metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-cyclo­hexane-1,3-di­carboxyl­ato)-κ3O1:O4,O4′;κ3O1,O1′:O4-bis­­[aqua­(1,10-phenanthroline-κ2N,N′)zinc(II)]

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 31 August 2009; accepted 1 September 2009; online 9 September 2009)

The cyclo­hexane-1,3-dicarboxyl­ate dianion in the dinuclear centrosymmetric title compound, [Zn2(C8H10O4)2(C12H8N2)2(H2O)2], has a chair conformation with both carboxyl­ate groups in equatorial positions. One carboxyl­ate group chelates a ZnII atom, whereas the other binds through one O atom only to confer a six-coordinate status to the N-heterocycle-chelated water-coordinated ZnII atom. Adjacent dinuclear mol­ecules are linked by O—H⋯O hydrogen bonds into a linear chain.

Related literature

For the isostructural manganese(II) analog, see: Thirumurugan et al. (2006[Thirumurugan, T., Avinash, M. B. & Rao, C. N. R. (2006). Dalton Trans. pp. 221-228.]). For a review of the mol­ecular architectures of metal carboxyl­ate adducts of 2,2′-bipyridine-like ligands, see: Ye et al. (2003[Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2003). Coord. Chem. Rev. 246, 185-202.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C8H10O4)2(C12H8N2)2(H2O)2]

  • Mr = 867.50

  • Monoclinic, P 21 /c

  • a = 9.6172 (2) Å

  • b = 17.4722 (5) Å

  • c = 11.4822 (3) Å

  • β = 104.393 (2)°

  • V = 1868.84 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 100 K

  • 0.20 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.774, Tmax = 0.823

  • 9952 measured reflections

  • 3289 independent reflections

  • 2706 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.177

  • S = 1.09

  • 3289 reflections

  • 261 parameters

  • 74 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.17 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O2 0.84 (6) 1.80 (7) 2.614 (6) 162 (8)
O1w—H12⋯O4i 0.84 (6) 1.89 (3) 2.701 (6) 161 (8)
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XSHELL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the isostructural manganese(II) analog, see: Thirumurugan et al. (2006). For a review of the molecular architectures of metal carboxylate adducts of 2,2'-bipyridine-like ligands, see: Ye et al. (2003).

Experimental top

Zinc acetate (0.10 g, 0.46 mmol), cyclohexane-1,3-dicarboxylic acid (mixture of cis- and trans-isomers) (0.08 g, 0.46 mmol) and 1,10-phenanthroline (0.09 g, 0.46 mmol) along with water (18 ml) were heated in a 23-ml Teflon-lined stainless-steel Parr bomb. The bomb was heated at 403 K for 3 days. The bomb was cooled to room temperature at 5 K per hour. Tiny crystals were isolated from the solution.

Refinement top

Hydrogen atoms were included in the refinement in the riding model approximation with C–H 0.95 – 1.00 Å, and with U(H) 1.2Ueq(C). The water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H 0.84±0.01 Å; their displacement factors were refined.

The carbon atoms of the 1,10-phenanthroline molecule displayed somewhat elongated thermal elliposoids. As such, their anisotropic displacement factors were restrained to be nearly isotropic.

The final difference Fourier map had a peak in the vicinity of the C1 and C6 atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSHELL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. 50% Probability displacement ellipsoid plot of Zn2(H2O)2(C12H8N2)2(C8H10O4)2. Hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry code (i): 2-x, 1-y, 1-z.
Bis(µ-cyclohexane-1,3-dicarboxylato)-κ3O1: O4,O4';κ3O1,O1':O4- bis[aqua(1,10-phenanthroline-κ2N,N')zinc(II)] top
Crystal data top
[Zn2(C8H10O4)2(C12H8N2)2(H2O)2]F(000) = 896
Mr = 867.50Dx = 1.542 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2661 reflections
a = 9.6172 (2) Åθ = 2.2–26.3°
b = 17.4722 (5) ŵ = 1.35 mm1
c = 11.4822 (3) ÅT = 100 K
β = 104.393 (2)°Block, colorless
V = 1868.84 (8) Å30.20 × 0.16 × 0.15 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
3289 independent reflections
Radiation source: fine-focus sealed tube2706 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.774, Tmax = 0.823k = 2020
9952 measured reflectionsl = 1013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0653P)2 + 9.3251P]
where P = (Fo2 + 2Fc2)/3
3289 reflections(Δ/σ)max = 0.001
261 parametersΔρmax = 1.17 e Å3
74 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Zn2(C8H10O4)2(C12H8N2)2(H2O)2]V = 1868.84 (8) Å3
Mr = 867.50Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.6172 (2) ŵ = 1.35 mm1
b = 17.4722 (5) ÅT = 100 K
c = 11.4822 (3) Å0.20 × 0.16 × 0.15 mm
β = 104.393 (2)°
Data collection top
Bruker SMART APEX
diffractometer
3289 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2706 reflections with I > 2σ(I)
Tmin = 0.774, Tmax = 0.823Rint = 0.032
9952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06974 restraints
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 1.17 e Å3
3289 reflectionsΔρmin = 0.51 e Å3
261 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.70076 (7)0.51170 (4)0.71412 (7)0.0348 (3)
O10.8609 (5)0.5855 (3)0.7036 (5)0.0516 (13)
O20.7359 (6)0.6719 (3)0.5775 (5)0.0541 (14)
O31.1660 (5)0.5852 (3)0.3118 (4)0.0461 (12)
O41.3286 (4)0.5440 (3)0.4667 (4)0.0414 (11)
O1w0.5440 (5)0.5921 (3)0.6510 (4)0.0367 (10)
H110.593 (7)0.626 (3)0.627 (7)0.06 (3)*
H120.471 (5)0.572 (4)0.606 (6)0.05 (2)*
N10.5460 (6)0.4333 (3)0.7566 (5)0.0394 (13)
N20.7539 (6)0.5156 (4)0.9034 (5)0.0495 (16)
C11.1790 (11)0.7240 (5)0.4694 (11)0.085 (3)
H1A1.10880.73180.39120.102*
H1B1.27500.73860.45980.102*
C21.1393 (10)0.7760 (5)0.5650 (11)0.090 (4)
H2A1.21520.77300.64100.108*
H2B1.13220.82980.53710.108*
C30.9953 (11)0.7504 (5)0.5869 (12)0.096 (4)
H3A0.97540.78090.65360.116*
H3B0.91790.76090.51390.116*
C40.9932 (9)0.6721 (5)0.6155 (10)0.070 (3)
H41.06520.66530.69430.084*
C51.0389 (7)0.6182 (4)0.5277 (7)0.0426 (16)
H5A0.96300.61620.45160.051*
H5B1.05170.56590.56200.051*
C61.1801 (9)0.6455 (5)0.5022 (9)0.064 (2)
H61.25340.64150.58080.077*
C71.2268 (6)0.5891 (4)0.4205 (6)0.0369 (15)
C80.8505 (7)0.6411 (4)0.6334 (8)0.0499 (19)
C90.4467 (8)0.3928 (4)0.6845 (8)0.0502 (18)
H90.43020.40130.60040.060*
C100.3633 (9)0.3378 (5)0.7238 (10)0.066 (2)
H100.29320.30940.66750.079*
C110.3834 (10)0.3256 (5)0.8412 (11)0.074 (3)
H11A0.32700.28840.86890.089*
C120.4866 (10)0.3671 (5)0.9239 (8)0.068 (3)
C130.5188 (13)0.3622 (6)1.0544 (11)0.089 (3)
H130.46550.32741.08990.107*
C140.6173 (15)0.4034 (7)1.1242 (10)0.094 (4)
H140.63210.39761.20860.113*
C150.7051 (12)0.4574 (6)1.0810 (8)0.079 (3)
C160.8171 (14)0.5024 (7)1.1488 (10)0.096 (4)
H160.84100.49751.23380.115*
C170.8914 (12)0.5518 (7)1.0997 (10)0.092 (4)
H170.96540.58221.14840.110*
C180.8568 (8)0.5576 (5)0.9736 (7)0.065 (2)
H180.90870.59270.93730.078*
C190.6786 (9)0.4657 (5)0.9548 (6)0.053 (2)
C200.5701 (8)0.4215 (4)0.8787 (7)0.0470 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0269 (4)0.0414 (4)0.0374 (4)0.0027 (3)0.0104 (3)0.0022 (3)
O10.031 (2)0.049 (3)0.076 (4)0.009 (2)0.014 (2)0.004 (3)
O20.056 (3)0.037 (3)0.078 (4)0.011 (2)0.033 (3)0.001 (2)
O30.032 (2)0.060 (3)0.044 (3)0.002 (2)0.004 (2)0.001 (2)
O40.028 (2)0.059 (3)0.037 (3)0.005 (2)0.0079 (19)0.004 (2)
O1w0.026 (2)0.049 (3)0.035 (3)0.002 (2)0.008 (2)0.002 (2)
N10.037 (3)0.040 (3)0.046 (3)0.005 (2)0.021 (3)0.007 (3)
N20.040 (3)0.067 (4)0.034 (3)0.026 (3)0.005 (3)0.017 (3)
C10.082 (6)0.062 (6)0.138 (10)0.014 (5)0.079 (7)0.008 (6)
C20.080 (6)0.057 (5)0.164 (11)0.035 (5)0.087 (7)0.049 (6)
C30.086 (7)0.068 (6)0.166 (11)0.039 (5)0.090 (8)0.057 (7)
C40.057 (5)0.051 (5)0.120 (8)0.012 (4)0.057 (5)0.016 (5)
C50.038 (4)0.040 (4)0.055 (5)0.008 (3)0.019 (3)0.001 (3)
C60.055 (5)0.056 (5)0.098 (7)0.016 (4)0.049 (5)0.025 (5)
C70.028 (3)0.046 (4)0.040 (4)0.011 (3)0.015 (3)0.005 (3)
C80.036 (4)0.047 (4)0.075 (5)0.006 (3)0.028 (4)0.022 (4)
C90.044 (4)0.045 (4)0.069 (5)0.008 (3)0.028 (4)0.001 (3)
C100.054 (4)0.049 (4)0.109 (7)0.001 (3)0.047 (5)0.004 (4)
C110.065 (5)0.050 (4)0.126 (7)0.019 (4)0.059 (5)0.028 (5)
C120.085 (5)0.065 (5)0.079 (5)0.053 (4)0.064 (5)0.043 (4)
C130.107 (7)0.086 (6)0.100 (7)0.064 (5)0.073 (6)0.056 (5)
C140.122 (7)0.112 (7)0.062 (6)0.084 (6)0.050 (6)0.036 (5)
C150.091 (6)0.090 (6)0.055 (5)0.067 (5)0.020 (5)0.009 (5)
C160.112 (7)0.108 (7)0.056 (5)0.080 (6)0.003 (5)0.018 (5)
C170.077 (6)0.102 (7)0.071 (6)0.055 (5)0.029 (5)0.044 (5)
C180.049 (4)0.078 (5)0.053 (4)0.035 (4)0.015 (4)0.028 (4)
C190.062 (4)0.067 (5)0.035 (4)0.046 (4)0.019 (3)0.012 (3)
C200.056 (4)0.050 (4)0.045 (4)0.029 (3)0.031 (3)0.018 (3)
Geometric parameters (Å, º) top
Zn1—O12.035 (5)C4—C51.521 (10)
Zn1—O3i2.188 (5)C4—C81.536 (9)
Zn1—O4i2.247 (5)C4—H41.0000
Zn1—O1w2.056 (5)C5—C61.536 (9)
Zn1—N12.166 (5)C5—H5A0.9900
Zn1—N22.107 (6)C5—H5B0.9900
O1—C81.250 (10)C6—C71.504 (10)
O2—C81.251 (9)C6—H61.0000
O3—C71.241 (8)C9—C101.397 (10)
O3—Zn1i2.188 (5)C9—H90.9500
O4—C71.266 (8)C10—C111.331 (14)
O4—Zn1i2.247 (5)C10—H100.9500
O1w—H110.84 (6)C11—C121.394 (14)
O1w—H120.84 (6)C11—H11A0.9500
N1—C91.306 (9)C12—C201.423 (11)
N1—C201.378 (9)C12—C131.456 (15)
N2—C181.331 (10)C13—C141.297 (16)
N2—C191.358 (11)C13—H130.9500
C1—C61.422 (12)C14—C151.434 (17)
C1—C21.544 (12)C14—H140.9500
C1—H1A0.9900C15—C191.416 (11)
C1—H1B0.9900C15—C161.403 (16)
C2—C31.535 (10)C16—C171.331 (17)
C2—H2A0.9900C16—H160.9500
C2—H2B0.9900C17—C181.407 (14)
C3—C41.408 (13)C17—H170.9500
C3—H3A0.9900C18—H180.9500
C3—H3B0.9900C19—C201.412 (12)
O1—Zn1—O3i90.3 (2)C6—C5—H5A109.6
O1—Zn1—O4i98.2 (2)C4—C5—H5B109.6
O1—Zn1—O1w92.6 (2)C6—C5—H5B109.6
O1—Zn1—N292.7 (2)H5A—C5—H5B108.1
O1—Zn1—N1170.6 (2)C1—C6—C7116.8 (8)
O3i—Zn1—O4i58.8 (2)C1—C6—C5113.7 (7)
O3i—Zn1—O1w152.1 (2)C7—C6—C5109.3 (6)
O3i—Zn1—N190.0 (2)C1—C6—H6105.3
O3i—Zn1—N299.5 (2)C7—C6—H6105.3
O4i—Zn1—O1w93.3 (2)C5—C6—H6105.3
O4i—Zn1—N189.9 (2)O3—C7—O4120.6 (6)
O4i—Zn1—N2155.5 (2)O3—C7—C6121.6 (7)
O1w—Zn1—N191.6 (2)O4—C7—C6117.8 (7)
O1w—Zn1—N2108.1 (2)O2—C8—O1125.7 (6)
N1—Zn1—N278.0 (2)O2—C8—C4118.9 (8)
C8—O1—Zn1126.2 (5)O1—C8—C4115.4 (7)
C7—O3—Zn1i91.9 (4)N1—C9—C10123.7 (8)
C7—O4—Zn1i88.6 (4)N1—C9—H9118.1
Zn1—O1w—H11100 (6)C10—C9—H9118.1
Zn1—O1w—H12111 (5)C11—C10—C9119.2 (9)
H11—O1w—H12123 (8)C11—C10—H10120.4
C9—N1—C20118.4 (6)C9—C10—H10120.4
C9—N1—Zn1129.4 (5)C10—C11—C12120.3 (8)
C20—N1—Zn1111.9 (5)C10—C11—H11A119.8
C18—N2—C19119.2 (7)C12—C11—H11A119.8
C18—N2—Zn1126.6 (6)C11—C12—C20118.1 (8)
C19—N2—Zn1114.1 (5)C11—C12—C13127.1 (9)
C6—C1—C2111.5 (8)C20—C12—C13114.9 (10)
C6—C1—H1A109.3C14—C13—C12122.6 (10)
C2—C1—H1A109.3C14—C13—H13118.7
C6—C1—H1B109.3C12—C13—H13118.7
C2—C1—H1B109.3C13—C14—C15123.7 (10)
H1A—C1—H1B108.0C13—C14—H14118.2
C3—C2—C1109.7 (7)C15—C14—H14118.2
C3—C2—H2A109.7C14—C15—C19116.7 (11)
C1—C2—H2A109.7C14—C15—C16127.9 (11)
C3—C2—H2B109.7C19—C15—C16115.4 (11)
C1—C2—H2B109.7C17—C16—C15123.2 (10)
H2A—C2—H2B108.2C17—C16—H16118.4
C4—C3—C2112.8 (8)C15—C16—H16118.4
C4—C3—H3A109.0C16—C17—C18117.9 (11)
C2—C3—H3A109.0C16—C17—H17121.1
C4—C3—H3B109.0C18—C17—H17121.1
C2—C3—H3B109.0N2—C18—C17122.2 (11)
H3A—C3—H3B107.8N2—C18—H18118.9
C3—C4—C5115.1 (8)C17—C18—H18118.9
C3—C4—C8116.0 (7)N2—C19—C20118.3 (6)
C5—C4—C8106.6 (6)N2—C19—C15122.0 (9)
C3—C4—H4106.1C20—C19—C15119.6 (9)
C5—C4—H4106.1N1—C20—C19117.3 (6)
C8—C4—H4106.1N1—C20—C12120.2 (8)
C4—C5—C6110.4 (6)C19—C20—C12122.5 (8)
C4—C5—H5A109.6
O1w—Zn1—O1—C826.9 (6)C3—C4—C8—O229.2 (13)
N2—Zn1—O1—C8135.2 (6)C5—C4—C8—O2100.4 (8)
O3i—Zn1—O1—C8125.3 (6)C3—C4—C8—O1151.5 (9)
O4i—Zn1—O1—C866.8 (6)C5—C4—C8—O178.9 (9)
O1w—Zn1—N1—C972.9 (6)C20—N1—C9—C100.2 (10)
N2—Zn1—N1—C9178.9 (6)Zn1—N1—C9—C10172.7 (5)
O3i—Zn1—N1—C979.2 (6)N1—C9—C10—C110.8 (12)
O4i—Zn1—N1—C920.4 (6)C9—C10—C11—C120.2 (12)
O1w—Zn1—N1—C20113.8 (4)C10—C11—C12—C200.9 (11)
N2—Zn1—N1—C205.6 (4)C10—C11—C12—C13178.2 (7)
O3i—Zn1—N1—C2094.1 (4)C11—C12—C13—C14180.0 (9)
O4i—Zn1—N1—C20152.9 (4)C20—C12—C13—C140.9 (12)
O1—Zn1—N2—C182.1 (6)C12—C13—C14—C150.5 (14)
O1w—Zn1—N2—C1891.6 (5)C13—C14—C15—C191.1 (13)
N1—Zn1—N2—C18179.3 (6)C13—C14—C15—C16177.6 (9)
O3i—Zn1—N2—C1892.8 (6)C14—C15—C16—C17179.2 (9)
O4i—Zn1—N2—C18118.8 (6)C19—C15—C16—C172.2 (12)
O1—Zn1—N2—C19173.6 (4)C15—C16—C17—C181.2 (14)
O1w—Zn1—N2—C1992.7 (5)C19—N2—C18—C170.5 (10)
N1—Zn1—N2—C195.0 (4)Zn1—N2—C18—C17175.0 (5)
O3i—Zn1—N2—C1982.9 (4)C16—C17—C18—N20.2 (12)
O4i—Zn1—N2—C1956.9 (7)C18—N2—C19—C20179.8 (6)
C6—C1—C2—C355.1 (14)Zn1—N2—C19—C203.8 (7)
C1—C2—C3—C453.5 (14)C18—N2—C19—C150.6 (9)
C2—C3—C4—C552.1 (13)Zn1—N2—C19—C15176.6 (5)
C2—C3—C4—C8177.5 (9)C14—C15—C19—N2179.3 (6)
C3—C4—C5—C648.8 (11)C16—C15—C19—N21.8 (10)
C8—C4—C5—C6178.9 (8)C14—C15—C19—C200.2 (10)
C2—C1—C6—C7176.1 (8)C16—C15—C19—C20178.6 (6)
C2—C1—C6—C555.2 (12)C9—N1—C20—C19179.7 (6)
C4—C5—C6—C150.4 (11)Zn1—N1—C20—C195.5 (7)
C4—C5—C6—C7177.0 (8)C9—N1—C20—C120.9 (9)
Zn1i—O3—C7—O41.5 (6)Zn1—N1—C20—C12175.0 (5)
Zn1i—O3—C7—C6176.8 (5)N2—C19—C20—N11.3 (9)
Zn1i—O4—C7—O31.4 (6)C15—C19—C20—N1178.3 (6)
Zn1i—O4—C7—C6176.9 (5)N2—C19—C20—C12179.3 (6)
C1—C6—C7—O356.5 (10)C15—C19—C20—C121.2 (10)
C5—C6—C7—O374.4 (9)C11—C12—C20—N11.4 (9)
C1—C6—C7—O4125.2 (9)C13—C12—C20—N1177.7 (6)
C5—C6—C7—O4103.9 (8)C11—C12—C20—C19179.1 (6)
Zn1—O1—C8—O217.5 (11)C13—C12—C20—C191.7 (9)
Zn1—O1—C8—C4161.7 (5)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O20.84 (6)1.80 (7)2.614 (6)162 (8)
O1w—H12···O4ii0.84 (6)1.89 (3)2.701 (6)161 (8)
Symmetry code: (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Zn2(C8H10O4)2(C12H8N2)2(H2O)2]
Mr867.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.6172 (2), 17.4722 (5), 11.4822 (3)
β (°) 104.393 (2)
V3)1868.84 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.20 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.774, 0.823
No. of measured, independent and
observed [I > 2σ(I)] reflections
9952, 3289, 2706
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.177, 1.09
No. of reflections3289
No. of parameters261
No. of restraints74
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.17, 0.51

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XSHELL (Sheldrick, 2008), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O20.84 (6)1.80 (7)2.614 (6)162 (8)
O1w—H12···O4i0.84 (6)1.89 (3)2.701 (6)161 (8)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We thank the University of Malaya for supporting this study.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThirumurugan, T., Avinash, M. B. & Rao, C. N. R. (2006). Dalton Trans. pp. 221–228.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationYe, B.-H., Tong, M.-L. & Chen, X.-M. (2003). Coord. Chem. Rev. 246, 185–202.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds