metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2,2′-[(5-Bromo­pyridine-2,3-di­yl)bis­­(nitrilo­methyl­­idyne)]diphenolato}chlorido(N,N-di­methyl­formamide)iron(III)

aDepartment of Chemistry & Chemical Engineering, Jining University, Qufu 273155, People's Republic of China, and bSchool of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: shengning@mail.sdu.edu.cn

(Received 30 July 2009; accepted 10 August 2009; online 12 September 2009)

In the title complex, [Fe(C19H12BrClN3O2)(C3H7NO)], the FeIII atom is coordinated by an N,N,O,O-tetra­dentate Schiff base ligand and trans coordinated by a chloride anion and the O atom of an N,N-dimethyl­formamide mol­ecule. The resulting geometry is distorted octa­hedral within a ClN2O3 donor set.

Related literature

For the optical, electronic, magnetic, biological and catalytic properties of complexes containing salicylaldehyde ligands, see: Alam et al. (2003[Alam, M. A., Nethaji, M. & Ray, M. (2003). Angew. Chem. Int. Ed. 42, 1940-1942.]); Oshiob et al. (2005[Oshiob, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568-4569.]); Zelewsky & von Knof (1999[Zelewsky, A. & von Knof, U. (1999). Angew. Chem. Int. Ed. 38, 302-322.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C19H12BrClN3O2)(C3H7NO)]

  • Mr = 558.62

  • Monoclinic, P 21 /c

  • a = 13.1626 (11) Å

  • b = 15.3553 (13) Å

  • c = 12.6376 (11) Å

  • β = 118.186 (1)°

  • V = 2251.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.60 mm−1

  • T = 293 K

  • 0.21 × 0.15 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.612, Tmax = 0.763

  • 11869 measured reflections

  • 4421 independent reflections

  • 3468 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.117

  • S = 1.04

  • 4421 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 1.35 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis of complexes containing salicylaldehyde ligands has attracted continuous research interest not only because of their appealing structural and topological novelty, but also due to their unusual optical, electronic, magnetic, biological, and catalytic properties (Alam et al., 2003; Zelewsky et al., 1999; Oshiob et al., 2005). In the present paper, we describe the synthesis and structural characterization of the title compound, (I).

In (I), the FeIII atom is tetracoordinated by Schiff base ligand via two N and two O atoms, Fig. 1. In addition the metal centre is coordinated by a Cl anion and the O atom of a N,N-dimethylformamide molecule. The resulting coordination geometry is based on a distorted octahedron in which the Cl and N,N-dimethylformamide-O atoms define axial sites.

Related literature top

For the optical, electronic, magnetic, biological and catalytic properties of complexes containing salicylaldehyde ligands, see: Alam et al. (2003); Oshiob et al. (2005); Zelewsky & von Knof (1999).

Experimental top

Condensation of 4-bromo-o-phenylenediamine with salicylaldehyde in a 1:2 molar ratio in ethanol gave the Schiff base ligand. FeCl3 (0.1 mmol) was added dropwise to a solution of the Schiff base (0.1 mmol) in methanol. The resulting solution was stirred at room temperature for 30 minutes. After filtering, the insoluble solids were dissolved in DMF and ether. The product was isolated red-brown crystals in a yield of 45% after a few weeks.

Refinement top

Hydrogen atoms were placed at calculated positions (C–H 0.93–0.96 Å) and were treated as riding on their parent atoms with U(H) set to 1.2Ueq(C). The maximum and minimum residual electron density peaks of 1.35 and 0.39 eÅ-3, respectively, were located 1.07 Å and 0.69 Å from the H5 and Br1 atoms, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.
{2,2'-[(5-Bromopyridine-2,3- diyl)bis(nitrilomethylidyne)]diphenolato}chlorido(N,N- dimethylformamide)iron(III) top
Crystal data top
[Fe(C19H12BrClN3O2)(C3H7NO)]Z = 4
Mr = 558.62F(000) = 1122
Monoclinic, P21/cDx = 1.647 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.1626 (11) ŵ = 2.60 mm1
b = 15.3553 (13) ÅT = 293 K
c = 12.6376 (11) ÅBlock, red-brown
β = 118.186 (1)°0.21 × 0.15 × 0.11 mm
V = 2251.4 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4421 independent reflections
Radiation source: fine-focus sealed tube3468 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.612, Tmax = 0.763k = 1418
11869 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0664P)2 + 1.0974P]
where P = (Fo2 + 2Fc2)/3
4421 reflections(Δ/σ)max = 0.002
291 parametersΔρmax = 1.35 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Fe(C19H12BrClN3O2)(C3H7NO)]V = 2251.4 (3) Å3
Mr = 558.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1626 (11) ŵ = 2.60 mm1
b = 15.3553 (13) ÅT = 293 K
c = 12.6376 (11) Å0.21 × 0.15 × 0.11 mm
β = 118.186 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4421 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3468 reflections with I > 2σ(I)
Tmin = 0.612, Tmax = 0.763Rint = 0.023
11869 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.04Δρmax = 1.35 e Å3
4421 reflectionsΔρmin = 0.39 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.81172 (4)0.45734 (3)0.12689 (4)0.04193 (15)
Br10.45611 (3)0.63148 (3)0.36373 (4)0.06309 (16)
Cl10.68099 (7)0.34010 (6)0.05361 (9)0.0584 (3)
O10.94591 (19)0.38509 (16)0.1821 (2)0.0511 (6)
O20.78233 (19)0.49869 (16)0.0266 (2)0.0505 (6)
O30.9319 (2)0.56438 (16)0.2007 (2)0.0555 (6)
N10.8280 (2)0.45132 (16)0.3011 (2)0.0412 (6)
N20.6755 (2)0.54061 (16)0.1157 (2)0.0401 (6)
N31.0807 (2)0.63665 (18)0.1998 (3)0.0498 (7)
N40.7329 (2)0.48025 (19)0.4177 (3)0.0501 (7)
C10.7382 (3)0.4908 (2)0.3158 (3)0.0410 (7)
C20.6585 (3)0.53962 (19)0.2178 (3)0.0394 (7)
C30.5712 (3)0.5822 (2)0.2311 (3)0.0450 (7)
H30.51630.61580.16940.054*
C40.5694 (3)0.5727 (2)0.3380 (3)0.0472 (8)
C50.6484 (3)0.5206 (2)0.4282 (3)0.0515 (8)
H50.64260.51350.49820.062*
C60.9158 (3)0.4183 (2)0.3952 (3)0.0452 (7)
H60.91720.42510.46900.054*
C71.0095 (3)0.3728 (2)0.3937 (3)0.0454 (8)
C81.0937 (3)0.3383 (2)0.5057 (3)0.0551 (9)
H81.08760.34930.57480.066*
C91.1837 (3)0.2891 (3)0.5130 (4)0.0632 (11)
H91.23830.26670.58640.076*
C101.1924 (3)0.2731 (2)0.4092 (4)0.0612 (10)
H101.25290.23920.41410.073*
C111.1146 (3)0.3058 (2)0.3007 (4)0.0547 (9)
H111.12350.29470.23320.066*
C121.0196 (3)0.3567 (2)0.2898 (3)0.0448 (8)
C130.6053 (3)0.5821 (2)0.0183 (3)0.0414 (7)
H130.54270.60950.01910.050*
C140.6146 (3)0.5897 (2)0.0883 (3)0.0424 (7)
C150.5322 (3)0.6421 (2)0.1808 (3)0.0524 (9)
H150.47180.66580.17160.063*
C160.5389 (3)0.6588 (3)0.2836 (3)0.0594 (10)
H160.48380.69360.34340.071*
C170.6287 (3)0.6233 (3)0.2976 (4)0.0604 (10)
H170.63440.63550.36670.072*
C180.7094 (3)0.5704 (2)0.2111 (3)0.0539 (9)
H180.76870.54750.22290.065*
C190.7045 (3)0.5504 (2)0.1065 (3)0.0439 (7)
C200.9823 (3)0.5955 (2)0.1477 (3)0.0512 (8)
H200.94740.58900.06470.061*
C211.1401 (4)0.6472 (3)0.3283 (4)0.0786 (13)
H21A1.11110.69780.34980.118*
H21B1.22120.65410.35530.118*
H21C1.12770.59670.36540.118*
C221.1359 (3)0.6718 (3)0.1329 (4)0.0615 (10)
H22A1.08400.66760.04840.092*
H22B1.20470.63940.15190.092*
H22C1.15530.73180.15420.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0323 (2)0.0442 (3)0.0446 (3)0.00752 (19)0.0144 (2)0.0030 (2)
Br10.0530 (2)0.0760 (3)0.0671 (3)0.01648 (18)0.0340 (2)0.00264 (19)
Cl10.0388 (4)0.0490 (5)0.0738 (6)0.0018 (4)0.0156 (4)0.0049 (4)
O10.0363 (12)0.0610 (15)0.0522 (14)0.0125 (10)0.0177 (11)0.0032 (11)
O20.0456 (13)0.0555 (14)0.0484 (13)0.0124 (11)0.0205 (11)0.0053 (11)
O30.0466 (13)0.0568 (15)0.0615 (15)0.0083 (11)0.0242 (12)0.0003 (12)
N10.0337 (13)0.0393 (14)0.0467 (15)0.0040 (11)0.0158 (12)0.0030 (11)
N20.0331 (13)0.0386 (14)0.0421 (14)0.0028 (11)0.0124 (11)0.0006 (11)
N30.0424 (15)0.0472 (16)0.0608 (19)0.0015 (12)0.0252 (14)0.0027 (13)
N40.0489 (16)0.0571 (17)0.0465 (16)0.0089 (14)0.0244 (14)0.0070 (13)
C10.0333 (16)0.0375 (16)0.0491 (18)0.0010 (13)0.0169 (14)0.0013 (13)
C20.0326 (15)0.0386 (16)0.0434 (17)0.0005 (12)0.0151 (13)0.0031 (13)
C30.0350 (16)0.0421 (17)0.0494 (19)0.0038 (13)0.0131 (14)0.0007 (14)
C40.0375 (17)0.0488 (19)0.057 (2)0.0019 (14)0.0239 (16)0.0022 (16)
C50.053 (2)0.055 (2)0.051 (2)0.0086 (17)0.0283 (17)0.0060 (16)
C60.0380 (17)0.0472 (18)0.0455 (19)0.0030 (14)0.0157 (15)0.0015 (14)
C70.0305 (16)0.0424 (18)0.054 (2)0.0017 (13)0.0119 (14)0.0072 (14)
C80.0396 (18)0.056 (2)0.055 (2)0.0002 (16)0.0102 (16)0.0072 (17)
C90.0354 (18)0.057 (2)0.074 (3)0.0052 (16)0.0073 (18)0.019 (2)
C100.0312 (17)0.051 (2)0.090 (3)0.0099 (15)0.0195 (19)0.0130 (19)
C110.0398 (18)0.0478 (19)0.076 (3)0.0064 (15)0.0266 (18)0.0050 (17)
C120.0274 (15)0.0389 (16)0.060 (2)0.0006 (12)0.0140 (15)0.0058 (14)
C130.0313 (15)0.0369 (16)0.0504 (19)0.0021 (13)0.0145 (14)0.0007 (14)
C140.0333 (15)0.0376 (16)0.0442 (18)0.0038 (13)0.0084 (14)0.0019 (13)
C150.0421 (19)0.053 (2)0.052 (2)0.0020 (15)0.0136 (16)0.0062 (16)
C160.054 (2)0.059 (2)0.051 (2)0.0041 (18)0.0129 (18)0.0119 (17)
C170.061 (2)0.068 (2)0.046 (2)0.0066 (19)0.0198 (18)0.0068 (17)
C180.052 (2)0.059 (2)0.052 (2)0.0045 (17)0.0257 (18)0.0023 (17)
C190.0378 (17)0.0435 (18)0.0429 (18)0.0063 (13)0.0128 (14)0.0031 (14)
C200.0449 (19)0.051 (2)0.053 (2)0.0002 (16)0.0191 (17)0.0008 (16)
C210.061 (3)0.101 (3)0.064 (3)0.027 (2)0.022 (2)0.004 (2)
C220.056 (2)0.062 (2)0.080 (3)0.0015 (18)0.043 (2)0.008 (2)
Geometric parameters (Å, º) top
Fe1—O21.900 (2)C7—C81.424 (5)
Fe1—O11.917 (2)C8—C91.371 (5)
Fe1—N12.110 (3)C8—H80.9300
Fe1—N22.152 (3)C9—C101.391 (6)
Fe1—O32.164 (2)C9—H90.9300
Fe1—Cl12.3566 (10)C10—C111.361 (5)
Br1—C41.899 (3)C10—H100.9300
O1—C121.317 (4)C11—C121.425 (5)
O2—C191.312 (4)C11—H110.9300
O3—C201.238 (4)C13—C141.414 (5)
N1—C61.307 (4)C13—H130.9300
N1—C11.416 (4)C14—C151.412 (5)
N2—C131.304 (4)C14—C191.441 (5)
N2—C21.409 (4)C15—C161.367 (5)
N3—C201.306 (4)C15—H150.9300
N3—C211.441 (5)C16—C171.388 (6)
N3—C221.454 (5)C16—H160.9300
N4—C11.332 (4)C17—C181.373 (5)
N4—C51.334 (4)C17—H170.9300
C1—C21.403 (4)C18—C191.388 (5)
C2—C31.399 (4)C18—H180.9300
C3—C41.370 (5)C20—H200.9300
C3—H30.9300C21—H21A0.9600
C4—C51.378 (5)C21—H21B0.9600
C5—H50.9300C21—H21C0.9600
C6—C71.426 (5)C22—H22A0.9600
C6—H60.9300C22—H22B0.9600
C7—C121.404 (5)C22—H22C0.9600
O2—Fe1—O1105.85 (10)C9—C8—H8119.5
O2—Fe1—N1162.06 (10)C7—C8—H8119.5
O1—Fe1—N188.45 (10)C8—C9—C10119.1 (3)
O2—Fe1—N288.45 (10)C8—C9—H9120.5
O1—Fe1—N2164.57 (11)C10—C9—H9120.5
N1—Fe1—N276.44 (10)C11—C10—C9121.9 (3)
O2—Fe1—O386.61 (10)C11—C10—H10119.1
O1—Fe1—O385.54 (10)C9—C10—H10119.1
N1—Fe1—O383.71 (10)C10—C11—C12120.5 (4)
N2—Fe1—O389.66 (10)C10—C11—H11119.7
O2—Fe1—Cl195.47 (8)C12—C11—H11119.7
O1—Fe1—Cl194.43 (8)O1—C12—C7124.0 (3)
N1—Fe1—Cl194.13 (8)O1—C12—C11117.8 (3)
N2—Fe1—Cl189.83 (7)C7—C12—C11118.2 (3)
O3—Fe1—Cl1177.85 (8)N2—C13—C14126.8 (3)
C12—O1—Fe1132.1 (2)N2—C13—H13116.6
C19—O2—Fe1134.1 (2)C14—C13—H13116.6
C20—O3—Fe1121.9 (2)C15—C14—C13117.3 (3)
C6—N1—C1118.7 (3)C15—C14—C19118.3 (3)
C6—N1—Fe1125.2 (2)C13—C14—C19124.4 (3)
C1—N1—Fe1116.0 (2)C16—C15—C14121.7 (4)
C13—N2—C2121.4 (3)C16—C15—H15119.2
C13—N2—Fe1123.3 (2)C14—C15—H15119.2
C2—N2—Fe1114.89 (19)C15—C16—C17119.3 (4)
C20—N3—C21120.2 (3)C15—C16—H16120.4
C20—N3—C22122.4 (3)C17—C16—H16120.4
C21—N3—C22117.3 (3)C18—C17—C16121.1 (4)
C1—N4—C5117.8 (3)C18—C17—H17119.5
N4—C1—C2124.0 (3)C16—C17—H17119.5
N4—C1—N1120.2 (3)C17—C18—C19121.5 (4)
C2—C1—N1115.8 (3)C17—C18—H18119.2
C3—C2—C1117.2 (3)C19—C18—H18119.2
C3—C2—N2126.8 (3)O2—C19—C18119.8 (3)
C1—C2—N2116.0 (3)O2—C19—C14122.1 (3)
C4—C3—C2117.8 (3)C18—C19—C14118.1 (3)
C4—C3—H3121.1O3—C20—N3124.8 (4)
C2—C3—H3121.1O3—C20—H20117.6
C3—C4—C5121.3 (3)N3—C20—H20117.6
C3—C4—Br1120.0 (3)N3—C21—H21A109.5
C5—C4—Br1118.7 (3)N3—C21—H21B109.5
N4—C5—C4121.8 (3)H21A—C21—H21B109.5
N4—C5—H5119.1N3—C21—H21C109.5
C4—C5—H5119.1H21A—C21—H21C109.5
N1—C6—C7125.2 (3)H21B—C21—H21C109.5
N1—C6—H6117.4N3—C22—H22A109.5
C7—C6—H6117.4N3—C22—H22B109.5
C12—C7—C8119.4 (3)H22A—C22—H22B109.5
C12—C7—C6124.3 (3)N3—C22—H22C109.5
C8—C7—C6116.2 (3)H22A—C22—H22C109.5
C9—C8—C7120.9 (4)H22B—C22—H22C109.5

Experimental details

Crystal data
Chemical formula[Fe(C19H12BrClN3O2)(C3H7NO)]
Mr558.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.1626 (11), 15.3553 (13), 12.6376 (11)
β (°) 118.186 (1)
V3)2251.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.60
Crystal size (mm)0.21 × 0.15 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.612, 0.763
No. of measured, independent and
observed [I > 2σ(I)] reflections
11869, 4421, 3468
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.117, 1.04
No. of reflections4421
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.35, 0.39

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Postdoctoral Scientific Special Foundation of China (No. 200801414) and the Postdoctoral Scientific Foundation of Shandong Province (No. 200701010). The authors also acknowledge Jining University and Shandong University for support of this work.

References

First citationAlam, M. A., Nethaji, M. & Ray, M. (2003). Angew. Chem. Int. Ed. 42, 1940–1942.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationOshiob, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568–4569.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZelewsky, A. & von Knof, U. (1999). Angew. Chem. Int. Ed. 38, 302–322.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds