organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Allyl-3-chloro-6-nitro-1H-indazole

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, bCNRST Division UATRS, Angle Allal Fassi/FAR, BP 8027 Hay Riad, 10000 Rabat, Morocco, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 25 August 2009; accepted 26 August 2009; online 5 September 2009)

The indazole system in each of the two independent mol­ecules of the title compound, C10H8ClN3O2, is planar (r.m.s. deviations = 0.005 and 0.005 Å). The nitro group is coplanar with the fused-ring system [dihedral angles = 1.3 (3) and 4.8 (3) Å].

Related literature

For a review of indazoles, see: Elguéro (1996[Elguéro, J. (1996). Comprehensive Heterocyclic Chemistry II, edited by I. Shinkai, Vol. 3, p. 1. Oxford: Elsevier Science.]); Elguéro et al. (1995[Elguéro, J., Fruchier, A., Tjiou, E. M. & Trofimenko, S. (1995). Chem. Heterocycl. Compd (Engl. Transl.), 31, 1006-1026.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8ClN3O2

  • Mr = 237.64

  • Monoclinic, P 21 /n

  • a = 7.6804 (1) Å

  • b = 9.9559 (2) Å

  • c = 28.4344 (4) Å

  • β = 95.144 (1)°

  • V = 2165.49 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 295 K

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.884, Tmax = 0.934

  • 19833 measured reflections

  • 3777 independent reflections

  • 2665 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.185

  • S = 1.07

  • 3777 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For a review of indazoles, see: Elguéro (1996); Elguéro et al. (1995).

Experimental top

3-Chloro-6-nitroindazole (5 mmol) and allyl bromide (10 mmol) were reacted in THF (40 ml) in the presence of potassium carbonate (10 mmol) and tetra-n-butylammonium bromide (0.5 mmol). The mixture was stirred for 24 h, filtered, and the THF removed under vacuum. The product was separated by chromatography on silica gel with a hexane:ethyl acetate (9:1) solvent system. The compound was obtained as yellow crystals in 50% yield; m.p. 351 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation with U(H) set to 1.2U(C).

