organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Chloro­phen­yl)-5-phenyl­isoxazole

aDepartment of Physics, SV University, Tirupati 517502, India, and bDepartment of Physics, Yangon University, Myanmar
*Correspondence e-mail: Thanzawoo06@gmail.com

(Received 5 August 2009; accepted 26 August 2009; online 5 September 2009)

The title compound, C15H10ClNO, is a functionalized isoxazole with a chloro­phenyl and a phenyl substitutent. The mean plane of the isoxazole ring is inclined to those of the two benzene ring mean planes by 38.32 (16) and 43.91 (18)°.

Related literature

For the chemistry and biological properties of isoxazoles, see: Bruno et al. (2004[Bruno, G., Rotondo, A., Grassi, G., Foti, F., Risitano, F. & Nicoló, F. (2004). Acta Cryst. C60, o496-o497.]); Foti et al. (2004[Foti, F., Grassi, G., Risitano, F., Rotondo, E. & Zona, D. (2004). Synlett, pp. 1577-1578.]); He et al. (2000[He, H.-W., Li, M.-Q. & Huang, G.-L. (2000). Pesticides, 8, 4-7.]); Lakhvich et al. (1989[Lakhvich, F. A., Koroleva, E. V. & Akhrem, A. A. (1989). Chem. Heterocycl. Compd, 25, 359-375.]); Lin et al. (1997[Lin, S. T., Kuo, S. H. & Yang, F. M. (1997). J. Org. Chem. 62, 5229-5231.]); Makarov et al. (2005[Makarov, V. A., Riabova, O. B., Granik, V. G., Wutzler, P. & Schmidtke, M. (2005). J. Antimicrob. Chemother. 55, 483-488.]); Shipman (1995[Shipman, M. (1995). Contemp. Org. Synth. 2, 1-17.]); Zhong et al. (2005[Zhong, B., Li, Z.-M. & Song, H.-B. (2005). Acta Cryst. E61, o2621-o2622.]). For related structures, see: Chang (2007[Chang, X.-H. (2007). Acta Cryst. E63, o3074.]); Tang et al. (2006[Tang, L.-D., Zhang, D.-T., Sun, F.-G., Duan, G.-Y. & Wang, J.-W. (2006). Acta Cryst. E62, o1298-o1299.]); Zhang et al. (2006[Zhang, D.-T., Ma, Y. & Shi, N.-Q. (2006). Acta Cryst. E62, o5213-o5214.]). For the synthesis, see: Subba Raju & Rao (1987[Subba Raju, G. V. & Rao, K. S. (1987). Curr. Sci. 56, 1280-1281.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10ClNO

  • Mr = 255.69

  • Monoclinic, P 21 /c

  • a = 6.554 (2) Å

  • b = 25.966 (2) Å

  • c = 7.4721 (19) Å

  • β = 106.171 (3)°

  • V = 1221.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 295 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.928, Tmax = 0.952

  • 2820 measured reflections

  • 2132 independent reflections

  • 1851 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.197

  • S = 1.15

  • 2132 reflections

  • 204 parameters

  • All H-atom parameters refined

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Isoxazoles are often used as pharmacophores in medicinal chemistry (Makarov et al., 2005). They are also important intermediates in the synthesis of many complex natural products (Lakhvich et al., 1989; Shipman, 1995). Recent synthetic efforts have established the importance of biologically active heterocyclic compounds (Foti et al., 2004). Of particular importance are the derivatives of isoxazoles representing one of the most active classes of compounds widely used in agrochemicals and pharmaceuticals (He et al., 2000). Such compounds have been studied from a synthetic (Bruno et al., 2004) and also from a structural viewpoint (Zhong et al., 2005). Isoxazole derivatives exhibit anticonvulsant, antibacterial, antiasthmatic, and other pharmacological activities (Lin et al., 1997). In this article, we report on the crystal structure of the title compound, 4-(4-chloro phenyl)-5-phenylisoxazole.

The molecular structute of the title compound is illustrated in Fig. 1 and the geometrical parameters are avilable in the archived CIF. The title compound is a functionalized isoxazole with a chlorophenyl and a phenyl substituent at positions 4 (C9) and 5 (C2), respectively, on the five-membered heterocyclic ring. They are inclined to the planar isoxazole ring mean plane by 38.32 (16)° and 43.91 (18)°, respectively. The torsion angles [C10-C9-C11-C12 = 38.4 (4)°, C2-C9-C11-C16 = 36.6 (5)°, O1-C2-C3-C4 = 44.1 (4)°, and C9-C2-C3-C8 = 43.7 (5)°)] confirm that these rings are twisted with respect to the plane of the isoxazole ring. The bond lengths of the isoxazole ring are normal and comparable to those reported for related structures: [3-(4-Chlorophenyl)isoxazol-5-yl]methanol (Tang et al., 2006), 3-(4-Chlorophenyl)isoxazole-5-carbaldehyde (Zhang et al., 2006), and 3-(2-Chlorophenyl)-N-methylisoxazole-5-carboxamide (Chang, 2007). However, bond length C2-C9 [1.359 (4) A°] is lengthened compared to the corresponding values in the above three related structures. {1.337 (3), 1.334 (3), 1.336 (3) Å, respectively}. This may be due to the steric effects caused by the substituents attached at atoms C2 and C9 on the isoxazole ring.

Related literature top

For the chemistry and biological properties of isoxazoles, see: Bruno et al. (2004); Foti et al. (2004); He et al. (2000); Lakhvich et al. (1989); Lin et al. (1997); Makarov et al. (2005); Shipman (1995); Zhong et al. (2005). For related structures, see: Chang (2007); Tang et al. (2006); Zhang et al. (2006). For the synthesis, see: Subba & Rao (1987).

Experimental top

The title compound was prepare according the the published procedure (Subba Raju & Rao, 1987). Recrystallization from n-hexane-benzene (1:1, v:v) by slow evaporation gave colourless block-like crystals suitable for X-ray diffraction analysis.

Refinement top

All the H-atoms were clearly located in difference electron-density maps and were freely refined: C-H = 0.91 (5) - 1.00 (4) Å.

Computing details top

Data collection: SMART (Bruker 2007); cell refinement: SAINT (Bruker 2007); data reduction: SAINT (Bruker 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level.
4-(4-Chlorophenyl)-5-phenylisoxazole top
Crystal data top
C15H10ClNOF(000) = 528
Mr = 255.69Dx = 1.391 Mg m3
Dm = 1.39 Mg m3
Dm measured by none
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 2895 reflections
a = 6.554 (2) Åθ = 2.4–25.0°
b = 25.966 (2) ŵ = 0.30 mm1
c = 7.4721 (19) ÅT = 295 K
β = 106.171 (3)°Block, colourless
V = 1221.2 (5) Å30.3 × 0.2 × 0.2 mm
Z = 4
Data collection top
Bruker CCD
diffractometer
2132 independent reflections
Radiation source: fine-focus sealed tube1851 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 17
Tmin = 0.928, Tmax = 0.952k = 130
2820 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063All H-atom parameters refined
wR(F2) = 0.197 w = 1/[σ2(Fo2) + (0.1057P)2 + 0.4763P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.013
2132 reflectionsΔρmax = 0.27 e Å3
204 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.024 (6)
Crystal data top
C15H10ClNOV = 1221.2 (5) Å3
Mr = 255.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.554 (2) ŵ = 0.30 mm1
b = 25.966 (2) ÅT = 295 K
c = 7.4721 (19) Å0.3 × 0.2 × 0.2 mm
β = 106.171 (3)°
Data collection top
Bruker CCD
diffractometer
2132 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1851 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.952Rint = 0.050
2820 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.197All H-atom parameters refined
S = 1.15Δρmax = 0.27 e Å3
2132 reflectionsΔρmin = 0.40 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1131 (4)0.71167 (11)0.9809 (4)0.0706 (8)
O10.0578 (3)0.65915 (8)0.9619 (3)0.0655 (6)
C20.1585 (4)0.63669 (11)0.8469 (4)0.0539 (7)
C30.1165 (5)0.58171 (11)0.8114 (4)0.0592 (7)
C40.0886 (6)0.56265 (14)0.7745 (5)0.0757 (9)
C50.1270 (7)0.51065 (16)0.7433 (7)0.0921 (12)
C60.0349 (8)0.47763 (15)0.7496 (6)0.0913 (12)
C70.2396 (7)0.49578 (15)0.7837 (6)0.0865 (11)
C80.2801 (6)0.54770 (13)0.8143 (5)0.0710 (9)
C90.2800 (4)0.67225 (11)0.7910 (4)0.0524 (7)
C100.2441 (5)0.71820 (12)0.8794 (4)0.0632 (8)
C110.4076 (4)0.66740 (10)0.6569 (4)0.0506 (6)
C120.5940 (4)0.69549 (11)0.6830 (4)0.0560 (7)
C130.7069 (4)0.69393 (11)0.5508 (4)0.0587 (7)
C140.6323 (5)0.66396 (11)0.3947 (5)0.0596 (8)
Cl10.77032 (15)0.66286 (4)0.22763 (14)0.0817 (4)
C150.4495 (5)0.63545 (13)0.3666 (5)0.0641 (8)
C160.3369 (5)0.63760 (11)0.4988 (4)0.0586 (7)
H80.431 (7)0.5603 (15)0.846 (5)0.086 (11)*
H100.297 (5)0.7525 (13)0.865 (5)0.069 (9)*
H120.650 (5)0.7156 (13)0.801 (5)0.073 (10)*
H130.836 (6)0.7127 (13)0.568 (5)0.070 (9)*
H160.204 (6)0.6189 (14)0.476 (5)0.075 (9)*
H150.394 (6)0.6146 (16)0.256 (6)0.094 (12)*
H70.353 (7)0.4749 (18)0.780 (6)0.102 (13)*
H40.208 (6)0.5869 (15)0.763 (5)0.085 (11)*
H60.014 (7)0.4435 (19)0.723 (6)0.102 (13)*
H50.270 (8)0.4997 (19)0.722 (7)0.122 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0793 (17)0.0725 (17)0.0737 (17)0.0026 (12)0.0440 (14)0.0121 (12)
O10.0685 (13)0.0744 (13)0.0670 (13)0.0023 (10)0.0411 (10)0.0038 (10)
C20.0534 (14)0.0615 (16)0.0551 (15)0.0020 (11)0.0289 (11)0.0019 (12)
C30.0649 (16)0.0626 (16)0.0607 (17)0.0020 (12)0.0351 (13)0.0094 (12)
C40.0681 (19)0.074 (2)0.093 (3)0.0085 (16)0.0371 (17)0.0076 (18)
C50.085 (2)0.081 (2)0.115 (3)0.022 (2)0.036 (2)0.007 (2)
C60.119 (3)0.062 (2)0.097 (3)0.013 (2)0.038 (2)0.0002 (19)
C70.100 (3)0.067 (2)0.102 (3)0.0114 (19)0.044 (2)0.0039 (18)
C80.0680 (19)0.0662 (19)0.088 (2)0.0002 (15)0.0364 (16)0.0052 (16)
C90.0507 (14)0.0587 (15)0.0550 (16)0.0009 (11)0.0267 (11)0.0006 (11)
C100.0679 (17)0.0631 (17)0.0684 (19)0.0038 (13)0.0349 (14)0.0058 (14)
C110.0521 (14)0.0517 (14)0.0565 (16)0.0007 (10)0.0291 (12)0.0026 (11)
C120.0555 (15)0.0555 (14)0.0653 (18)0.0009 (11)0.0307 (13)0.0018 (13)
C130.0517 (15)0.0607 (16)0.0726 (19)0.0001 (12)0.0322 (13)0.0093 (14)
C140.0620 (16)0.0608 (16)0.069 (2)0.0128 (12)0.0403 (14)0.0125 (13)
Cl10.0872 (7)0.0946 (7)0.0854 (7)0.0188 (4)0.0606 (5)0.0153 (4)
C150.0730 (19)0.0686 (18)0.0605 (18)0.0039 (14)0.0348 (14)0.0036 (14)
C160.0591 (16)0.0638 (17)0.0609 (17)0.0087 (13)0.0300 (13)0.0042 (13)
Geometric parameters (Å, º) top
N1—C101.306 (4)C8—H81.00 (4)
N1—O11.408 (3)C9—C101.415 (4)
O1—C21.353 (3)C9—C111.478 (4)
C2—C91.359 (4)C10—H100.97 (3)
C2—C31.464 (4)C11—C161.380 (4)
C3—C81.385 (4)C11—C121.389 (4)
C3—C41.386 (5)C12—C131.390 (4)
C4—C51.381 (6)C12—H121.00 (4)
C4—H40.99 (4)C13—C141.374 (5)
C5—C61.355 (6)C13—H130.96 (4)
C5—H50.95 (5)C14—C151.374 (5)
C6—C71.377 (6)C14—Cl11.734 (3)
C6—H60.91 (5)C15—C161.389 (4)
C7—C81.381 (5)C15—H150.97 (4)
C7—H70.92 (5)C16—H160.97 (4)
C10—N1—O1105.0 (2)C2—C9—C11129.8 (3)
C2—O1—N1108.9 (2)C10—C9—C11125.9 (2)
O1—C2—C9109.5 (2)N1—C10—C9112.5 (3)
O1—C2—C3115.8 (2)N1—C10—H10120 (2)
C9—C2—C3134.8 (3)C9—C10—H10128 (2)
C8—C3—C4118.6 (3)C16—C11—C12119.2 (3)
C8—C3—C2120.9 (3)C16—C11—C9120.6 (2)
C4—C3—C2120.5 (3)C12—C11—C9120.1 (3)
C5—C4—C3120.2 (4)C11—C12—C13120.4 (3)
C5—C4—H4120 (2)C11—C12—H12119 (2)
C3—C4—H4119 (2)C13—C12—H12120 (2)
C6—C5—C4120.6 (4)C14—C13—C12119.1 (3)
C6—C5—H5123 (3)C14—C13—H13120 (2)
C4—C5—H5116 (3)C12—C13—H13121 (2)
C5—C6—C7120.2 (4)C13—C14—C15121.6 (3)
C5—C6—H6123 (3)C13—C14—Cl1119.1 (2)
C7—C6—H6117 (3)C15—C14—Cl1119.3 (3)
C6—C7—C8119.8 (4)C14—C15—C16118.9 (3)
C6—C7—H7123 (3)C14—C15—H15122 (2)
C8—C7—H7117 (3)C16—C15—H15119 (2)
C7—C8—C3120.5 (3)C11—C16—C15120.9 (3)
C7—C8—H8119 (2)C11—C16—H16120 (2)
C3—C8—H8120 (2)C15—C16—H16119 (2)
C2—C9—C10104.0 (2)
C10—N1—O1—C20.6 (3)C3—C2—C9—C114.8 (6)
N1—O1—C2—C90.7 (3)O1—N1—C10—C90.3 (4)
N1—O1—C2—C3179.6 (2)C2—C9—C10—N10.1 (4)
O1—C2—C3—C8135.8 (3)C11—C9—C10—N1175.5 (3)
C9—C2—C3—C843.7 (5)C2—C9—C11—C1636.6 (5)
O1—C2—C3—C444.1 (4)C10—C9—C11—C16137.5 (3)
C9—C2—C3—C4136.4 (4)C2—C9—C11—C12147.5 (3)
C8—C3—C4—C50.7 (5)C10—C9—C11—C1238.4 (4)
C2—C3—C4—C5179.2 (4)C16—C11—C12—C130.5 (4)
C3—C4—C5—C60.4 (7)C9—C11—C12—C13175.4 (3)
C4—C5—C6—C71.2 (7)C11—C12—C13—C140.4 (4)
C5—C6—C7—C81.0 (7)C12—C13—C14—C150.2 (4)
C6—C7—C8—C30.2 (6)C12—C13—C14—Cl1178.9 (2)
C4—C3—C8—C71.0 (5)C13—C14—C15—C160.7 (5)
C2—C3—C8—C7179.0 (3)Cl1—C14—C15—C16178.4 (2)
O1—C2—C9—C100.5 (3)C12—C11—C16—C150.0 (4)
C3—C2—C9—C10179.9 (3)C9—C11—C16—C15175.9 (3)
O1—C2—C9—C11175.6 (3)C14—C15—C16—C110.6 (5)

Experimental details

Crystal data
Chemical formulaC15H10ClNO
Mr255.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)6.554 (2), 25.966 (2), 7.4721 (19)
β (°) 106.171 (3)
V3)1221.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerBruker CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.928, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
2820, 2132, 1851
Rint0.050
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.197, 1.15
No. of reflections2132
No. of parameters204
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.27, 0.40

Computer programs: SMART (Bruker 2007), SAINT (Bruker 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), enCIFer (Allen et al., 2004) and PARST (Nardelli, 1995).

 

Acknowledgements

MK thanks Ed. CEL, New Delhi, for sponsoring a visit to Yangon University, Myanmar.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, G., Rotondo, A., Grassi, G., Foti, F., Risitano, F. & Nicoló, F. (2004). Acta Cryst. C60, o496–o497.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChang, X.-H. (2007). Acta Cryst. E63, o3074.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFoti, F., Grassi, G., Risitano, F., Rotondo, E. & Zona, D. (2004). Synlett, pp. 1577–1578.  Web of Science CrossRef Google Scholar
First citationHe, H.-W., Li, M.-Q. & Huang, G.-L. (2000). Pesticides, 8, 4–7.  Google Scholar
First citationLakhvich, F. A., Koroleva, E. V. & Akhrem, A. A. (1989). Chem. Heterocycl. Compd, 25, 359–375.  CrossRef Google Scholar
First citationLin, S. T., Kuo, S. H. & Yang, F. M. (1997). J. Org. Chem. 62, 5229–5231.  CrossRef CAS Web of Science Google Scholar
First citationMakarov, V. A., Riabova, O. B., Granik, V. G., Wutzler, P. & Schmidtke, M. (2005). J. Antimicrob. Chemother. 55, 483–488.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShipman, M. (1995). Contemp. Org. Synth. 2, 1–17.  CrossRef CAS Google Scholar
First citationSubba Raju, G. V. & Rao, K. S. (1987). Curr. Sci. 56, 1280–1281.  Google Scholar
First citationTang, L.-D., Zhang, D.-T., Sun, F.-G., Duan, G.-Y. & Wang, J.-W. (2006). Acta Cryst. E62, o1298–o1299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, D.-T., Ma, Y. & Shi, N.-Q. (2006). Acta Cryst. E62, o5213–o5214.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, B., Li, Z.-M. & Song, H.-B. (2005). Acta Cryst. E61, o2621–o2622.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds