organic compounds
Diethyl 2,6-dimethyl-4-p-tolyl-1,4-dihydropyridine-3,5-dicarboxylate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my
In the title compound, C20H25NO4, the 1,4-dihydropyridine ring adopts a flattened-boat conformation and forms a dihedral angle of 89.77 (8)° with the benzene ring. Intermolecular N—H⋯O hydrogen bonds result in the formation of extended chains parallel to the b axis.
Related literature
For general background and applications of 1,4-dihydropyridine derivatives, see: Böcker & Guengerich (1986); Cooper et al. (1992); Vo et al. (1995); Gaudio et al. (1994); Gordeev et al. (1996); Sunkel et al. (1992). For ring conformations and ring puckering analysis, see: Boeyens (1978); Cremer & Pople (1975). For related 1,4-dihydropyridine structures, see: Fossheim et al. (1982); Teng et al. (2008); Bai et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809035077/tk2533sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809035077/tk2533Isup2.hkl
Compound (I) was prepared according to the Hantzsch pyridine synthesis. A mixture of p-tolylaldehyde (10 mmol), ethylacetoacetate (20 mmol) and ammonium acetate (10 mmol) were heated at 353 K for 2 h (monitored by TLC). After completion of the reaction, the mixture was cooled to room temperature and kept for 2 days to obtain the solid product. The solid that formed was washed using diethyl ether. Solid was collected separately and liquid was kept for solidification. The purity of the crude product was checked through TLC and recrystallized using acetone and ether. The compound was characterized by IR and 1H NMR. M.p. 383–385 K. IR (KBr):υ (cm-1), 3358, 2988, 1695, 1652, 1487, 1214;1H NMR (CDCl3): δ 1.23 (t, 6H, J = 8), δ 2.34 (s, 6H), δ 3.72 (s, 3H), δ 4.09 (m, 4H, J = 4), δ 4.94 (s, 1H), δ 5.58 (s, 1H), δ 6.76–7.21 (4H, aromatic).
The N-bound H atom was located in a difference Fourier map and constrained to ride with the parent atom with N-H = 0.84 Å, and with Uiso(H)= 1.2 Ueq(N). C-bound H atoms were positioned geometrically [C—H = 0.93–0.98 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl-C). A rotating group model was used for the methyl groups.
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C20H25NO4 | F(000) = 736 |
Mr = 343.41 | Dx = 1.268 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3769 reflections |
a = 10.0175 (1) Å | θ = 2.9–27.7° |
b = 7.4287 (1) Å | µ = 0.09 mm−1 |
c = 25.0974 (3) Å | T = 100 K |
β = 105.528 (1)° | Plate, colourless |
V = 1799.50 (4) Å3 | 0.31 × 0.15 × 0.05 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 5309 independent reflections |
Radiation source: fine-focus sealed tube | 3542 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
ϕ and ω scans | θmax = 30.1°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −14→14 |
Tmin = 0.973, Tmax = 0.996 | k = −10→10 |
20077 measured reflections | l = −35→30 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.147 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0648P)2 + 0.5567P] where P = (Fo2 + 2Fc2)/3 |
5309 reflections | (Δ/σ)max = 0.001 |
231 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C20H25NO4 | V = 1799.50 (4) Å3 |
Mr = 343.41 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.0175 (1) Å | µ = 0.09 mm−1 |
b = 7.4287 (1) Å | T = 100 K |
c = 25.0974 (3) Å | 0.31 × 0.15 × 0.05 mm |
β = 105.528 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 5309 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 3542 reflections with I > 2σ(I) |
Tmin = 0.973, Tmax = 0.996 | Rint = 0.046 |
20077 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.147 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.33 e Å−3 |
5309 reflections | Δρmin = −0.26 e Å−3 |
231 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.22376 (12) | 0.93012 (15) | 0.99648 (5) | 0.0209 (3) | |
O2 | 0.11576 (12) | 0.74263 (15) | 1.04170 (5) | 0.0193 (3) | |
O3 | 0.51279 (12) | 0.43230 (17) | 0.85637 (5) | 0.0263 (3) | |
O4 | 0.43953 (12) | 0.71714 (16) | 0.86114 (5) | 0.0226 (3) | |
N1 | 0.28643 (14) | 0.30918 (19) | 0.97456 (6) | 0.0185 (3) | |
H1 | 0.2800 | 0.2043 | 0.9858 | 0.022* | |
C1 | 0.12624 (18) | 0.8380 (2) | 0.84689 (7) | 0.0239 (4) | |
H1A | 0.1920 | 0.9293 | 0.8559 | 0.029* | |
C2 | 0.01109 (18) | 0.8600 (3) | 0.80172 (7) | 0.0257 (4) | |
H2A | 0.0013 | 0.9654 | 0.7810 | 0.031* | |
C3 | −0.08953 (17) | 0.7263 (3) | 0.78718 (7) | 0.0229 (4) | |
C4 | −0.07301 (18) | 0.5727 (2) | 0.81972 (7) | 0.0245 (4) | |
H4A | −0.1401 | 0.4829 | 0.8115 | 0.029* | |
C5 | 0.04298 (17) | 0.5511 (2) | 0.86473 (7) | 0.0216 (4) | |
H5A | 0.0523 | 0.4465 | 0.8858 | 0.026* | |
C6 | 0.14465 (16) | 0.6828 (2) | 0.87865 (6) | 0.0161 (3) | |
C7 | 0.27351 (16) | 0.6541 (2) | 0.92694 (6) | 0.0155 (3) | |
H7A | 0.3279 | 0.7655 | 0.9321 | 0.019* | |
C8 | 0.23295 (15) | 0.6169 (2) | 0.98026 (6) | 0.0147 (3) | |
C9 | 0.23531 (15) | 0.4472 (2) | 1.00053 (6) | 0.0162 (3) | |
C10 | 0.36055 (16) | 0.3373 (2) | 0.93593 (7) | 0.0172 (3) | |
C11 | 0.36349 (15) | 0.5037 (2) | 0.91449 (7) | 0.0164 (3) | |
C12 | −0.21263 (19) | 0.7489 (3) | 0.73743 (8) | 0.0305 (4) | |
H12A | −0.2578 | 0.6349 | 0.7279 | 0.046* | |
H12B | −0.1818 | 0.7931 | 0.7068 | 0.046* | |
H12C | −0.2765 | 0.8332 | 0.7460 | 0.046* | |
C13 | 0.19301 (15) | 0.7769 (2) | 1.00645 (6) | 0.0159 (3) | |
C14 | 0.08916 (17) | 0.8938 (2) | 1.07421 (7) | 0.0209 (4) | |
H14A | 0.0075 | 0.8693 | 1.0868 | 0.025* | |
H14B | 0.0716 | 1.0012 | 1.0514 | 0.025* | |
C15 | 0.2111 (2) | 0.9245 (3) | 1.12300 (8) | 0.0320 (5) | |
H15A | 0.1911 | 1.0216 | 1.1449 | 0.048* | |
H15B | 0.2907 | 0.9545 | 1.1104 | 0.048* | |
H15C | 0.2296 | 0.8170 | 1.1450 | 0.048* | |
C16 | 0.44652 (16) | 0.5398 (2) | 0.87521 (7) | 0.0190 (3) | |
C17 | 0.50195 (18) | 0.7686 (3) | 0.81750 (7) | 0.0264 (4) | |
H17A | 0.5882 | 0.7034 | 0.8220 | 0.032* | |
H17B | 0.5231 | 0.8962 | 0.8204 | 0.032* | |
C18 | 0.4070 (2) | 0.7290 (3) | 0.76142 (8) | 0.0313 (4) | |
H18A | 0.4428 | 0.7840 | 0.7335 | 0.047* | |
H18B | 0.3165 | 0.7766 | 0.7592 | 0.047* | |
H18C | 0.4008 | 0.6012 | 0.7557 | 0.047* | |
C19 | 0.19215 (18) | 0.3867 (2) | 1.05056 (7) | 0.0200 (3) | |
H19A | 0.2343 | 0.4630 | 1.0814 | 0.030* | |
H19B | 0.2214 | 0.2646 | 1.0592 | 0.030* | |
H19C | 0.0932 | 0.3939 | 1.0431 | 0.030* | |
C20 | 0.43324 (17) | 0.1719 (2) | 0.92385 (7) | 0.0226 (4) | |
H20A | 0.4138 | 0.1559 | 0.8846 | 0.034* | |
H20B | 0.4011 | 0.0688 | 0.9399 | 0.034* | |
H20C | 0.5313 | 0.1852 | 0.9394 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0275 (6) | 0.0144 (6) | 0.0225 (6) | 0.0008 (5) | 0.0094 (5) | 0.0009 (5) |
O2 | 0.0255 (6) | 0.0153 (6) | 0.0205 (6) | −0.0024 (5) | 0.0120 (5) | −0.0047 (5) |
O3 | 0.0255 (6) | 0.0317 (8) | 0.0250 (7) | 0.0015 (5) | 0.0126 (5) | −0.0034 (6) |
O4 | 0.0257 (6) | 0.0240 (7) | 0.0217 (6) | −0.0031 (5) | 0.0124 (5) | 0.0043 (5) |
N1 | 0.0245 (7) | 0.0110 (7) | 0.0214 (7) | −0.0001 (5) | 0.0086 (6) | 0.0007 (6) |
C1 | 0.0240 (8) | 0.0217 (9) | 0.0259 (9) | −0.0020 (7) | 0.0066 (7) | 0.0049 (8) |
C2 | 0.0272 (9) | 0.0271 (10) | 0.0233 (9) | 0.0056 (7) | 0.0076 (7) | 0.0110 (8) |
C3 | 0.0217 (8) | 0.0322 (10) | 0.0157 (8) | 0.0069 (7) | 0.0063 (6) | −0.0008 (7) |
C4 | 0.0245 (8) | 0.0242 (10) | 0.0229 (9) | −0.0027 (7) | 0.0031 (7) | −0.0037 (8) |
C5 | 0.0267 (8) | 0.0185 (9) | 0.0184 (8) | −0.0019 (7) | 0.0038 (7) | 0.0026 (7) |
C6 | 0.0184 (7) | 0.0171 (8) | 0.0146 (7) | 0.0022 (6) | 0.0076 (6) | −0.0006 (6) |
C7 | 0.0180 (7) | 0.0132 (8) | 0.0159 (7) | −0.0017 (6) | 0.0057 (6) | 0.0001 (6) |
C8 | 0.0164 (7) | 0.0147 (8) | 0.0127 (7) | −0.0010 (6) | 0.0034 (6) | −0.0010 (6) |
C9 | 0.0167 (7) | 0.0165 (8) | 0.0147 (7) | −0.0021 (6) | 0.0033 (6) | −0.0011 (6) |
C10 | 0.0170 (7) | 0.0171 (8) | 0.0172 (8) | −0.0016 (6) | 0.0042 (6) | −0.0040 (7) |
C11 | 0.0164 (7) | 0.0168 (8) | 0.0163 (8) | −0.0005 (6) | 0.0047 (6) | −0.0031 (6) |
C12 | 0.0288 (9) | 0.0388 (12) | 0.0212 (9) | 0.0094 (8) | 0.0023 (7) | 0.0010 (8) |
C13 | 0.0148 (7) | 0.0181 (8) | 0.0134 (7) | −0.0008 (6) | 0.0015 (6) | 0.0011 (6) |
C14 | 0.0245 (8) | 0.0176 (9) | 0.0239 (9) | 0.0005 (7) | 0.0122 (7) | −0.0041 (7) |
C15 | 0.0378 (11) | 0.0348 (12) | 0.0213 (9) | 0.0069 (9) | 0.0042 (8) | −0.0089 (8) |
C16 | 0.0156 (7) | 0.0243 (9) | 0.0158 (8) | −0.0028 (6) | 0.0022 (6) | −0.0029 (7) |
C17 | 0.0266 (9) | 0.0334 (11) | 0.0219 (9) | −0.0067 (8) | 0.0114 (7) | 0.0030 (8) |
C18 | 0.0316 (10) | 0.0387 (12) | 0.0233 (10) | −0.0062 (8) | 0.0071 (8) | 0.0032 (8) |
C19 | 0.0271 (8) | 0.0146 (8) | 0.0195 (8) | −0.0006 (7) | 0.0086 (7) | 0.0015 (7) |
C20 | 0.0218 (8) | 0.0193 (9) | 0.0275 (9) | 0.0026 (7) | 0.0079 (7) | −0.0015 (7) |
O1—C13 | 1.223 (2) | C9—C19 | 1.502 (2) |
O2—C13 | 1.3463 (19) | C10—C11 | 1.351 (2) |
O2—C14 | 1.454 (2) | C10—C20 | 1.500 (2) |
O3—C16 | 1.213 (2) | C11—C16 | 1.475 (2) |
O4—C16 | 1.361 (2) | C12—H12A | 0.9600 |
O4—C17 | 1.450 (2) | C12—H12B | 0.9600 |
N1—C9 | 1.385 (2) | C12—H12C | 0.9600 |
N1—C10 | 1.386 (2) | C14—C15 | 1.498 (2) |
N1—H1 | 0.8370 | C14—H14A | 0.9700 |
C1—C6 | 1.386 (2) | C14—H14B | 0.9700 |
C1—C2 | 1.394 (2) | C15—H15A | 0.9600 |
C1—H1A | 0.9300 | C15—H15B | 0.9600 |
C2—C3 | 1.392 (3) | C15—H15C | 0.9600 |
C2—H2A | 0.9300 | C17—C18 | 1.502 (2) |
C3—C4 | 1.387 (3) | C17—H17A | 0.9700 |
C3—C12 | 1.511 (2) | C17—H17B | 0.9700 |
C4—C5 | 1.396 (2) | C18—H18A | 0.9600 |
C4—H4A | 0.9300 | C18—H18B | 0.9600 |
C5—C6 | 1.387 (2) | C18—H18C | 0.9600 |
C5—H5A | 0.9300 | C19—H19A | 0.9600 |
C6—C7 | 1.531 (2) | C19—H19B | 0.9600 |
C7—C11 | 1.520 (2) | C19—H19C | 0.9600 |
C7—C8 | 1.524 (2) | C20—H20A | 0.9600 |
C7—H7A | 0.9800 | C20—H20B | 0.9600 |
C8—C9 | 1.357 (2) | C20—H20C | 0.9600 |
C8—C13 | 1.465 (2) | ||
C13—O2—C14 | 116.54 (13) | H12A—C12—H12C | 109.5 |
C16—O4—C17 | 116.64 (14) | H12B—C12—H12C | 109.5 |
C9—N1—C10 | 123.54 (14) | O1—C13—O2 | 122.08 (15) |
C9—N1—H1 | 117.3 | O1—C13—C8 | 123.33 (15) |
C10—N1—H1 | 118.7 | O2—C13—C8 | 114.57 (14) |
C6—C1—C2 | 121.28 (17) | O2—C14—C15 | 110.15 (14) |
C6—C1—H1A | 119.4 | O2—C14—H14A | 109.6 |
C2—C1—H1A | 119.4 | C15—C14—H14A | 109.6 |
C3—C2—C1 | 120.86 (16) | O2—C14—H14B | 109.6 |
C3—C2—H2A | 119.6 | C15—C14—H14B | 109.6 |
C1—C2—H2A | 119.6 | H14A—C14—H14B | 108.1 |
C4—C3—C2 | 117.94 (16) | C14—C15—H15A | 109.5 |
C4—C3—C12 | 121.34 (17) | C14—C15—H15B | 109.5 |
C2—C3—C12 | 120.72 (17) | H15A—C15—H15B | 109.5 |
C3—C4—C5 | 120.87 (16) | C14—C15—H15C | 109.5 |
C3—C4—H4A | 119.6 | H15A—C15—H15C | 109.5 |
C5—C4—H4A | 119.6 | H15B—C15—H15C | 109.5 |
C6—C5—C4 | 121.24 (16) | O3—C16—O4 | 122.14 (15) |
C6—C5—H5A | 119.4 | O3—C16—C11 | 127.33 (16) |
C4—C5—H5A | 119.4 | O4—C16—C11 | 110.53 (14) |
C1—C6—C5 | 117.77 (15) | O4—C17—C18 | 111.28 (14) |
C1—C6—C7 | 121.68 (15) | O4—C17—H17A | 109.4 |
C5—C6—C7 | 120.54 (14) | C18—C17—H17A | 109.4 |
C11—C7—C8 | 111.04 (13) | O4—C17—H17B | 109.4 |
C11—C7—C6 | 111.12 (13) | C18—C17—H17B | 109.4 |
C8—C7—C6 | 110.72 (12) | H17A—C17—H17B | 108.0 |
C11—C7—H7A | 107.9 | C17—C18—H18A | 109.5 |
C8—C7—H7A | 107.9 | C17—C18—H18B | 109.5 |
C6—C7—H7A | 107.9 | H18A—C18—H18B | 109.5 |
C9—C8—C13 | 124.37 (14) | C17—C18—H18C | 109.5 |
C9—C8—C7 | 121.06 (14) | H18A—C18—H18C | 109.5 |
C13—C8—C7 | 114.56 (14) | H18B—C18—H18C | 109.5 |
C8—C9—N1 | 118.86 (15) | C9—C19—H19A | 109.5 |
C8—C9—C19 | 127.69 (15) | C9—C19—H19B | 109.5 |
N1—C9—C19 | 113.42 (14) | H19A—C19—H19B | 109.5 |
C11—C10—N1 | 119.30 (14) | C9—C19—H19C | 109.5 |
C11—C10—C20 | 127.24 (15) | H19A—C19—H19C | 109.5 |
N1—C10—C20 | 113.44 (14) | H19B—C19—H19C | 109.5 |
C10—C11—C16 | 120.59 (15) | C10—C20—H20A | 109.5 |
C10—C11—C7 | 120.89 (14) | C10—C20—H20B | 109.5 |
C16—C11—C7 | 118.37 (14) | H20A—C20—H20B | 109.5 |
C3—C12—H12A | 109.5 | C10—C20—H20C | 109.5 |
C3—C12—H12B | 109.5 | H20A—C20—H20C | 109.5 |
H12A—C12—H12B | 109.5 | H20B—C20—H20C | 109.5 |
C3—C12—H12C | 109.5 | ||
C6—C1—C2—C3 | 0.2 (3) | C9—N1—C10—C11 | −12.4 (2) |
C1—C2—C3—C4 | 1.4 (3) | C9—N1—C10—C20 | 166.21 (14) |
C1—C2—C3—C12 | −178.65 (17) | N1—C10—C11—C16 | 177.23 (14) |
C2—C3—C4—C5 | −1.7 (3) | C20—C10—C11—C16 | −1.1 (2) |
C12—C3—C4—C5 | 178.29 (16) | N1—C10—C11—C7 | −7.3 (2) |
C3—C4—C5—C6 | 0.6 (3) | C20—C10—C11—C7 | 174.40 (15) |
C2—C1—C6—C5 | −1.4 (3) | C8—C7—C11—C10 | 22.6 (2) |
C2—C1—C6—C7 | 177.57 (15) | C6—C7—C11—C10 | −101.07 (17) |
C4—C5—C6—C1 | 1.0 (2) | C8—C7—C11—C16 | −161.75 (13) |
C4—C5—C6—C7 | −177.94 (15) | C6—C7—C11—C16 | 74.54 (17) |
C1—C6—C7—C11 | −112.17 (17) | C14—O2—C13—O1 | −9.6 (2) |
C5—C6—C7—C11 | 66.73 (19) | C14—O2—C13—C8 | 172.05 (13) |
C1—C6—C7—C8 | 123.94 (17) | C9—C8—C13—O1 | 160.80 (15) |
C5—C6—C7—C8 | −57.15 (19) | C7—C8—C13—O1 | −19.1 (2) |
C11—C7—C8—C9 | −21.7 (2) | C9—C8—C13—O2 | −20.9 (2) |
C6—C7—C8—C9 | 102.23 (17) | C7—C8—C13—O2 | 159.24 (13) |
C11—C7—C8—C13 | 158.16 (13) | C13—O2—C14—C15 | −80.96 (18) |
C6—C7—C8—C13 | −77.91 (16) | C17—O4—C16—O3 | 7.0 (2) |
C13—C8—C9—N1 | −174.47 (14) | C17—O4—C16—C11 | −172.52 (13) |
C7—C8—C9—N1 | 5.4 (2) | C10—C11—C16—O3 | 3.5 (3) |
C13—C8—C9—C19 | 3.4 (3) | C7—C11—C16—O3 | −172.17 (15) |
C7—C8—C9—C19 | −176.74 (15) | C10—C11—C16—O4 | −177.07 (14) |
C10—N1—C9—C8 | 13.3 (2) | C7—C11—C16—O4 | 7.31 (19) |
C10—N1—C9—C19 | −164.90 (14) | C16—O4—C17—C18 | 80.78 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.84 | 2.15 | 2.9684 (18) | 166 |
Symmetry code: (i) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C20H25NO4 |
Mr | 343.41 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 10.0175 (1), 7.4287 (1), 25.0974 (3) |
β (°) | 105.528 (1) |
V (Å3) | 1799.50 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.31 × 0.15 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.973, 0.996 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20077, 5309, 3542 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.706 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.147, 1.02 |
No. of reflections | 5309 |
No. of parameters | 231 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.26 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.84 | 2.15 | 2.9684 (18) | 166 |
Symmetry code: (i) x, y−1, z. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
HKF and WCL thank Universiti Sains Malaysia (USM) for a Research University Golden Goose grant (No. 1001/PFIZIK/811012). WCL thanks USM for a Research Fellowship. VV is grateful to DST–India for funding through the Young Scientist Scheme (Fast Track Proposal).
References
Bai, M.-S., Chen, Y.-Y., Niu, D.-L. & Peng, L. (2009). Acta Cryst. E65, o799. Web of Science CSD CrossRef IUCr Journals Google Scholar
Böcker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 28, 1596–1603. Google Scholar
Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320. CrossRef Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cooper, K., Fray, M. J., Parry, M. J., Richardson, K. & Steele, J. (1992). J. Med. Chem. 35, 3115–3129. CrossRef PubMed CAS Web of Science Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Fossheim, R., Svarteng, K., Mostad, A., Rømming, C., Shefter, E. & Triggle, D. J. (1982). J. Med. Chem. 25, 126–131. CSD CrossRef CAS PubMed Web of Science Google Scholar
Gaudio, A. C., Korolkovas, A. & Takahata, Y. (1994). J. Pharm. Sci. 83, 1110–1115. CrossRef CAS PubMed Web of Science Google Scholar
Gordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924–928. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sunkel, C. E., de Casa-Juana, M. F., Santos, L., Garcia, A. G., Artalejo, C. R., Villarroya, M., González-Morales, M. A., López, M. G., Cillero, J., Alonso, S. & Priego, J. G. (1992). J. Med. Chem. 35, 2407–2414. CrossRef PubMed CAS Web of Science Google Scholar
Teng, F., Kong, F. & Liu, Q. (2008). Acta Cryst. E64, o293. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851–2859. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hantzsch 1,4-dihydropyridines (1,4-DHPS) are biologically active compounds which include various vasodilator, anti-hypertensive, bronchodilator, heptaprotective, anti-tumor, anti-mutagenic, geroprotective and anti-diabetic agents (Gaudio et al., 1994). Nifedipine, Nitrendipine and Nimodipine etc., have found commercial utility as calcium channel blockers (Böcker & Guengerich, 1986; Gordeev et al., 1996). For the treatment of congestive heart failure, a number of DHP calcium antagonists have been introduced (Sunkel et al., 1992; Vo et al., 1995). Some DHPs have been introduced as neuroprotectants and cognition enhancers. In addition, a number of DHPs with platelet anti-aggregatory activity have also been discovered (Cooper et al., 1992).
In the title compound (I, Fig. 1), the bond lengths and angles have normal values and are comparable to closely related structures (Teng et al., 2008; Bai et al., 2009). The dihedral angle between the benzene ring and the mean plane of 1,4-dihydropyridine ring is 89.77 (8)°, indicating that both the rings are perpendicular to each other. The 1,4-dihydropyridine ring adopts a flattened-boat conformation (Boeyens, 1978; Cremer & Pople, 1975) with ring distortions at the nitrogen (Nl) and the tetrahedral carbon (C7). Both atoms are displaced in the same direction from the ring with distances of 0.115 (1) Å and 0.151 (2) Å, respectively, from the plane defined by C8, C9, C10, and C11, and form the apexes of a boat-type conformation (Fossheim et al., 1982).
The crystal packing (Fig. 2) is consolidated by intermolecular N1—H1···O1 hydrogen bonds, Table 1, linking the molecules into chains parallel to the b-axis.