Although data were measured to a high 2θ limit, those reflections beyond 50 ° were not used as their inclusion significantly raised the R index.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the two independent molecules of C10H8ClN3O2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
1-Allyl-3-chloro-6-nitro-1H-indazole top
Crystal data top
C10H8ClN3O2F(000) = 976
Mr = 237.64Dx = 1.458 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6549 reflections
a = 7.6804 (1) Åθ = 2.2–29.5°
b = 9.9559 (2) ŵ = 0.34 mm1
c = 28.4344 (4) ÅT = 295 K
β = 95.144 (1)°Prism, yellow
V = 2165.49 (6) Å30.4 × 0.3 × 0.2 mm
Z = 8
Data collection top
Bruker APEX2
diffractometer
3777 independent reflections
Radiation source: fine-focus sealed tube2665 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.884, Tmax = 0.934k = 1111
19833 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1031P)2 + 0.7179P]
where P = (Fo2 + 2Fc2)/3
3777 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C10H8ClN3O2V = 2165.49 (6) Å3
Mr = 237.64Z = 8
Monoclinic, P21/nMo Kα radiation
a = 7.6804 (1) ŵ = 0.34 mm1
b = 9.9559 (2) ÅT = 295 K
c = 28.4344 (4) Å0.4 × 0.3 × 0.2 mm
β = 95.144 (1)°
Data collection top
Bruker APEX2
diffractometer
3777 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2665 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.934Rint = 0.032
19833 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 1.07Δρmax = 0.78 e Å3
3777 reflectionsΔρmin = 0.29 e Å3
289 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.30814 (12)0.06578 (10)0.03474 (3)0.0718 (3)
Cl20.94159 (18)0.35838 (12)0.02733 (4)0.0958 (4)
O10.6481 (4)0.0762 (3)0.28950 (9)0.0866 (9)
O20.7296 (4)0.2788 (3)0.27899 (9)0.0867 (9)
O31.2186 (4)0.2329 (4)0.28256 (10)0.1089 (11)
O41.0809 (4)0.0460 (3)0.27538 (10)0.0928 (9)
N10.5287 (3)0.3527 (3)0.10386 (9)0.0563 (7)
N20.4505 (4)0.2960 (3)0.06380 (9)0.0606 (8)
N30.6601 (4)0.1750 (3)0.26458 (9)0.0582 (7)
N40.8630 (3)0.0501 (3)0.09910 (10)0.0529 (7)
N50.8504 (4)0.1220 (3)0.05846 (10)0.0622 (8)
N61.1300 (4)0.1509 (4)0.25934 (11)0.0659 (8)
C10.4072 (4)0.1742 (4)0.07565 (11)0.0523 (8)
C20.4547 (3)0.1450 (3)0.12352 (11)0.0451 (7)
C30.4413 (4)0.0352 (3)0.15351 (11)0.0509 (8)
H30.38820.04410.14240.061*
C40.5079 (4)0.0470 (3)0.19951 (11)0.0510 (8)
H40.50030.02440.22030.061*
C50.5876 (4)0.1675 (3)0.21511 (10)0.0458 (7)
C60.6039 (4)0.2781 (3)0.18747 (10)0.0447 (7)
H60.65700.35680.19910.054*
C70.5353 (4)0.2648 (3)0.14059 (11)0.0447 (7)
C80.6026 (5)0.4877 (4)0.10227 (14)0.0678 (10)
H8A0.67370.50390.13170.081*
H8B0.67930.49090.07700.081*
C90.4777 (6)0.5939 (5)0.0952 (2)0.0994 (15)
H90.40340.60410.11910.119*
C100.4537 (7)0.6752 (5)0.0618 (2)0.1091 (18)
H10A0.52320.67100.03660.131*
H10B0.36630.73980.06200.131*
C110.9279 (4)0.2371 (4)0.06933 (11)0.0588 (9)
C120.9941 (4)0.2448 (3)0.11660 (11)0.0488 (8)
C131.0839 (4)0.3397 (3)0.14605 (13)0.0563 (8)
H131.11300.42320.13430.068*
C141.1278 (4)0.3072 (4)0.19233 (13)0.0563 (9)
H141.18850.36810.21240.068*
C151.0808 (4)0.1816 (3)0.20921 (11)0.0491 (8)
C160.9938 (3)0.0852 (3)0.18217 (11)0.0453 (7)
H160.96510.00230.19440.054*
C170.9510 (3)0.1194 (3)0.13522 (11)0.0435 (7)
C180.8035 (4)0.0888 (3)0.09845 (13)0.0615 (9)
H18A0.69690.09630.07760.074*
H18B0.77660.11420.12990.074*
C190.9352 (5)0.1820 (4)0.08251 (14)0.0701 (10)
H190.97480.16580.05310.084*
C200.9988 (6)0.2813 (5)0.1052 (2)0.1019 (16)
H20A0.96290.30120.13480.122*
H20B1.08170.33500.09240.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0785 (6)0.0739 (7)0.0602 (6)0.0018 (5)0.0089 (4)0.0182 (4)
Cl20.1491 (11)0.0756 (9)0.0649 (6)0.0153 (7)0.0215 (6)0.0187 (5)
O10.128 (2)0.072 (2)0.0577 (15)0.0029 (16)0.0050 (15)0.0184 (15)
O20.116 (2)0.081 (2)0.0593 (16)0.0218 (17)0.0108 (15)0.0064 (14)
O30.126 (2)0.121 (3)0.0733 (19)0.021 (2)0.0282 (18)0.0127 (19)
O40.133 (3)0.074 (2)0.0688 (18)0.0066 (18)0.0030 (16)0.0176 (16)
N10.0649 (16)0.0493 (18)0.0536 (16)0.0039 (13)0.0018 (12)0.0018 (13)
N20.0677 (16)0.063 (2)0.0494 (16)0.0022 (14)0.0031 (13)0.0010 (14)
N30.0651 (16)0.060 (2)0.0495 (16)0.0074 (14)0.0058 (13)0.0029 (15)
N40.0516 (14)0.0464 (18)0.0606 (17)0.0000 (12)0.0055 (12)0.0086 (13)
N50.0684 (17)0.062 (2)0.0560 (17)0.0127 (15)0.0025 (13)0.0061 (15)
N60.0645 (17)0.071 (2)0.0614 (19)0.0134 (16)0.0007 (15)0.0084 (18)
C10.0503 (16)0.053 (2)0.0530 (19)0.0056 (14)0.0033 (14)0.0088 (16)
C20.0388 (14)0.043 (2)0.0543 (18)0.0061 (12)0.0063 (13)0.0087 (14)
C30.0506 (16)0.041 (2)0.062 (2)0.0009 (13)0.0101 (14)0.0064 (16)
C40.0567 (17)0.042 (2)0.0556 (19)0.0068 (14)0.0119 (15)0.0031 (15)
C50.0443 (15)0.047 (2)0.0469 (17)0.0094 (13)0.0072 (13)0.0022 (14)
C60.0449 (15)0.0386 (19)0.0504 (17)0.0050 (12)0.0027 (13)0.0055 (14)
C70.0414 (14)0.0427 (19)0.0503 (17)0.0079 (13)0.0066 (12)0.0006 (15)
C80.078 (2)0.054 (2)0.069 (2)0.0089 (19)0.0050 (18)0.0130 (18)
C90.085 (3)0.078 (3)0.134 (4)0.011 (2)0.000 (3)0.021 (3)
C100.108 (3)0.080 (4)0.132 (4)0.019 (3)0.023 (3)0.046 (3)
C110.072 (2)0.050 (2)0.055 (2)0.0154 (17)0.0094 (17)0.0019 (16)
C120.0496 (16)0.040 (2)0.0581 (18)0.0094 (13)0.0139 (14)0.0024 (15)
C130.0630 (19)0.036 (2)0.072 (2)0.0020 (14)0.0176 (17)0.0019 (16)
C140.0510 (16)0.047 (2)0.072 (2)0.0019 (14)0.0107 (15)0.0194 (17)
C150.0446 (15)0.045 (2)0.0577 (19)0.0105 (13)0.0057 (14)0.0034 (15)
C160.0460 (15)0.0322 (18)0.0589 (18)0.0040 (12)0.0105 (13)0.0000 (14)
C170.0389 (14)0.0354 (18)0.0567 (18)0.0060 (12)0.0075 (13)0.0060 (14)
C180.0579 (18)0.050 (2)0.077 (2)0.0065 (15)0.0049 (16)0.0166 (18)
C190.085 (2)0.056 (3)0.072 (2)0.001 (2)0.0204 (19)0.002 (2)
C200.096 (3)0.082 (4)0.131 (4)0.013 (3)0.030 (3)0.027 (3)
Geometric parameters (Å, º) top
Cl1—C11.714 (3)C6—H60.9300
Cl2—C111.708 (4)C8—C91.430 (6)
O1—N31.221 (4)C8—H8A0.9700
O2—N31.218 (4)C8—H8B0.9700
O3—N61.219 (4)C9—C101.250 (6)
O4—N61.213 (4)C9—H90.9300
N1—C71.360 (4)C10—H10A0.9300
N1—N21.362 (4)C10—H10B0.9300
N1—C81.461 (4)C11—C121.396 (4)
N2—C11.309 (5)C12—C131.402 (5)
N3—C51.468 (4)C12—C171.408 (4)
N4—N51.356 (4)C13—C141.368 (5)
N4—C171.365 (4)C13—H130.9300
N4—C181.456 (4)C14—C151.398 (5)
N5—C111.316 (5)C14—H140.9300
N6—C151.474 (4)C15—C161.367 (4)
C1—C21.408 (4)C16—C171.388 (4)
C2—C31.396 (4)C16—H160.9300
C2—C71.410 (4)C18—C191.474 (5)
C3—C41.366 (4)C18—H18A0.9700
C3—H30.9300C18—H18B0.9700
C4—C51.401 (4)C19—C201.255 (6)
C4—H40.9300C19—H190.9300
C5—C61.365 (4)C20—H20A0.9300
C6—C71.395 (4)C20—H20B0.9300
C7—N1—N2111.0 (3)H8A—C8—H8B107.5
C7—N1—C8128.9 (3)C10—C9—C8129.6 (6)
N2—N1—C8119.9 (3)C10—C9—H9115.2
C1—N2—N1105.8 (3)C8—C9—H9115.2
O2—N3—O1122.8 (3)C9—C10—H10A120.0
O2—N3—C5118.9 (3)C9—C10—H10B120.0
O1—N3—C5118.3 (3)H10A—C10—H10B120.0
N5—N4—C17111.6 (3)N5—C11—C12113.1 (3)
N5—N4—C18119.5 (3)N5—C11—Cl2120.4 (3)
C17—N4—C18128.6 (3)C12—C11—Cl2126.5 (3)
C11—N5—N4105.3 (3)C11—C12—C13136.8 (3)
O4—N6—O3123.4 (4)C11—C12—C17103.6 (3)
O4—N6—C15118.8 (3)C13—C12—C17119.5 (3)
O3—N6—C15117.8 (4)C14—C13—C12118.7 (3)
N2—C1—C2113.0 (3)C14—C13—H13120.6
N2—C1—Cl1121.1 (3)C12—C13—H13120.6
C2—C1—Cl1125.9 (3)C13—C14—C15119.6 (3)
C3—C2—C1136.5 (3)C13—C14—H14120.2
C3—C2—C7120.4 (3)C15—C14—H14120.2
C1—C2—C7103.1 (3)C16—C15—C14124.3 (3)
C4—C3—C2118.4 (3)C16—C15—N6117.9 (3)
C4—C3—H3120.8C14—C15—N6117.8 (3)
C2—C3—H3120.8C15—C16—C17115.5 (3)
C3—C4—C5119.5 (3)C15—C16—H16122.2
C3—C4—H4120.3C17—C16—H16122.2
C5—C4—H4120.3N4—C17—C16131.2 (3)
C6—C5—C4124.7 (3)N4—C17—C12106.4 (3)
C6—C5—N3117.7 (3)C16—C17—C12122.4 (3)
C4—C5—N3117.7 (3)N4—C18—C19112.2 (3)
C5—C6—C7115.3 (3)N4—C18—H18A109.2
C5—C6—H6122.4C19—C18—H18A109.2
C7—C6—H6122.4N4—C18—H18B109.2
N1—C7—C6131.1 (3)C19—C18—H18B109.2
N1—C7—C2107.2 (3)H18A—C18—H18B107.9
C6—C7—C2121.8 (3)C20—C19—C18125.7 (4)
C9—C8—N1115.3 (3)C20—C19—H19117.1
C9—C8—H8A108.5C18—C19—H19117.1
N1—C8—H8A108.5C19—C20—H20A120.0
C9—C8—H8B108.5C19—C20—H20B120.0
N1—C8—H8B108.5H20A—C20—H20B120.0
C7—N1—N2—C10.7 (3)N2—N1—C8—C970.4 (5)
C8—N1—N2—C1176.4 (3)N1—C8—C9—C10116.9 (5)
C17—N4—N5—C111.0 (3)N4—N5—C11—C120.3 (4)
C18—N4—N5—C11174.4 (3)N4—N5—C11—Cl2179.8 (2)
N1—N2—C1—C20.2 (4)N5—C11—C12—C13179.6 (3)
N1—N2—C1—Cl1178.6 (2)Cl2—C11—C12—C130.9 (6)
N2—C1—C2—C3179.7 (3)N5—C11—C12—C170.4 (3)
Cl1—C1—C2—C31.4 (5)Cl2—C11—C12—C17179.0 (2)
N2—C1—C2—C70.3 (3)C11—C12—C13—C14179.7 (3)
Cl1—C1—C2—C7178.1 (2)C17—C12—C13—C140.2 (4)
C1—C2—C3—C4179.3 (3)C12—C13—C14—C150.7 (4)
C7—C2—C3—C40.0 (4)C13—C14—C15—C160.9 (5)
C2—C3—C4—C50.3 (4)C13—C14—C15—N6179.7 (3)
C3—C4—C5—C60.5 (4)O4—N6—C15—C165.2 (4)
C3—C4—C5—N3179.0 (3)O3—N6—C15—C16174.8 (3)
O2—N3—C5—C60.7 (4)O4—N6—C15—C14175.4 (3)
O1—N3—C5—C6179.1 (3)O3—N6—C15—C144.6 (4)
O2—N3—C5—C4179.8 (3)C14—C15—C16—C170.5 (4)
O1—N3—C5—C40.4 (4)N6—C15—C16—C17179.9 (2)
C4—C5—C6—C70.5 (4)N5—N4—C17—C16180.0 (3)
N3—C5—C6—C7179.0 (2)C18—N4—C17—C167.3 (5)
N2—N1—C7—C6179.3 (3)N5—N4—C17—C121.3 (3)
C8—N1—C7—C64.0 (5)C18—N4—C17—C12174.0 (3)
N2—N1—C7—C20.8 (3)C15—C16—C17—N4178.6 (3)
C8—N1—C7—C2176.1 (3)C15—C16—C17—C120.0 (4)
C5—C6—C7—N1180.0 (3)C11—C12—C17—N41.0 (3)
C5—C6—C7—C20.2 (4)C13—C12—C17—N4179.0 (3)
C3—C2—C7—N1179.8 (3)C11—C12—C17—C16179.9 (3)
C1—C2—C7—N10.7 (3)C13—C12—C17—C160.2 (4)
C3—C2—C7—C60.1 (4)N5—N4—C18—C1981.6 (4)
C1—C2—C7—C6179.5 (3)C17—N4—C18—C1990.5 (4)
C7—N1—C8—C9114.7 (4)N4—C18—C19—C20123.4 (5)

Experimental details

Crystal data
Chemical formulaC10H8ClN3O2
Mr237.64
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)7.6804 (1), 9.9559 (2), 28.4344 (4)
β (°) 95.144 (1)
V3)2165.49 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerBruker APEX2
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.884, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
19833, 3777, 2665
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.185, 1.07
No. of reflections3777
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElguéro, J. (1996). Comprehensive Heterocyclic Chemistry II, edited by I. Shinkai, Vol. 3, p. 1. Oxford: Elsevier Science.  Google Scholar
First citationElguéro, J., Fruchier, A., Tjiou, E. M. & Trofimenko, S. (1995). Chem. Heterocycl. Compd (Engl. Transl.), 31, 1006–1026.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds