst. Growth Des. 6, 1684-1689.]); Zheng et al. (2004[Zheng, S.-L., Yang, J.-M., Yu, X.-L., Chen, X.-M. & Wong, W.-T. (2004). Inorg. Chem. 43, 830-838.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C14H8O4S2)(C12H8N2)2]·0.5CH4O·H2O

  • Mr = 753.71

  • Monoclinic, P 21 /c

  • a = 12.8267 (11) Å

  • b = 18.3219 (15) Å

  • c = 16.7197 (10) Å

  • β = 119.989 (4)°

  • V = 3403.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 296 K

  • 0.21 × 0.15 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.891, Tmax = 0.930

  • 24723 measured reflections

  • 5981 independent reflections

  • 4429 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.02

  • 5981 reflections

  • 470 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O6 0.85 1.94 2.696 (10) 148
O6—H61⋯O4i 0.85 1.90 2.746 (4) 177
O6—H62⋯O1 0.85 2.43 2.873 (4) 114
C1—H1A⋯O2 0.93 2.47 3.062 (4) 122
C2—H2A⋯O4ii 0.93 2.47 3.321 (5) 152
C8—H8A⋯O5i 0.93 2.57 3.438 (13) 156
C21—H21A⋯O4iii 0.93 2.42 3.291 (5) 155
C27—H27A⋯O2 0.93 2.43 2.759 (5) 101
C30—H30A⋯S1 0.93 2.58 3.129 (3) 118
C33—H33A⋯S2 0.93 2.61 3.161 (3) 119
C36—H36A⋯O4 0.93 2.45 2.762 (4) 100
C3—H3ACg1ii 0.93 2.94 3.795 (39) 153
C6—H6ACg2iv 0.93 2.85 3.698 (27) 152
C35—H35ACg3iii 0.93 2.85 3.724 (31) 156
Symmetry codes: (i) [x-1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z-1; (iii) -x+1, -y-1, -z+1; (iv) -x-1, -y-1, -z. Cg1, Cg2 and Cg3 are the centroids of the C32–C37, C19–C23/N4 and C26–C31 rings, respectively.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Rational engineering and the preparation of functional coordination architectures with well regulated network structures has attracted increasing interest in recent years (Robin et al., 2006; Tanaka et al., 2008). Among the various ligands used in this field 2,2'-dithiodibenzoic acid (LH), a multifunctional ligand containing both carboxylic and thio groups, can potentially afford various coordination modes and diverse coordination architectures (Zhang et al., 2006; Zheng et al., 2004). Many complexes with this ligand show unique structural topologies and interesting properties (Murugavel et al., 2001; Humphrey et al., 2004; Li et al., 2007; Hu et al., 2009). In this work, we have used ligand LH to react with a MnII salt in the presence of 1,10-phenanthroline (phen) as a chelating co-ligand, to obtain the title compound, {[Mn(L)(phen)2](CH3OH)0.5(H2O)}n, a one-dimensional polymer chain.

The asymmetric unit of the title compound is composed of one MnII atom, one 2,2'-dithiodibenzoate (L) ligand, two phen ligands, half a methanol molecule, and one lattice water molecule (Fig. 1). The MnII center is six-coordinated, in an distorted octahedral geometry, by four nitrogen donors atoms from two phen ligands and two O-atoms from two L ligands. The L ligands adopt a bis(monodentate)(syn-anti) coordination mode to bridge adjacent MnII centres, generating a one-dimensional chain running along the [201] direction (Fig. 2). In addition, these chains are further arranged into a two-dimensional network, parallel to the (101) plane, by interchain ππ stacking interactions between the phenyl rings of neighbouring phen ligands, with a centroid–centroid separation of 3.477 (1) Å (Fig. 3).

The structure also contains numerous interchain C—H···π (Table 1) interactions between the pyridyl and phenyl rings of the L and phen ligands, with an edge-to-face orientation that further links the one-dimensional entities into a two- and then a three-dimensional supramolecular network (Fig. 3).

Footnote for Table 1: Cg1 is the centroid of ring (C32–C37), Cg2 is the centroid of ring (C19–C23/N4) and Cg3 is the centroid of ring (C26–C31).

Related literature top

For related literature on the preparation of functional coordination architectures, see: Robin & Fromm (2006); Tanaka et al. (2008). For related literature on complexes of 2,2'-dithiodibenzoic acid, see: Hu et al. (2009); Humphrey et al. (2004); Li et al. (2007); Murugavel et al. (2001); Zhang et al. (2006); Zheng et al. (2004). Cg1, Cg2 and Cg3 are the centroids of the C32–C37, C19–C23/N4 and C26–C31 rings, respectively.

Experimental top

Caution: Perchlorate salts are dangerous, only small quantites should be used. A solution of 1,10-phenanthroline (phen) (0.05 mmol) and 2,2'-dithiodibenzoic acid (L) (0.05 mmol) in CH3OH (10 ml) in the presence of excess 2,6-dimethylpyridine (ca 0.05 ml for adjusting the pH value of the reaction system to basic conditions) was carefully layered on top of an aqueous solution (15 ml) of Mn(ClO4)2 (0.1 mmol) in a test tube. Yellow single crystals, suitable for X-ray analysis, appeared at the tube wall after ca. one month at rt (Yield ~30% based on L). Elemental analysis calculated for (C38.5H28MnN4O5.5S2): H 3.74 C 61.35 N 7.43%; found: H 3.67, C 61.72, N 7.59%. IR (KBr pellet, cm-1): 3417s(br), 3055w, 1600vs, 1516w, 1423m, 1369vs, 1342w, 1276w, 1219w, 1143m, 1099m, 1034m, 957w, 851s, 813w, 781w, 757s, 726s, 699m, 651m, 635w, 559w, 495w, 467w, 416w.

Refinement top

The methanol and water H-atoms were refined with the O-H distances fixed at 0-H = 0.85 Å and Uiso(H) = 1.2Ueq(parent O-atom). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 - 0.96 Å with Uiso(H) = 1.2 or 1.5 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the one-dimensional chain of the title compound running along the [201] direction.
[Figure 3] Fig. 3. A view, parallel to the (201) plane, of the two-dimensional network of the title compound formed by intermolecular ππ stacking interactions (fine dashed lines) involving the phenyl rings of neighbouring phen ligands.
catena-Poly[[[bis(1,10-phenanthroline- κ2N,N')manganese(II)]-µ-2,2'-dithiodibenzoato- κ2O,O] methanol hemisolvate monohydrate] top
Crystal data top
[Mn(C14H8O4S2)(C12H8N2)2]·0.5CH4O·H2OF(000) = 1552
Mr = 753.71Dx = 1.471 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4825 reflections
a = 12.8267 (11) Åθ = 2.5–22.6°
b = 18.3219 (15) ŵ = 0.56 mm1
c = 16.7197 (10) ÅT = 296 K
β = 119.989 (4)°Block, yellow
V = 3403.2 (5) Å30.21 × 0.15 × 0.13 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5981 independent reflections
Radiation source: fine-focus sealed tube4429 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1515
Tmin = 0.891, Tmax = 0.930k = 2121
24723 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.049P)2 + 1.4453P]
where P = (Fo2 + 2Fc2)/3
5981 reflections(Δ/σ)max < 0.001
470 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Mn(C14H8O4S2)(C12H8N2)2]·0.5CH4O·H2OV = 3403.2 (5) Å3
Mr = 753.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8267 (11) ŵ = 0.56 mm1
b = 18.3219 (15) ÅT = 296 K
c = 16.7197 (10) Å0.21 × 0.15 × 0.13 mm
β = 119.989 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5981 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4429 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.930Rint = 0.036
24723 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.02Δρmax = 0.44 e Å3
5981 reflectionsΔρmin = 0.22 e Å3
470 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.17651 (4)0.34583 (2)0.22410 (3)0.0455 (1)
S10.49716 (7)0.28167 (4)0.58988 (5)0.0579 (3)
S20.31804 (6)0.29936 (4)0.49668 (5)0.0535 (3)
O10.08644 (17)0.31820 (12)0.38122 (14)0.0644 (8)
O20.01362 (17)0.31846 (12)0.22892 (14)0.0646 (8)
O30.73250 (18)0.25437 (11)0.69145 (16)0.0730 (8)
O40.8689 (2)0.32620 (13)0.79592 (17)0.0849 (9)
N10.2507 (2)0.37311 (13)0.07076 (15)0.0498 (8)
N20.38325 (19)0.39268 (12)0.15489 (15)0.0485 (8)
N30.1817 (2)0.36620 (14)0.35626 (16)0.0557 (8)
N40.1148 (2)0.46339 (13)0.26842 (18)0.0584 (8)
C10.1851 (3)0.36745 (17)0.0302 (2)0.0623 (11)
C20.2331 (3)0.3758 (2)0.0646 (2)0.0748 (16)
C30.3531 (4)0.38746 (18)0.1191 (2)0.0738 (13)
C40.4252 (3)0.39356 (16)0.07957 (19)0.0581 (10)
C50.5516 (3)0.40680 (18)0.1320 (2)0.0743 (11)
C60.6177 (3)0.41452 (18)0.0915 (2)0.0753 (11)
C70.5644 (3)0.41030 (15)0.0066 (2)0.0579 (10)
C80.6300 (3)0.42031 (17)0.0518 (3)0.0723 (13)
C90.5729 (3)0.41726 (18)0.1452 (3)0.0721 (14)
C100.4496 (3)0.40331 (17)0.1942 (2)0.0621 (11)
C110.4404 (2)0.39659 (14)0.06130 (19)0.0471 (9)
C120.3696 (2)0.38726 (13)0.01737 (18)0.0457 (9)
C130.2132 (3)0.3183 (2)0.4003 (2)0.0697 (11)
C140.2331 (3)0.3376 (3)0.4723 (2)0.0876 (18)
C150.2183 (3)0.4079 (3)0.5000 (3)0.0922 (16)
C160.1834 (3)0.4606 (2)0.4572 (2)0.0744 (13)
C170.1619 (3)0.5365 (3)0.4840 (3)0.0984 (18)
C180.1265 (4)0.5835 (3)0.4415 (3)0.1012 (18)
C190.1097 (3)0.56169 (19)0.3673 (3)0.0795 (14)
C200.0700 (3)0.6082 (2)0.3213 (4)0.0980 (16)
C210.0507 (3)0.5831 (2)0.2538 (3)0.0930 (18)
C220.0754 (3)0.50955 (18)0.2286 (3)0.0729 (14)
C230.1305 (2)0.48828 (16)0.3376 (2)0.0596 (10)
C240.1663 (2)0.43674 (18)0.3844 (2)0.0578 (10)
C250.0819 (2)0.31284 (14)0.3061 (2)0.0469 (9)
C260.1968 (2)0.29911 (13)0.30474 (18)0.0426 (8)
C270.1924 (3)0.29218 (15)0.2204 (2)0.0541 (10)
C280.2948 (3)0.28131 (18)0.2144 (2)0.0653 (12)
C290.4040 (3)0.27815 (18)0.2940 (2)0.0683 (14)
C300.4127 (3)0.28476 (16)0.3790 (2)0.0573 (11)
C310.3091 (2)0.29420 (13)0.38594 (19)0.0452 (9)
C320.5624 (2)0.37108 (14)0.62171 (18)0.0481 (9)
C330.4918 (3)0.43378 (17)0.5900 (2)0.0722 (11)
C340.5419 (3)0.50228 (18)0.6173 (3)0.0796 (14)
C350.6624 (3)0.50987 (17)0.6763 (2)0.0681 (11)
C360.7333 (3)0.44861 (16)0.7096 (2)0.0569 (11)
C370.6853 (2)0.37882 (14)0.68310 (17)0.0439 (9)
C380.7696 (2)0.31497 (16)0.7255 (2)0.0506 (10)
O50.0758 (8)0.0482 (5)0.4927 (9)0.193 (6)0.500
C390.0897 (12)0.0435 (7)0.5697 (8)0.164 (7)0.500
O60.0555 (3)0.1944 (2)0.4728 (2)0.1689 (18)
H1A0.103400.357500.066600.0750*
H2A0.183500.373400.090400.0900*
H3A0.386800.391300.182700.0890*
H5A0.588700.410100.196000.0890*
H6A0.700000.422800.127600.0900*
H8A0.712400.429000.018000.0870*
H9A0.615400.424400.176300.0870*
H10A0.411700.401400.258200.0750*
H13A0.222500.269700.382100.0840*
H14A0.256100.302600.500700.1050*
H15A0.231300.421500.547900.1110*
H17A0.172900.552900.531900.1190*
H18A0.112400.631800.461000.1220*
H20A0.056700.657200.337600.1170*
H21A0.022000.613800.224900.1120*
H22A0.063500.492300.181500.0880*
H27A0.118200.294900.166300.0650*
H28A0.289700.276200.157200.0780*
H29A0.473400.271400.290500.0820*
H30A0.487900.283000.432200.0690*
H33A0.409400.429400.549800.0870*
H34A0.493200.543500.595300.0950*
H35A0.696400.556100.693900.0810*
H36A0.815300.453900.750700.0680*
H50.090400.091000.481200.2320*0.500
H39A0.032400.009600.569300.1960*0.500
H39B0.169800.026600.611500.1960*0.500
H39C0.078100.090500.589300.1960*0.500
H610.000900.188600.417400.2030*
H620.119500.211000.476100.2030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0396 (2)0.0502 (3)0.0402 (2)0.0029 (2)0.0151 (2)0.0016 (2)
S10.0464 (4)0.0476 (4)0.0551 (5)0.0001 (3)0.0070 (4)0.0044 (3)
S20.0406 (4)0.0624 (5)0.0476 (4)0.0012 (3)0.0146 (3)0.0014 (3)
O10.0431 (12)0.0929 (16)0.0549 (13)0.0011 (11)0.0228 (10)0.0116 (11)
O20.0371 (11)0.0890 (15)0.0533 (13)0.0019 (10)0.0118 (10)0.0042 (11)
O30.0451 (12)0.0488 (12)0.0925 (17)0.0049 (10)0.0100 (12)0.0039 (11)
O40.0589 (15)0.0882 (17)0.0722 (16)0.0074 (13)0.0062 (13)0.0006 (13)
N10.0428 (13)0.0584 (14)0.0457 (13)0.0035 (11)0.0202 (11)0.0033 (11)
N20.0422 (13)0.0495 (13)0.0518 (14)0.0015 (10)0.0219 (12)0.0046 (11)
N30.0474 (14)0.0647 (16)0.0460 (14)0.0040 (12)0.0167 (12)0.0039 (12)
N40.0401 (13)0.0572 (15)0.0635 (16)0.0029 (11)0.0152 (12)0.0023 (13)
C10.0587 (19)0.078 (2)0.0518 (18)0.0071 (16)0.0289 (16)0.0027 (15)
C20.084 (3)0.091 (3)0.060 (2)0.008 (2)0.044 (2)0.0003 (19)
C30.094 (3)0.077 (2)0.0452 (18)0.008 (2)0.031 (2)0.0023 (16)
C40.065 (2)0.0525 (17)0.0433 (16)0.0029 (15)0.0169 (16)0.0013 (13)
C50.068 (2)0.070 (2)0.0468 (18)0.0133 (18)0.0000 (18)0.0030 (16)
C60.0478 (19)0.073 (2)0.070 (2)0.0080 (16)0.0030 (18)0.0004 (18)
C70.0417 (16)0.0490 (17)0.067 (2)0.0033 (13)0.0152 (16)0.0027 (14)
C80.0407 (18)0.068 (2)0.095 (3)0.0079 (15)0.0240 (19)0.0082 (19)
C90.056 (2)0.075 (2)0.097 (3)0.0094 (17)0.047 (2)0.011 (2)
C100.0540 (19)0.070 (2)0.068 (2)0.0034 (15)0.0347 (17)0.0078 (16)
C110.0413 (15)0.0390 (15)0.0512 (17)0.0002 (11)0.0157 (13)0.0030 (12)
C120.0437 (16)0.0385 (14)0.0449 (15)0.0005 (12)0.0147 (13)0.0001 (12)
C130.069 (2)0.085 (2)0.0546 (19)0.0061 (19)0.0305 (18)0.0088 (17)
C140.073 (3)0.132 (4)0.058 (2)0.011 (2)0.033 (2)0.013 (2)
C150.069 (2)0.150 (4)0.054 (2)0.024 (3)0.028 (2)0.011 (3)
C160.0443 (18)0.104 (3)0.055 (2)0.0211 (18)0.0098 (16)0.022 (2)
C170.056 (2)0.126 (4)0.082 (3)0.025 (2)0.011 (2)0.050 (3)
C180.059 (2)0.089 (3)0.111 (4)0.015 (2)0.009 (2)0.049 (3)
C190.0430 (19)0.060 (2)0.092 (3)0.0111 (16)0.0010 (18)0.018 (2)
C200.052 (2)0.054 (2)0.131 (4)0.0039 (18)0.003 (2)0.005 (2)
C210.051 (2)0.067 (3)0.125 (4)0.0073 (18)0.017 (2)0.019 (2)
C220.0478 (19)0.065 (2)0.090 (3)0.0061 (16)0.0225 (18)0.0116 (18)
C230.0324 (15)0.0571 (19)0.063 (2)0.0049 (13)0.0042 (14)0.0131 (15)
C240.0370 (15)0.072 (2)0.0475 (17)0.0069 (14)0.0085 (13)0.0145 (15)
C250.0372 (15)0.0441 (15)0.0525 (18)0.0045 (12)0.0172 (14)0.0040 (13)
C260.0384 (14)0.0359 (14)0.0476 (16)0.0004 (11)0.0170 (13)0.0023 (11)
C270.0498 (17)0.0548 (17)0.0514 (17)0.0032 (13)0.0206 (15)0.0043 (13)
C280.070 (2)0.072 (2)0.064 (2)0.0009 (17)0.0411 (19)0.0058 (16)
C290.059 (2)0.077 (2)0.083 (3)0.0107 (17)0.046 (2)0.0040 (18)
C300.0418 (17)0.0591 (18)0.065 (2)0.0078 (14)0.0222 (15)0.0044 (15)
C310.0406 (15)0.0368 (14)0.0529 (16)0.0014 (11)0.0195 (13)0.0011 (12)
C320.0502 (17)0.0451 (15)0.0404 (15)0.0015 (13)0.0162 (13)0.0009 (12)
C330.0515 (19)0.0539 (19)0.077 (2)0.0056 (15)0.0064 (17)0.0032 (16)
C340.072 (2)0.0468 (19)0.095 (3)0.0109 (17)0.023 (2)0.0010 (18)
C350.079 (2)0.0455 (18)0.078 (2)0.0070 (16)0.038 (2)0.0061 (16)
C360.0528 (18)0.0576 (18)0.0582 (19)0.0072 (15)0.0261 (15)0.0029 (15)
C370.0466 (16)0.0476 (15)0.0393 (14)0.0001 (12)0.0229 (13)0.0028 (12)
C380.0372 (16)0.0608 (19)0.0486 (17)0.0011 (13)0.0176 (14)0.0057 (14)
O50.156 (8)0.119 (6)0.362 (16)0.035 (5)0.172 (11)0.060 (8)
C390.199 (13)0.188 (13)0.170 (11)0.127 (10)0.142 (10)0.112 (9)
O60.121 (3)0.224 (4)0.089 (2)0.080 (3)0.002 (2)0.051 (2)
Geometric parameters (Å, º) top
Mn1—O22.111 (3)C19—C201.403 (6)
Mn1—N12.300 (2)C20—C211.351 (7)
Mn1—N22.458 (3)C21—C221.400 (5)
Mn1—N32.275 (3)C23—C241.440 (4)
Mn1—N42.287 (2)C25—C261.506 (4)
Mn1—O3i2.096 (2)C26—C311.404 (4)
S1—S22.0574 (12)C26—C271.389 (4)
S1—C321.795 (3)C27—C281.381 (6)
S2—C311.800 (3)C28—C291.369 (5)
O1—C251.232 (4)C29—C301.374 (5)
O2—C251.264 (4)C30—C311.401 (5)
O3—C381.230 (4)C32—C371.393 (4)
O4—C381.246 (4)C32—C331.393 (4)
O5—C391.211 (18)C33—C341.380 (5)
O5—H50.8500C34—C351.363 (6)
O6—H610.8500C35—C361.375 (5)
O6—H620.8500C36—C371.392 (4)
N1—C11.323 (5)C37—C381.508 (4)
N1—C121.352 (4)C1—H1A0.9300
N2—C111.358 (4)C2—H2A0.9300
N2—C101.324 (5)C3—H3A0.9300
N3—C131.332 (5)C5—H5A0.9300
N3—C241.356 (4)C6—H6A0.9300
N4—C221.323 (5)C8—H8A0.9300
N4—C231.349 (4)C9—H9A0.9300
C1—C21.393 (4)C10—H10A0.9300
C2—C31.358 (6)C13—H13A0.9300
C3—C41.384 (6)C14—H14A0.9300
C4—C51.427 (5)C15—H15A0.9300
C4—C121.412 (4)C17—H17A0.9300
C5—C61.331 (6)C18—H18A0.9300
C6—C71.429 (4)C20—H20A0.9300
C7—C111.405 (5)C21—H21A0.9300
C7—C81.396 (6)C22—H22A0.9300
C8—C91.355 (6)C27—H27A0.9300
C9—C101.394 (6)C28—H28A0.9300
C11—C121.435 (4)C29—H29A0.9300
C13—C141.395 (5)C30—H30A0.9300
C14—C151.350 (8)C33—H33A0.9300
C15—C161.402 (6)C34—H34A0.9300
C16—C171.445 (7)C35—H35A0.9300
C16—C241.410 (5)C36—H36A0.9300
C17—C181.332 (7)C39—H39C0.9600
C18—C191.419 (7)C39—H39A0.9600
C19—C231.412 (5)C39—H39B0.9600
O2—Mn1—N186.81 (9)C25—C26—C27119.2 (3)
O2—Mn1—N2156.27 (8)C25—C26—C31122.3 (2)
O2—Mn1—N3120.73 (9)C26—C27—C28122.0 (3)
O2—Mn1—N492.05 (10)C27—C28—C29118.9 (3)
O2—Mn1—O3i102.33 (9)C28—C29—C30121.1 (4)
N1—Mn1—N269.60 (9)C29—C30—C31120.4 (3)
N1—Mn1—N3148.28 (10)S2—C31—C26119.9 (2)
N1—Mn1—N492.29 (9)S2—C31—C30121.1 (2)
O3i—Mn1—N191.93 (9)C26—C31—C30119.0 (3)
N2—Mn1—N381.46 (9)S1—C32—C37120.0 (2)
N2—Mn1—N486.61 (9)C33—C32—C37118.5 (3)
O3i—Mn1—N281.61 (9)S1—C32—C33121.5 (2)
N3—Mn1—N472.79 (10)C32—C33—C34121.2 (3)
O3i—Mn1—N396.54 (10)C33—C34—C35120.3 (3)
O3i—Mn1—N4165.22 (11)C34—C35—C36119.4 (3)
S2—S1—C32105.04 (10)C35—C36—C37121.5 (3)
S1—S2—C31104.11 (11)C36—C37—C38117.6 (3)
Mn1—O2—C25119.6 (2)C32—C37—C36119.1 (3)
Mn1ii—O3—C38129.3 (2)C32—C37—C38123.3 (2)
C39—O5—H5112.00O3—C38—C37117.5 (3)
H61—O6—H62113.00O3—C38—O4124.3 (3)
Mn1—N1—C12118.6 (2)O4—C38—C37118.1 (3)
C1—N1—C12118.2 (2)C2—C1—H1A119.00
Mn1—N1—C1122.7 (2)N1—C1—H1A119.00
Mn1—N2—C11113.26 (19)C1—C2—H2A120.00
C10—N2—C11117.0 (3)C3—C2—H2A120.00
Mn1—N2—C10128.87 (19)C4—C3—H3A120.00
C13—N3—C24117.9 (3)C2—C3—H3A120.00
Mn1—N3—C13126.4 (2)C4—C5—H5A119.00
Mn1—N3—C24115.07 (19)C6—C5—H5A119.00
C22—N4—C23118.3 (3)C5—C6—H6A119.00
Mn1—N4—C22126.6 (2)C7—C6—H6A119.00
Mn1—N4—C23114.9 (2)C7—C8—H8A120.00
N1—C1—C2122.9 (3)C9—C8—H8A120.00
C1—C2—C3119.3 (4)C10—C9—H9A120.00
C2—C3—C4119.8 (3)C8—C9—H9A121.00
C3—C4—C12117.8 (3)N2—C10—H10A118.00
C3—C4—C5123.1 (3)C9—C10—H10A118.00
C5—C4—C12119.1 (3)N3—C13—H13A118.00
C4—C5—C6121.5 (3)C14—C13—H13A118.00
C5—C6—C7121.1 (3)C15—C14—H14A121.00
C6—C7—C8122.8 (4)C13—C14—H14A121.00
C6—C7—C11119.5 (3)C14—C15—H15A120.00
C8—C7—C11117.6 (3)C16—C15—H15A120.00
C7—C8—C9119.6 (4)C16—C17—H17A119.00
C8—C9—C10119.1 (4)C18—C17—H17A119.00
N2—C10—C9123.9 (3)C19—C18—H18A119.00
C7—C11—C12119.2 (3)C17—C18—H18A119.00
N2—C11—C7122.9 (3)C19—C20—H20A119.00
N2—C11—C12117.9 (3)C21—C20—H20A119.00
C4—C12—C11119.5 (3)C22—C21—H21A121.00
N1—C12—C4122.0 (3)C20—C21—H21A121.00
N1—C12—C11118.6 (2)N4—C22—H22A118.00
N3—C13—C14123.2 (4)C21—C22—H22A118.00
C13—C14—C15118.9 (4)C26—C27—H27A119.00
C14—C15—C16120.5 (4)C28—C27—H27A119.00
C17—C16—C24118.6 (3)C29—C28—H28A120.00
C15—C16—C17124.4 (4)C27—C28—H28A121.00
C15—C16—C24117.0 (3)C28—C29—H29A119.00
C16—C17—C18121.3 (4)C30—C29—H29A119.00
C17—C18—C19121.7 (5)C31—C30—H30A120.00
C20—C19—C23116.3 (4)C29—C30—H30A120.00
C18—C19—C20124.3 (4)C34—C33—H33A119.00
C18—C19—C23119.4 (4)C32—C33—H33A119.00
C19—C20—C21121.3 (4)C33—C34—H34A120.00
C20—C21—C22118.1 (4)C35—C34—H34A120.00
N4—C22—C21123.4 (4)C34—C35—H35A120.00
N4—C23—C24118.0 (3)C36—C35—H35A120.00
N4—C23—C19122.7 (3)C37—C36—H36A119.00
C19—C23—C24119.3 (3)C35—C36—H36A119.00
N3—C24—C23117.9 (3)O5—C39—H39B109.00
C16—C24—C23119.7 (3)O5—C39—H39C109.00
N3—C24—C16122.5 (3)O5—C39—H39A109.00
O2—C25—C26117.1 (3)H39A—C39—H39C110.00
O1—C25—O2124.2 (3)H39B—C39—H39C109.00
O1—C25—C26118.7 (3)H39A—C39—H39B109.00
C27—C26—C31118.5 (3)
N1—Mn1—O2—C25163.8 (2)N1—C1—C2—C32.7 (5)
N2—Mn1—O2—C25157.9 (2)C1—C2—C3—C42.4 (5)
N3—Mn1—O2—C250.5 (2)C2—C3—C4—C5179.1 (3)
N4—Mn1—O2—C2571.6 (2)C2—C3—C4—C120.0 (5)
O3i—Mn1—O2—C25104.9 (2)C5—C4—C12—C112.0 (4)
O2—Mn1—N1—C11.1 (2)C3—C4—C5—C6178.0 (3)
O2—Mn1—N1—C12171.0 (2)C3—C4—C12—C11177.2 (3)
N2—Mn1—N1—C1176.4 (3)C5—C4—C12—N1178.5 (3)
N2—Mn1—N1—C1211.53 (18)C12—C4—C5—C61.1 (5)
N3—Mn1—N1—C1151.0 (2)C3—C4—C12—N12.4 (4)
N3—Mn1—N1—C1237.0 (3)C4—C5—C6—C70.4 (5)
N4—Mn1—N1—C190.9 (2)C5—C6—C7—C111.0 (5)
N4—Mn1—N1—C1297.1 (2)C5—C6—C7—C8178.0 (3)
O3i—Mn1—N1—C1103.3 (2)C6—C7—C8—C9178.4 (3)
O3i—Mn1—N1—C1268.8 (2)C8—C7—C11—C12178.9 (3)
O2—Mn1—N2—C10173.1 (2)C6—C7—C11—N2179.2 (3)
O2—Mn1—N2—C1118.3 (3)C8—C7—C11—N20.1 (4)
N1—Mn1—N2—C10179.4 (3)C6—C7—C11—C120.2 (4)
N1—Mn1—N2—C1111.92 (17)C11—C7—C8—C90.6 (4)
N3—Mn1—N2—C1012.6 (2)C7—C8—C9—C100.7 (5)
N3—Mn1—N2—C11178.72 (19)C8—C9—C10—N20.0 (5)
N4—Mn1—N2—C1085.7 (3)C7—C11—C12—C41.3 (4)
N4—Mn1—N2—C11105.63 (19)C7—C11—C12—N1179.1 (2)
O3i—Mn1—N2—C1085.3 (3)N2—C11—C12—C4177.8 (2)
O3i—Mn1—N2—C1183.31 (19)N2—C11—C12—N11.8 (4)
O2—Mn1—N3—C1397.3 (3)N3—C13—C14—C151.0 (6)
O2—Mn1—N3—C2492.0 (2)C13—C14—C15—C160.1 (6)
N1—Mn1—N3—C13115.8 (3)C14—C15—C16—C17178.1 (4)
N1—Mn1—N3—C2455.0 (3)C14—C15—C16—C240.7 (6)
N2—Mn1—N3—C1391.8 (3)C15—C16—C17—C18178.6 (4)
N2—Mn1—N3—C2479.0 (2)C15—C16—C24—N30.4 (5)
N4—Mn1—N3—C13179.2 (3)C15—C16—C24—C23180.0 (3)
N4—Mn1—N3—C2410.1 (2)C17—C16—C24—C231.2 (5)
O3i—Mn1—N3—C1311.3 (3)C17—C16—C24—N3178.4 (3)
O3i—Mn1—N3—C24159.5 (2)C24—C16—C17—C180.1 (6)
O2—Mn1—N4—C2254.1 (3)C16—C17—C18—C190.8 (7)
O2—Mn1—N4—C23131.6 (2)C17—C18—C19—C20178.5 (5)
N1—Mn1—N4—C2232.8 (3)C17—C18—C19—C230.2 (7)
N1—Mn1—N4—C23141.5 (2)C18—C19—C20—C21177.0 (5)
N2—Mn1—N4—C22102.2 (3)C18—C19—C23—N4179.1 (4)
N2—Mn1—N4—C2372.1 (2)C23—C19—C20—C211.3 (7)
N3—Mn1—N4—C22175.7 (3)C20—C19—C23—C24177.3 (4)
N3—Mn1—N4—C2310.0 (2)C18—C19—C23—C241.1 (6)
O2—Mn1—O3i—C38i47.1 (3)C20—C19—C23—N40.7 (6)
N1—Mn1—O3i—C38i134.3 (3)C19—C20—C21—C222.1 (7)
N2—Mn1—O3i—C38i156.7 (3)C20—C21—C22—N41.1 (7)
N3—Mn1—O3i—C38i76.4 (3)C19—C23—C24—N3177.9 (3)
C32—S1—S2—C3194.30 (13)C19—C23—C24—C161.8 (5)
S2—S1—C32—C37178.4 (2)N4—C23—C24—C16179.9 (3)
S2—S1—C32—C335.0 (3)N4—C23—C24—N30.2 (4)
S1—S2—C31—C26175.86 (18)O1—C25—C26—C311.8 (4)
S1—S2—C31—C303.7 (2)O2—C25—C26—C271.0 (4)
Mn1—O2—C25—C26175.25 (16)O2—C25—C26—C31177.9 (2)
Mn1—O2—C25—O14.4 (4)O1—C25—C26—C27179.3 (3)
Mn1ii—O3—C38—C37175.79 (19)C25—C26—C31—S23.5 (3)
Mn1ii—O3—C38—O48.9 (5)C25—C26—C31—C30177.0 (2)
C1—N1—C12—C42.2 (4)C31—C26—C27—C280.6 (4)
C12—N1—C1—C20.4 (4)C25—C26—C27—C28178.4 (3)
Mn1—N1—C12—C4170.3 (2)C27—C26—C31—S2177.6 (2)
Mn1—N1—C12—C1110.2 (3)C27—C26—C31—C301.9 (4)
C1—N1—C12—C11177.4 (3)C26—C27—C28—C290.8 (5)
Mn1—N1—C1—C2172.5 (2)C27—C28—C29—C300.8 (5)
Mn1—N2—C11—C1211.6 (3)C28—C29—C30—C310.7 (5)
Mn1—N2—C10—C9167.6 (2)C29—C30—C31—C262.0 (4)
C11—N2—C10—C90.7 (4)C29—C30—C31—S2177.5 (2)
C10—N2—C11—C12178.3 (2)S1—C32—C37—C36177.6 (2)
Mn1—N2—C11—C7169.3 (2)S1—C32—C37—C380.2 (4)
C10—N2—C11—C70.8 (4)C33—C32—C37—C360.8 (4)
Mn1—N3—C24—C16171.0 (3)C33—C32—C37—C38177.0 (3)
C13—N3—C24—C23179.1 (3)C37—C32—C33—C341.0 (5)
Mn1—N3—C24—C239.3 (3)S1—C32—C33—C34177.7 (3)
Mn1—N3—C13—C14169.3 (3)C32—C33—C34—C350.0 (6)
C13—N3—C24—C160.6 (5)C33—C34—C35—C361.1 (6)
C24—N3—C13—C141.3 (5)C34—C35—C36—C371.2 (5)
C22—N4—C23—C24176.3 (3)C35—C36—C37—C38178.2 (3)
Mn1—N4—C23—C19173.1 (3)C35—C36—C37—C320.3 (5)
Mn1—N4—C22—C21173.3 (3)C32—C37—C38—O313.8 (4)
Mn1—N4—C23—C248.9 (4)C36—C37—C38—O416.1 (4)
C23—N4—C22—C210.9 (6)C32—C37—C38—O4161.8 (3)
C22—N4—C23—C191.7 (5)C36—C37—C38—O3168.4 (3)
Symmetry codes: (i) x1, y1/2, z1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O60.851.942.696 (10)148
O6—H61···O4i0.851.902.746 (4)177
O6—H62···O10.852.432.873 (4)114
C1—H1A···O20.932.473.062 (4)122
C2—H2A···O4iii0.932.473.321 (5)152
C8—H8A···O5i0.932.573.438 (13)156
C21—H21A···O4iv0.932.423.291 (5)155
C27—H27A···O20.932.432.759 (5)101
C30—H30A···S10.932.583.129 (3)118
C33—H33A···S20.932.613.161 (3)119
C36—H36A···O40.932.452.762 (4)100
C3—H3A···Cg1iii0.932.943.80 (4)153
C6—H6A···Cg2v0.932.853.70 (3)152
C35—H35A···Cg3iv0.932.853.72 (3)156
Symmetry codes: (i) x1, y1/2, z1/2; (iii) x1, y, z1; (iv) x+1, y1, z+1; (v) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Mn(C14H8O4S2)(C12H8N2)2]·0.5CH4O·H2O
Mr753.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.8267 (11), 18.3219 (15), 16.7197 (10)
β (°) 119.989 (4)
V3)3403.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.21 × 0.15 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.891, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
24723, 5981, 4429
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.02
No. of reflections5981
No. of parameters470
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O60.851.942.696 (10)148
O6—H61···O4i0.851.902.746 (4)177
O6—H62···O10.852.432.873 (4)114
C1—H1A···O20.932.473.062 (4)122
C2—H2A···O4ii0.932.473.321 (5)152
C8—H8A···O5i0.932.573.438 (13)156
C21—H21A···O4iii0.932.423.291 (5)155
C27—H27A···O20.932.432.759 (5)101
C30—H30A···S10.932.583.129 (3)118
C33—H33A···S20.932.613.161 (3)119
C36—H36A···O40.932.452.762 (4)100
C3—H3A···Cg1ii0.932.943.795 (39)153
C6—H6A···Cg2iv0.932.853.698 (27)152
C35—H35A···Cg3iii0.932.853.724 (31)156
Symmetry codes: (i) x1, y1/2, z1/2; (ii) x1, y, z1; (iii) x+1, y1, z+1; (iv) x1, y1, z.
 

Acknowledgements

This work was supported by the National Natural Science Funds of China (grant No. 20771095) and the Natural Science Funds of Henan Province (grant No. 0611022700). We also thank Dr Chun-Sen Liu for his helpful discussions and valuable suggestions.

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, M., Ma, S.-T., Guo, L.-Q. & Fang, S.-M. (2009). Acta Cryst. E65, m538–m539.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHumphrey, S. M., Mole, R. A., Rawson, J. M. & Wood, P. T. (2004). Dalton Trans. pp. 1670–1678.  Web of Science CSD CrossRef PubMed Google Scholar
First citationLi, X.-H., Jia, S.-C. & Jalbout, A. F. (2007). Z. Kristallogr. New Cryst. Struct. 222, 117–118.  CAS Google Scholar
First citationMurugavel, R., Baheti, K. & Anantharaman, G. (2001). Inorg. Chem. 40, 6870–6878.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRobin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, D., Nakagawa, K., Higuchi, M., Horike, S., Kubota, Y., Kobayashi, T. C., Takata, M. & Kitagawa, S. (2008). Angew. Chem. Int. Ed. 47, 3914–3918.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, L.-Y., Zhang, J.-P., Lin, Y.-Y. & Chen, X.-M. (2006). Cryst. Growth Des. 6, 1684–1689.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, S.-L., Yang, J.-M., Yu, X.-L., Chen, X.-M. & Wong, W.-T. (2004). Inorg. Chem. 43, 830–838.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1221-m1222
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds