metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Disodium (2RS,3SR)-tartrate

aSchering-Plough Research Institute, Newhouse, Motherwell ML1 5SH, Scotland, and bDepartment of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: a.r.kennedy@strath.ac.uk

(Received 10 September 2009; accepted 14 September 2009; online 19 September 2009)

The asymmetric unit of the anhydrous title compound, 2Na+·C4H4O62−, contains two sodium cations and one tartrate anion. Each sodium ion is six coordinate, with bonding to six O atoms from both the carboxyl­ate and hydroxyl groups of the anion. A three-dimensional coordination network is formed with sodium ions stacking in layers along the c-axis direction. This network is supported by additional O—H⋯O hydrogen bonds.

Related literature

For the preparation and structure of the equivalent anhydrous meso-tartrate salt, see: Blankensteyn & Kroon (1985[Blankensteyn, A. J. A. R. & Kroon, J. (1985). Acta Cryst. C41, 182-184.]). For similar hydrated tartrate salt examples using sodium or mixed sodium with lithium, potassium, rubidium or ammonium cations, see: Ambady & Kartha (1968[Ambady, G. K. & Kartha, G. (1968). Acta Cryst. B24, 1540-1547.]); Suzuki et al. (1996[Suzuki, E., Kabasawa, H., Honma, T., Nozaki, R. & Shiozaki, Y. (1996). Acta Cryst. B52, 976-981.]); Buschmann & Luger (1985[Buschmann, J. & Luger, P. (1985). Acta Cryst. C41, 206-208.]); Görbitz & Sagstuen (2008[Görbitz, C. H. & Sagstuen, E. (2008). Acta Cryst. E64, m507-m508.]); Hinazumi & Mitsui (1972[Hinazumi, H. & Mitsui, T. (1972). Acta Cryst. B28, 3299-3305.]). For the use of tartrates as food additives, see: Vickers et al. (2007[Vickers, P. J., Braybook, J., Lawrence, P. & Gray, K. (2007). J. Food. Compos. Anal. 20, 252-256.]).

[Scheme 1]

Experimental

Crystal data
  • 2Na+·C4H4O62−

  • Mr = 194.06

  • Orthorhombic, P b c a

  • a = 10.1160 (4) Å

  • b = 10.0049 (5) Å

  • c = 13.0821 (5) Å

  • V = 1324.03 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 123 K

  • 0.24 × 0.15 × 0.09 mm

Data collection
  • Oxford Diffraction Gemini S CCD diffractometer

  • Absorption correction: multi-scan (ABSPACK; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD, CrysAlis RED and ABSPACK. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.894, Tmax = 1.000

  • 7156 measured reflections

  • 1934 independent reflections

  • 1566 reflections with I > 2/s(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.072

  • S = 1.05

  • 1934 reflections

  • 117 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H2⋯O2i 0.900 (17) 1.752 (18) 2.6480 (12) 173.2 (17)
O6—H4⋯O5ii 0.883 (17) 1.787 (17) 2.6643 (12) 172.0 (18)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, -z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD, CrysAlis RED and ABSPACK. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD, CrysAlis RED and ABSPACK. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Tartrate salts are often used as food additives due to their ability to act as anti-oxidants. Disodium tartrate dihydrate, additive number (E335), is used as an emulsifier and binding agent in food products such as jam and sugar syrup (Vickers et al., 2007).

The anhydrous form of racemic disodium tartrate (I) was obtained from aqueous solution. The salt crystallizes in space group Pbca, with two sodium cations and one tartrate anion in the asymmetric unit, Fig. 1. Structures of anhydrous forms of similar materials are uncommon. The extensive structural literature on sodium tartrates and the historically important mixed cation double salts (Na/X, with X = Li, K, Rb & NH4) is dominated by hydrated forms (Ambady & Kartha, 1968; Suzuki et al., 1996; Buschmann & Luger, 1985; Görbitz & Sagstuen, 2008; Hinazumi & Mitsui, 1972). The only other known anhydrous sodium tartrate structure is that of disodium meso-tartrate salt (Blankensteyn & Kroon, 1985).

In the present anhydrate, (I), each Na ion forms six bonds to O and each O atom in turn forms two bonds to Na. The range of bond lengths found for Na—OOOC interactions, 2.3097 (10) to 2.5370 (9), encompasses that found for Na—OOH bonds, i.e. 2.3580 (9) to 2.4994 (9) Å. The bond lengths compare well with those observed for disodium D-tartrate dihydrate (Ambady & Kartha, 1968). Each tartrate anion bridges a total of 7 Na ions, see Fig. 2, giving a 3- dimensional coordination network. Figure 3 shows a view of the packed structure, looking down the c direction. Note the columns of Na atoms parallel to c and also that the apparently empty channels are only 2.5 Å wide and thus are in fact approximate to van der Waals contact distances. This network is supported by intermolecular hydrogen bonding from the OH groups to the carboxylate groups, see Table 1.

Related literature top

For the preparation and structure of the equivalent anhydrous meso-tartrate salt, see: Blankensteyn & Kroon, (1985). For similar hydrated tartrate salt examples using sodium or mixed sodium with lithium, potassium, rubidium or ammonium cations, see: Ambady & Kartha (1968); Suzuki et al. (1996); Buschmann & Luger (1985); Görbitz & Sagstuen (2008); Hinazumi & Mitsui (1972). For the use of tartrates as food additives, see: Vickers et al. (2007).

Experimental top

Compound (I) was obtained on treating an aqueous solution of (+/-)tartaric acid with an aqueous solution of sodium carbonate. Single-crystals were obtained by allowing the solvent of the reaction mixture to evaporate at 295 K.

Refinement top

Hydroxyl-H atoms were found by difference synthesis and refined isotropically; see Table 1. All other H atoms were positioned geometrically with C—H = 1.00 Å, and with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit and atomic labelling of (I), showing 50% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Extended structure formed by bridging O atoms between the Na cations in (I). The Na atoms are purple, O atoms are red, and C atoms are black. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Packed structure of (I) viewed down the c-axis.
Disodium (2RS,3SR)-tartrate top
Crystal data top
2Na+·C4H4O62F(000) = 784
Mr = 194.06Dx = 1.947 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3917 reflections
a = 10.1160 (4) Åθ = 2.5–30.8°
b = 10.0049 (5) ŵ = 0.29 mm1
c = 13.0821 (5) ÅT = 123 K
V = 1324.03 (10) Å3Block, colourless
Z = 80.24 × 0.15 × 0.09 mm
Data collection top
Oxford Diffraction Gemini S CCD
diffractometer
1934 independent reflections
Radiation source: fine-focus sealed tube1566 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 30.8°, θmin = 3.1°
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2007)
h = 148
Tmin = 0.894, Tmax = 1.000k = 1414
7156 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0412P)2]
where P = (Fo2 + 2Fc2)/3
1934 reflections(Δ/σ)max = 0.001
117 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
2Na+·C4H4O62V = 1324.03 (10) Å3
Mr = 194.06Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.1160 (4) ŵ = 0.29 mm1
b = 10.0049 (5) ÅT = 123 K
c = 13.0821 (5) Å0.24 × 0.15 × 0.09 mm
Data collection top
Oxford Diffraction Gemini S CCD
diffractometer
1934 independent reflections
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2007)
1566 reflections with I > 2/s(I)
Tmin = 0.894, Tmax = 1.000Rint = 0.024
7156 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.39 e Å3
1934 reflectionsΔρmin = 0.31 e Å3
117 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.55185 (4)0.03963 (5)0.37266 (3)0.01008 (12)
Na20.52569 (5)0.03323 (5)0.12690 (3)0.01163 (12)
O10.53147 (9)0.24500 (8)0.29356 (7)0.0149 (2)
O20.61519 (8)0.40740 (8)0.19771 (6)0.01028 (18)
O30.66678 (8)0.05364 (8)0.20387 (6)0.00958 (17)
O40.73339 (8)0.01137 (9)0.05789 (6)0.01434 (19)
O50.89689 (8)0.12972 (8)0.01024 (6)0.01052 (18)
O60.54400 (8)0.15557 (9)0.02943 (6)0.00950 (17)
C10.60624 (11)0.28543 (11)0.22473 (8)0.0082 (2)
C20.69680 (11)0.18581 (11)0.16939 (8)0.0078 (2)
H10.79100.20690.18590.009*
C30.67622 (11)0.19485 (12)0.05305 (8)0.0082 (2)
H30.69000.28940.03060.010*
C40.77515 (10)0.10399 (12)0.00307 (8)0.0087 (2)
H20.7378 (17)0.0000 (17)0.1980 (13)0.033 (5)*
H40.4958 (17)0.2286 (16)0.0224 (14)0.026 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0103 (2)0.0103 (2)0.0096 (2)0.00008 (18)0.00033 (16)0.00102 (17)
Na20.0123 (2)0.0126 (2)0.0100 (2)0.0033 (2)0.00156 (16)0.00156 (17)
O10.0174 (4)0.0114 (4)0.0158 (4)0.0023 (4)0.0085 (3)0.0021 (3)
O20.0111 (4)0.0073 (4)0.0124 (4)0.0000 (3)0.0002 (3)0.0005 (3)
O30.0109 (4)0.0069 (4)0.0109 (4)0.0012 (3)0.0008 (3)0.0019 (3)
O40.0116 (4)0.0154 (4)0.0161 (4)0.0004 (4)0.0013 (3)0.0077 (3)
O50.0078 (3)0.0112 (4)0.0125 (4)0.0004 (3)0.0002 (3)0.0009 (3)
O60.0074 (4)0.0097 (4)0.0114 (4)0.0004 (3)0.0017 (3)0.0003 (3)
C10.0085 (5)0.0086 (5)0.0075 (4)0.0003 (4)0.0019 (4)0.0012 (4)
C20.0087 (5)0.0066 (5)0.0082 (4)0.0002 (4)0.0003 (4)0.0002 (4)
C30.0073 (5)0.0081 (5)0.0092 (4)0.0009 (4)0.0000 (4)0.0001 (4)
C40.0100 (5)0.0092 (5)0.0069 (5)0.0004 (4)0.0004 (4)0.0020 (4)
Geometric parameters (Å, º) top
Na1—O12.3097 (10)O2—C11.2737 (14)
Na1—O2i2.3352 (9)O2—Na1viii2.3352 (9)
Na1—O5ii2.3699 (9)O2—Na2vii2.5370 (9)
Na1—O4iii2.4095 (9)O3—C21.4298 (14)
Na1—O32.4994 (9)O3—Na2iv2.3580 (9)
Na1—O5iii2.5257 (9)O3—H20.900 (17)
Na1—C4iii2.7875 (12)O4—C41.2457 (13)
Na1—Na2iv3.3886 (6)O4—Na1ix2.4095 (9)
Na1—Na1v3.5820 (8)O5—C41.2701 (13)
Na2—O42.2973 (9)O5—Na1x2.3699 (9)
Na2—O3iv2.3580 (9)O5—Na1ix2.5257 (9)
Na2—O6iv2.3856 (9)O6—C31.4279 (13)
Na2—O62.3907 (9)O6—Na2iv2.3856 (9)
Na2—O1vi2.4513 (10)O6—H40.883 (17)
Na2—O2vi2.5370 (9)C1—C21.5352 (16)
Na2—C1vi2.7790 (12)C1—Na2vii2.7790 (12)
Na2—C43.0813 (12)C2—C31.5389 (14)
Na2—Na1iv3.3886 (6)C2—H11.0000
Na2—Na2iv3.4259 (9)C3—C41.5385 (15)
O1—C11.2435 (13)C3—H31.0000
O1—Na2vii2.4513 (10)C4—Na1ix2.7875 (12)
O1—Na1—O2i105.24 (3)O6—Na2—Na1iv160.01 (3)
O1—Na1—O5ii83.81 (3)O1vi—Na2—Na1iv78.32 (2)
O2i—Na1—O5ii89.52 (3)O2vi—Na2—Na1iv43.53 (2)
O1—Na1—O4iii115.96 (4)C1vi—Na2—Na1iv62.98 (3)
O2i—Na1—O4iii132.93 (4)C4—Na2—Na1iv137.55 (3)
O5ii—Na1—O4iii115.67 (3)O4—Na2—Na2iv74.89 (3)
O1—Na1—O366.16 (3)O3iv—Na2—Na2iv102.54 (3)
O2i—Na1—O391.15 (3)O6iv—Na2—Na2iv44.23 (2)
O5ii—Na1—O3149.03 (3)O6—Na2—Na2iv44.11 (2)
O4iii—Na1—O385.73 (3)O1vi—Na2—Na2iv126.20 (3)
O1—Na1—O5iii159.12 (4)O2vi—Na2—Na2iv167.44 (3)
O2i—Na1—O5iii92.83 (3)C1vi—Na2—Na2iv148.01 (3)
O5ii—Na1—O5iii86.00 (3)C4—Na2—Na2iv70.08 (2)
O4iii—Na1—O5iii53.42 (3)Na1iv—Na2—Na2iv147.42 (2)
O3—Na1—O5iii124.87 (3)C1—O1—Na1124.02 (7)
O1—Na1—C4iii140.88 (4)C1—O1—Na2vii91.57 (7)
O2i—Na1—C4iii113.09 (4)Na1—O1—Na2vii128.11 (4)
O5ii—Na1—C4iii103.55 (3)C1—O2—Na1viii126.92 (7)
O4iii—Na1—C4iii26.47 (3)C1—O2—Na2vii87.02 (6)
O3—Na1—C4iii104.60 (3)Na1viii—O2—Na2vii88.03 (3)
O5iii—Na1—C4iii27.09 (3)C2—O3—Na2iv112.43 (6)
O1—Na1—Na2iv75.27 (3)C2—O3—Na1115.43 (6)
O2i—Na1—Na2iv48.44 (2)Na2iv—O3—Na188.42 (3)
O5ii—Na1—Na2iv122.82 (3)C2—O3—H2110.8 (11)
O4iii—Na1—Na2iv121.39 (3)Na2iv—O3—H2113.8 (11)
O3—Na1—Na2iv44.07 (2)Na1—O3—H2114.4 (11)
O5iii—Na1—Na2iv125.40 (3)C4—O4—Na2117.75 (7)
C4iii—Na1—Na2iv126.00 (3)C4—O4—Na1ix93.95 (7)
O1—Na1—Na1v125.98 (3)Na2—O4—Na1ix134.16 (4)
O2i—Na1—Na1v91.68 (3)C4—O5—Na1x130.76 (7)
O5ii—Na1—Na1v44.70 (2)C4—O5—Na1ix88.02 (7)
O4iii—Na1—Na1v82.32 (2)Na1x—O5—Na1ix94.00 (3)
O3—Na1—Na1v166.03 (3)C3—O6—Na2iv112.27 (6)
O5iii—Na1—Na1v41.30 (2)C3—O6—Na2113.49 (6)
C4iii—Na1—Na1v61.79 (2)Na2iv—O6—Na291.66 (3)
Na2iv—Na1—Na1v140.09 (2)C3—O6—H4108.1 (11)
O4—Na2—O3iv152.61 (4)Na2iv—O6—H4123.2 (11)
O4—Na2—O6iv89.13 (3)Na2—O6—H4107.0 (12)
O3iv—Na2—O6iv72.09 (3)O1—C1—O2123.77 (10)
O4—Na2—O669.00 (3)O1—C1—C2119.55 (10)
O3iv—Na2—O6128.17 (3)O2—C1—C2116.66 (9)
O6iv—Na2—O688.34 (3)O1—C1—Na2vii61.86 (6)
O4—Na2—O1vi103.37 (3)O2—C1—Na2vii65.74 (6)
O3iv—Na2—O1vi99.91 (3)C2—C1—Na2vii158.15 (7)
O6iv—Na2—O1vi161.92 (4)O3—C2—C1108.96 (9)
O6—Na2—O1vi84.14 (3)O3—C2—C3109.73 (9)
O4—Na2—O2vi92.94 (3)C1—C2—C3110.33 (9)
O3iv—Na2—O2vi89.70 (3)O3—C2—H1109.3
O6iv—Na2—O2vi140.73 (3)C1—C2—H1109.3
O6—Na2—O2vi128.77 (3)C3—C2—H1109.3
O1vi—Na2—O2vi52.82 (3)O6—C3—C4110.09 (9)
O4—Na2—C1vi93.93 (3)O6—C3—C2108.94 (8)
O3iv—Na2—C1vi100.63 (3)C4—C3—C2110.44 (9)
O6iv—Na2—C1vi167.66 (4)O6—C3—H3109.1
O6—Na2—C1vi103.92 (4)C4—C3—H3109.1
O1vi—Na2—C1vi26.57 (3)C2—C3—H3109.1
O2vi—Na2—C1vi27.24 (3)O4—C4—O5123.96 (10)
O4—Na2—C420.96 (3)O4—C4—C3119.58 (10)
O3iv—Na2—C4170.22 (3)O5—C4—C3116.46 (10)
O6iv—Na2—C498.22 (3)O4—C4—Na1ix59.58 (6)
O6—Na2—C450.89 (3)O5—C4—Na1ix64.89 (6)
O1vi—Na2—C489.75 (3)C3—C4—Na1ix172.43 (7)
O2vi—Na2—C497.44 (3)O4—C4—Na241.28 (5)
C1vi—Na2—C488.69 (3)O5—C4—Na2155.89 (7)
O4—Na2—Na1iv124.34 (3)C3—C4—Na281.60 (6)
O3iv—Na2—Na1iv47.50 (2)Na1ix—C4—Na295.11 (3)
O6iv—Na2—Na1iv105.57 (3)
O2i—Na1—O1—C1103.88 (9)Na2iv—O3—C2—C178.38 (8)
O5ii—Na1—O1—C1168.31 (9)Na1—O3—C2—C121.02 (10)
O4iii—Na1—O1—C152.72 (10)Na2iv—O3—C2—C342.52 (10)
O3—Na1—O1—C119.48 (9)Na1—O3—C2—C3141.92 (7)
O5iii—Na1—O1—C1107.05 (12)O1—C1—C2—O35.65 (14)
C4iii—Na1—O1—C164.41 (11)O2—C1—C2—O3175.83 (9)
Na2iv—Na1—O1—C165.38 (9)Na2vii—C1—C2—O393.2 (2)
Na1v—Na1—O1—C1152.51 (8)O1—C1—C2—C3126.19 (11)
O2i—Na1—O1—Na2vii131.26 (5)O2—C1—C2—C355.30 (13)
O5ii—Na1—O1—Na2vii43.45 (5)Na2vii—C1—C2—C3146.27 (17)
O4iii—Na1—O1—Na2vii72.13 (6)Na2iv—O6—C3—C480.01 (8)
O3—Na1—O1—Na2vii144.34 (6)Na2—O6—C3—C422.24 (10)
O5iii—Na1—O1—Na2vii17.81 (13)Na2iv—O6—C3—C241.23 (10)
C4iii—Na1—O1—Na2vii60.45 (7)Na2—O6—C3—C2143.48 (7)
Na2iv—Na1—O1—Na2vii169.76 (5)O3—C2—C3—O656.23 (12)
Na1v—Na1—O1—Na2vii27.65 (7)C1—C2—C3—O663.83 (12)
O1—Na1—O3—C220.93 (7)O3—C2—C3—C464.79 (11)
O2i—Na1—O3—C2127.10 (7)C1—C2—C3—C4175.14 (9)
O5ii—Na1—O3—C236.12 (11)Na2—O4—C4—O5154.27 (9)
O4iii—Na1—O3—C299.92 (7)Na1ix—O4—C4—O58.65 (11)
O5iii—Na1—O3—C2138.64 (7)Na2—O4—C4—C325.69 (12)
C4iii—Na1—O3—C2118.66 (7)Na1ix—O4—C4—C3171.31 (8)
Na2iv—Na1—O3—C2114.18 (8)Na2—O4—C4—Na1ix145.62 (7)
Na1v—Na1—O3—C2131.23 (13)Na1ix—O4—C4—Na2145.62 (7)
O1—Na1—O3—Na2iv93.25 (4)Na1x—O5—C4—O485.34 (13)
O2i—Na1—O3—Na2iv12.92 (3)Na1ix—O5—C4—O48.23 (11)
O5ii—Na1—O3—Na2iv78.06 (7)Na1x—O5—C4—C394.70 (11)
O4iii—Na1—O3—Na2iv145.90 (3)Na1ix—O5—C4—C3171.72 (8)
O5iii—Na1—O3—Na2iv107.18 (4)Na1x—O5—C4—Na1ix93.57 (8)
C4iii—Na1—O3—Na2iv127.16 (3)Na1x—O5—C4—Na2129.86 (16)
Na1v—Na1—O3—Na2iv114.59 (13)Na1ix—O5—C4—Na236.3 (2)
O3iv—Na2—O4—C4161.78 (8)O6—C3—C4—O41.01 (13)
O6iv—Na2—O4—C4116.05 (8)C2—C3—C4—O4119.33 (11)
O6—Na2—O4—C427.50 (7)O6—C3—C4—O5178.95 (9)
O1vi—Na2—O4—C450.75 (8)C2—C3—C4—O560.71 (13)
O2vi—Na2—O4—C4103.18 (8)O6—C3—C4—Na1ix80.5 (6)
C1vi—Na2—O4—C475.91 (8)C2—C3—C4—Na1ix159.2 (5)
Na1iv—Na2—O4—C4135.61 (7)O6—C3—C4—Na215.80 (7)
Na2iv—Na2—O4—C473.63 (7)C2—C3—C4—Na2136.14 (8)
O3iv—Na2—O4—Na1ix69.96 (10)O3iv—Na2—C4—O457.9 (2)
O6iv—Na2—O4—Na1ix115.68 (6)O6iv—Na2—C4—O465.18 (8)
O6—Na2—O4—Na1ix155.76 (6)O6—Na2—C4—O4146.25 (9)
O1vi—Na2—O4—Na1ix77.51 (6)O1vi—Na2—C4—O4131.11 (8)
O2vi—Na2—O4—Na1ix25.08 (6)O2vi—Na2—C4—O478.70 (8)
C1vi—Na2—O4—Na1ix52.35 (6)C1vi—Na2—C4—O4104.56 (8)
C4—Na2—O4—Na1ix128.26 (11)Na1iv—Na2—C4—O458.85 (9)
Na1iv—Na2—O4—Na1ix7.34 (7)Na2iv—Na2—C4—O499.85 (8)
Na2iv—Na2—O4—Na1ix158.11 (6)O4—Na2—C4—O561.8 (2)
O4—Na2—O6—C325.51 (7)O3iv—Na2—C4—O5119.7 (2)
O3iv—Na2—O6—C3179.25 (7)O6iv—Na2—C4—O5127.0 (2)
O6iv—Na2—O6—C3115.22 (8)O6—Na2—C4—O5151.9 (2)
O1vi—Na2—O6—C381.24 (7)O1vi—Na2—C4—O569.3 (2)
O2vi—Na2—O6—C350.74 (9)O2vi—Na2—C4—O516.9 (2)
C1vi—Na2—O6—C363.37 (8)C1vi—Na2—C4—O542.7 (2)
C4—Na2—O6—C313.22 (7)Na1iv—Na2—C4—O53.0 (2)
Na1iv—Na2—O6—C3109.91 (9)Na2iv—Na2—C4—O5161.7 (2)
Na2iv—Na2—O6—C3115.22 (8)O4—Na2—C4—C3157.60 (11)
O4—Na2—O6—Na2iv89.70 (3)O3iv—Na2—C4—C399.7 (2)
O3iv—Na2—O6—Na2iv65.53 (4)O6iv—Na2—C4—C392.43 (6)
O6iv—Na2—O6—Na2iv0.0O6—Na2—C4—C311.35 (6)
O1vi—Na2—O6—Na2iv163.54 (4)O1vi—Na2—C4—C371.29 (6)
O2vi—Na2—O6—Na2iv165.95 (4)O2vi—Na2—C4—C3123.70 (6)
C1vi—Na2—O6—Na2iv178.59 (4)C1vi—Na2—C4—C397.84 (6)
C4—Na2—O6—Na2iv102.00 (4)Na1iv—Na2—C4—C3143.55 (5)
Na1iv—Na2—O6—Na2iv134.88 (8)Na2iv—Na2—C4—C357.75 (5)
Na1—O1—C1—O2163.11 (8)O4—Na2—C4—Na1ix29.27 (7)
Na2vii—O1—C1—O223.34 (11)O3iv—Na2—C4—Na1ix87.1 (2)
Na1—O1—C1—C215.30 (14)O6iv—Na2—C4—Na1ix94.44 (4)
Na2vii—O1—C1—C2155.06 (9)O6—Na2—C4—Na1ix175.52 (5)
Na1—O1—C1—Na2vii139.77 (8)O1vi—Na2—C4—Na1ix101.84 (3)
Na1viii—O2—C1—O162.75 (14)O2vi—Na2—C4—Na1ix49.43 (4)
Na2vii—O2—C1—O122.53 (11)C1vi—Na2—C4—Na1ix75.29 (4)
Na1viii—O2—C1—C2118.80 (9)Na1iv—Na2—C4—Na1ix29.59 (5)
Na2vii—O2—C1—C2155.91 (9)Na2iv—Na2—C4—Na1ix129.12 (3)
Na1viii—O2—C1—Na2vii85.29 (7)
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x1/2, y, z1/2; (iii) x+3/2, y, z1/2; (iv) x+1, y, z; (v) x+1, y, z1; (vi) x, y1/2, z+1/2; (vii) x, y1/2, z1/2; (viii) x+1, y1/2, z1/2; (ix) x+3/2, y, z+1/2; (x) x+1/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H2···O2xi0.900 (17)1.752 (18)2.6480 (12)173.2 (17)
O6—H4···O5xii0.883 (17)1.787 (17)2.6643 (12)172.0 (18)
Symmetry codes: (xi) x+3/2, y+1/2, z; (xii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula2Na+·C4H4O62
Mr194.06
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)123
a, b, c (Å)10.1160 (4), 10.0049 (5), 13.0821 (5)
V3)1324.03 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.24 × 0.15 × 0.09
Data collection
DiffractometerOxford Diffraction Gemini S CCD
diffractometer
Absorption correctionMulti-scan
(ABSPACK; Oxford Diffraction, 2007)
Tmin, Tmax0.894, 1.000
No. of measured, independent and
observed [I > 2/s(I)] reflections
7156, 1934, 1566
Rint0.024
(sin θ/λ)max1)0.720
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.05
No. of reflections1934
No. of parameters117
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.31

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H2···O2i0.900 (17)1.752 (18)2.6480 (12)173.2 (17)
O6—H4···O5ii0.883 (17)1.787 (17)2.6643 (12)172.0 (18)
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x1/2, y1/2, z.
 

Acknowledgements

The authors thank Schering-Plough for funding towards a studentship (CAM).

References

First citationAmbady, G. K. & Kartha, G. (1968). Acta Cryst. B24, 1540–1547.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBlankensteyn, A. J. A. R. & Kroon, J. (1985). Acta Cryst. C41, 182–184.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBuschmann, J. & Luger, P. (1985). Acta Cryst. C41, 206–208.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGörbitz, C. H. & Sagstuen, E. (2008). Acta Cryst. E64, m507–m508.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHinazumi, H. & Mitsui, T. (1972). Acta Cryst. B28, 3299–3305.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD, CrysAlis RED and ABSPACK. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, E., Kabasawa, H., Honma, T., Nozaki, R. & Shiozaki, Y. (1996). Acta Cryst. B52, 976–981.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVickers, P. J., Braybook, J., Lawrence, P. & Gray, K. (2007). J. Food. Compos. Anal. 20, 252–256.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds