organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2508-o2509

Guanidinium 3-carb­­oxy-2,3-di­hydroxy­propanoate monohydrate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: nornisah@usm.my, hkfun@usm.my

(Received 14 September 2009; accepted 15 September 2009; online 19 September 2009)

In the title hydrated salt, CH6N3+·C4H5O6·H2O, the deprotonated carboxyl group is disordered over two positions with a site-occupancy ratio of 0.945 (3):0.055 (3). The bond lengths in the guanidinium cation are inter­mediate between normal C—N and C=N bond lengths, indicating significant delocalization in this species. In the crystal structure, anions and water mol­ecules are linked into sheets parallel to the ab plane by inter­molecular O—H⋯O hydrogen bonds. The linking of the anions and water mol­ecules with the cations by inter­molecular N—H⋯O hydrogen bonds creates a three-dimensional network.

Related literature

For general background to and applications of guanidine derivatives, see: Angyal & Warburton (1951[Angyal, S. J. & Warburton, W. K. (1951). J. Chem. Soc. pp. 2492-2494.]); Raczyńska et al. (2003[Raczyńska, E. D., Cyrański, M. K., Gutowski, M., Rak, J., Gal, J.-F., Maria, P.-C., Darowska, M. & Duczmal, K. (2003). J. Phys. Org. Chem., 16, 91-106.]); Yamada et al. (2009[Yamada, T., Liu, X., Englert, U., Darowska, M. & Duczmal, K. (2009). Chem. Eur. J. 15, 5651-5655.]). For closely related guanidinium structures, see: Najafpour et al. (2007[Najafpour, M. M., Hołyńska, M. & Lis, T. (2007). Acta Cryst. E63, o3727.]); Pereira Silva et al. (2007[Pereira Silva, P. S., Ramos Silva, M., Paixão, J. A. & Matos Beja, A. (2007). Acta Cryst. E63, 2783.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • CH6N3+·C4H5O6·H2O

  • Mr = 227.18

  • Triclinic, [P \overline 1]

  • a = 7.4588 (1) Å

  • b = 8.0931 (1) Å

  • c = 8.6423 (1) Å

  • α = 72.415 (1)°

  • β = 71.620 (1)°

  • γ = 81.558 (1)°

  • V = 471.18 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 100 K

  • 0.45 × 0.32 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.937, Tmax = 0.979

  • 10837 measured reflections

  • 3418 independent reflections

  • 3115 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.02

  • 3418 reflections

  • 197 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O5i 0.82 1.72 2.5272 (10) 170
O3—H1O3⋯O6ii 0.836 (16) 1.832 (16) 2.6564 (9) 168.6 (16)
O4—H1O4⋯O1Wiii 0.852 (16) 1.963 (16) 2.7455 (10) 152.1 (15)
N1—H1N1⋯O1Wiv 0.845 (16) 2.184 (16) 3.0019 (11) 162.8 (15)
N1—H2N1⋯O6iv 0.859 (16) 2.075 (16) 2.8573 (11) 151.2 (14)
N2—H1N2⋯O1 0.844 (16) 2.274 (16) 3.0131 (10) 146.3 (15)
N2—H2N2⋯O4v 0.854 (15) 2.036 (15) 2.8828 (10) 170.7 (15)
N3—H1N3⋯O5vi 0.862 (16) 2.049 (16) 2.8973 (11) 167.6 (15)
N3—H2N3⋯O1 0.847 (16) 2.441 (16) 3.1540 (11) 142.3 (14)
N3—H2N3⋯O3 0.847 (16) 2.345 (16) 3.0410 (11) 139.7 (14)
O1W—H1W1⋯O3ii 0.82 (2) 2.14 (2) 2.9051 (10) 155.0 (15)
O1W—H2W1⋯O1vii 0.842 (16) 1.984 (16) 2.8100 (11) 166.4 (16)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z; (iv) x, y+1, z-1; (v) x, y, z-1; (vi) -x+1, -y+2, -z+1; (vii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Guanidine, formed by the oxidation of guanine, is a strongly alkaline compound that can be used in the manufacturing of plastics and explosives. It is also the final product of the protein metabolism. Interest in this molecule spans many generations of chemists (Angyal & Warburton, 1951; Raczyńska et al., 2003; Yamada et al., 2009).

The asymmetric unit of the title salt (Fig. 1) contains a guanidinium cation, a 3-carboxy-2,3-dihydroxypropanoate anion and a water molecule. A proton transfer from the carboxyl group of 3-carboxy-2,3-dihydroxypropanoic acid to atom N1 of guanidine resulted in the formation of ions. The deprotonated carboxyl group is disordered over two positions with a site-occupancy ratio of 0.945 (3):0.055 (3). The C5—N1, C5—N2 and C5—N3 bond lengths in the propeller-shaped guanidinium cation (CN3H6)+ are almost equal [range of C—N = 1.3286 (10) – 1.3355 (10) Å], indicating that the usual model of electron dislocalization in this species (Allen et al., 1987). The bond lengths and angles are comparable to those found in closely related structures (Najafpour et al., 2007; Pereira Silva et al., 2007).

The crystal structure is mainly stabilized by a network of O—H···O and N—H···O hydrogen bonds. In this network, the O atoms of anion and water molecule act as donors as well as acceptors. Each guanidinium-H atom participates in intermolecular hydrogen bonds. In the crystal structure (Fig. 2), the anions and water molecules are linked into sheets parallel to the ab plane by intermolecular O2—H1O2···O5, O3—H1O3···O6, O4—H1O4···O1W, O1W—H1W1···O3 and O1W—H2W1···O1 hydrogen bonds (Table 1). The anions and water molecules are further linked with the cations by intermolecular N1—H1N1···O1W, N1—H2N1···O6, N2—H1N2···O1, N2—H2N2···O4, N3—H1N3···O5, N3—H2N3···O1 and N3—H2N3···O3 hydrogen bonds (Table 1), thus establishing a connection between these sheets to create a three-dimensional crystal structure.

Related literature top

For general background to and applications of guanidine derivatives, see: Angyal & Warburton (1951); Raczyńska et al. (2003); Yamada et al. (2009). For closely related guanidinium structures, see: Najafpour et al. (2007); Pereira Silva et al. (2007). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Tartaric acid (1 mol) was dissolved in THF (10 ml) in a round bottom flask. In a separating funnel, guanidine carbonate (1 mol), 99 % [H2NC(=NH)NH2].2H2CO3, was dissolved in THF (10 ml) and three drops of concentrated HCl were added. The guanidine solution then was added drop-wise to the flask of tartaric acid with stirring. The reactant mixture was left stirring for 3 h at room temperature. The colourless single crystals formed were washed with THF and dried at 353 K.

Refinement top

Atom H1O2 was placed in a calculated position, with O—H = 0.82 Å and Uiso = 1.5Ueq(O), and was refined using a freely rotating O—H bond. The other H atoms were located from difference Fourier map and allowed to refine freely, range of C—H = 0.945 (13)–1.015 (13) Å. The carboxylate group is disordered over two positions with a site-occupancy ratio of 0.945 (3):0.055 (3). For the minor disordered component, only the C atom was refined anisotropically.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Open bonds indicate the minor disordered component.
[Figure 2] Fig. 2. Unit cell contents of (I) viewed along the a axis, showing the three-dimensional network. Only the major component of the anion is shown. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
Guanidinium 3-carboxy-2,3-dihydroxypropanoate monohydrate top
Crystal data top
CH6N3+·C4H5O6·H2OZ = 2
Mr = 227.18F(000) = 240
Triclinic, P1Dx = 1.601 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4588 (1) ÅCell parameters from 6392 reflections
b = 8.0931 (1) Åθ = 2.6–32.6°
c = 8.6423 (1) ŵ = 0.15 mm1
α = 72.415 (1)°T = 100 K
β = 71.620 (1)°Block, colourless
γ = 81.558 (1)°0.45 × 0.32 × 0.14 mm
V = 471.18 (1) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3418 independent reflections
Radiation source: fine-focus sealed tube3115 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 32.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.937, Tmax = 0.979k = 1112
10837 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.1755P]
where P = (Fo2 + 2Fc2)/3
3418 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
CH6N3+·C4H5O6·H2Oγ = 81.558 (1)°
Mr = 227.18V = 471.18 (1) Å3
Triclinic, P1Z = 2
a = 7.4588 (1) ÅMo Kα radiation
b = 8.0931 (1) ŵ = 0.15 mm1
c = 8.6423 (1) ÅT = 100 K
α = 72.415 (1)°0.45 × 0.32 × 0.14 mm
β = 71.620 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3418 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3115 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.979Rint = 0.018
10837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.49 e Å3
3418 reflectionsΔρmin = 0.27 e Å3
197 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.00986 (9)0.73134 (10)0.50517 (8)0.02036 (14)
O20.09291 (9)0.54671 (9)0.76558 (8)0.01726 (13)
H1O20.20050.58110.76040.026*
O30.35923 (9)0.69520 (8)0.49515 (8)0.01562 (12)
O40.19600 (9)0.77452 (8)0.81295 (8)0.01573 (12)
C10.02941 (11)0.62976 (11)0.62883 (10)0.01333 (14)
C20.23376 (10)0.58428 (10)0.63385 (9)0.01179 (13)
C30.25872 (11)0.60619 (10)0.79571 (9)0.01189 (13)
C40.46665 (12)0.55432 (14)0.78966 (10)0.01126 (17)0.945 (3)
O50.57222 (9)0.66863 (9)0.77930 (9)0.01673 (17)0.945 (3)
O60.52211 (9)0.39998 (9)0.79084 (8)0.01420 (16)0.945 (3)
C4A0.480 (3)0.606 (3)0.793 (2)0.01126 (17)0.055 (3)
O5A0.503 (3)0.736 (3)0.823 (3)0.042 (5)*0.055 (3)
O6A0.5654 (17)0.4820 (18)0.7605 (14)0.015 (3)*0.055 (3)
N10.29076 (11)1.10920 (10)0.04338 (10)0.01787 (14)
N20.13002 (11)0.86542 (10)0.12497 (9)0.01554 (13)
N30.25830 (11)1.02160 (10)0.24365 (10)0.01706 (14)
C50.22818 (11)0.99832 (10)0.10812 (10)0.01293 (14)
O1W0.31892 (10)0.09289 (9)0.60724 (9)0.01863 (13)
H2A0.2663 (17)0.4572 (16)0.6371 (16)0.011 (3)*
H3A0.1831 (18)0.5272 (17)0.8903 (17)0.014 (3)*
H1O30.382 (2)0.660 (2)0.409 (2)0.032 (4)*
H1O40.261 (2)0.851 (2)0.731 (2)0.035 (4)*
H1N10.277 (2)1.093 (2)0.131 (2)0.029 (4)*
H2N10.356 (2)1.194 (2)0.0562 (19)0.024 (3)*
H1N20.112 (2)0.789 (2)0.219 (2)0.029 (4)*
H2N20.136 (2)0.8370 (19)0.0359 (19)0.023 (3)*
H1N30.325 (2)1.105 (2)0.233 (2)0.026 (3)*
H2N30.227 (2)0.944 (2)0.337 (2)0.025 (3)*
H1W10.417 (3)0.143 (2)0.551 (2)0.039 (4)*
H2W10.240 (2)0.154 (2)0.559 (2)0.036 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0161 (3)0.0283 (3)0.0131 (3)0.0031 (2)0.0054 (2)0.0013 (2)
O20.0102 (2)0.0224 (3)0.0168 (3)0.0034 (2)0.0044 (2)0.0001 (2)
O30.0144 (3)0.0197 (3)0.0112 (2)0.0052 (2)0.00005 (19)0.0039 (2)
O40.0180 (3)0.0138 (3)0.0148 (3)0.0006 (2)0.0026 (2)0.0054 (2)
C10.0121 (3)0.0160 (3)0.0126 (3)0.0009 (2)0.0042 (2)0.0042 (3)
C20.0100 (3)0.0140 (3)0.0113 (3)0.0016 (2)0.0027 (2)0.0032 (2)
C30.0101 (3)0.0138 (3)0.0116 (3)0.0012 (2)0.0029 (2)0.0030 (2)
C40.0101 (3)0.0143 (4)0.0099 (3)0.0040 (3)0.0026 (2)0.0027 (3)
O50.0117 (3)0.0165 (3)0.0236 (3)0.0037 (2)0.0053 (2)0.0063 (2)
O60.0133 (3)0.0135 (3)0.0157 (3)0.0003 (2)0.0044 (2)0.0040 (2)
C4A0.0101 (3)0.0143 (4)0.0099 (3)0.0040 (3)0.0026 (2)0.0027 (3)
N10.0182 (3)0.0184 (3)0.0147 (3)0.0050 (3)0.0037 (2)0.0003 (3)
N20.0188 (3)0.0143 (3)0.0139 (3)0.0032 (2)0.0050 (2)0.0030 (2)
N30.0212 (3)0.0164 (3)0.0156 (3)0.0027 (3)0.0073 (3)0.0043 (3)
C50.0112 (3)0.0133 (3)0.0136 (3)0.0011 (2)0.0034 (2)0.0036 (2)
O1W0.0148 (3)0.0186 (3)0.0192 (3)0.0026 (2)0.0058 (2)0.0013 (2)
Geometric parameters (Å, º) top
O1—C11.2246 (10)C4—O51.2662 (12)
O2—C11.3042 (10)C4A—O6A1.17 (2)
O2—H1O20.8200C4A—O5A1.20 (3)
O3—C21.4169 (9)N1—C51.3286 (10)
O3—H1O30.840 (18)N1—H1N10.844 (17)
O4—C31.4101 (10)N1—H2N10.859 (15)
O4—H1O40.851 (18)N2—C51.3355 (10)
C1—C21.5258 (11)N2—H1N20.846 (16)
C2—C31.5319 (11)N2—H2N20.854 (16)
C2—H2A1.015 (13)N3—C51.3303 (10)
C3—C41.5347 (11)N3—H1N30.865 (16)
C3—C4A1.641 (18)N3—H2N30.851 (15)
C3—H3A0.945 (13)O1W—H1W10.822 (19)
C4—O61.2549 (12)O1W—H2W10.842 (18)
C1—O2—H1O2109.5C4A—C3—H3A115.5 (10)
C2—O3—H1O3109.6 (11)O6—C4—O5124.13 (8)
C3—O4—H1O4110.8 (12)O6—C4—C3116.93 (8)
O1—C1—O2125.21 (8)O5—C4—C3118.92 (8)
O1—C1—C2121.76 (7)O6A—C4A—O5A140 (2)
O2—C1—C2113.01 (7)O6A—C4A—C3110.4 (14)
O3—C2—C1111.04 (6)O5A—C4A—C3109.7 (16)
O3—C2—C3107.06 (6)C5—N1—H1N1121.2 (11)
C1—C2—C3110.81 (6)C5—N1—H2N1120.5 (10)
O3—C2—H2A112.1 (7)H1N1—N1—H2N1118.0 (14)
C1—C2—H2A109.1 (7)C5—N2—H1N2115.7 (11)
C3—C2—H2A106.6 (7)C5—N2—H2N2118.2 (10)
O4—C3—C2111.00 (6)H1N2—N2—H2N2119.5 (14)
O4—C3—C4115.34 (7)C5—N3—H1N3120.5 (10)
C2—C3—C4106.58 (6)C5—N3—H2N3118.7 (10)
O4—C3—C4A99.2 (7)H1N3—N3—H2N3119.9 (15)
C2—C3—C4A114.6 (6)N1—C5—N3120.41 (8)
C4—C3—C4A16.1 (7)N1—C5—N2119.70 (7)
O4—C3—H3A107.2 (8)N3—C5—N2119.87 (7)
C2—C3—H3A108.8 (8)H1W1—O1W—H2W1101.2 (17)
C4—C3—H3A107.8 (8)
O1—C1—C2—O310.22 (11)C2—C3—C4—O662.98 (9)
O2—C1—C2—O3171.38 (7)C4A—C3—C4—O6175 (2)
O1—C1—C2—C3129.07 (8)O4—C3—C4—O58.52 (11)
O2—C1—C2—C352.53 (9)C2—C3—C4—O5115.16 (8)
O3—C2—C3—O466.54 (8)C4A—C3—C4—O57 (2)
C1—C2—C3—O454.69 (8)O4—C3—C4A—O6A172.1 (12)
O3—C2—C3—C459.80 (8)C2—C3—C4A—O6A53.8 (14)
C1—C2—C3—C4178.98 (7)C4—C3—C4A—O6A9.2 (12)
O3—C2—C3—C4A44.8 (7)O4—C3—C4A—O5A6.8 (16)
C1—C2—C3—C4A166.1 (7)C2—C3—C4A—O5A125.0 (14)
O4—C3—C4—O6173.34 (7)C4—C3—C4A—O5A172 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O5i0.821.722.5272 (10)170
O3—H1O3···O6ii0.836 (16)1.832 (16)2.6564 (9)168.6 (16)
O4—H1O4···O1Wiii0.852 (16)1.963 (16)2.7455 (10)152.1 (15)
N1—H1N1···O1Wiv0.845 (16)2.184 (16)3.0019 (11)162.8 (15)
N1—H2N1···O6iv0.859 (16)2.075 (16)2.8573 (11)151.2 (14)
N2—H1N2···O10.844 (16)2.274 (16)3.0131 (10)146.3 (15)
N2—H2N2···O4v0.854 (15)2.036 (15)2.8828 (10)170.7 (15)
N3—H1N3···O5vi0.862 (16)2.049 (16)2.8973 (11)167.6 (15)
N3—H2N3···O10.847 (16)2.441 (16)3.1540 (11)142.3 (14)
N3—H2N3···O30.847 (16)2.345 (16)3.0410 (11)139.7 (14)
O1W—H1W1···O3ii0.82 (2)2.14 (2)2.9051 (10)155.0 (15)
O1W—H2W1···O1vii0.842 (16)1.984 (16)2.8100 (11)166.4 (16)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x, y+1, z1; (v) x, y, z1; (vi) x+1, y+2, z+1; (vii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaCH6N3+·C4H5O6·H2O
Mr227.18
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.4588 (1), 8.0931 (1), 8.6423 (1)
α, β, γ (°)72.415 (1), 71.620 (1), 81.558 (1)
V3)471.18 (1)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.45 × 0.32 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.937, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
10837, 3418, 3115
Rint0.018
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.02
No. of reflections3418
No. of parameters197
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.27

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O5i0.82001.72002.5272 (10)170.00
O3—H1O3···O6ii0.836 (16)1.832 (16)2.6564 (9)168.6 (16)
O4—H1O4···O1Wiii0.852 (16)1.963 (16)2.7455 (10)152.1 (15)
N1—H1N1···O1Wiv0.845 (16)2.184 (16)3.0019 (11)162.8 (15)
N1—H2N1···O6iv0.859 (16)2.075 (16)2.8573 (11)151.2 (14)
N2—H1N2···O10.844 (16)2.274 (16)3.0131 (10)146.3 (15)
N2—H2N2···O4v0.854 (15)2.036 (15)2.8828 (10)170.7 (15)
N3—H1N3···O5vi0.862 (16)2.049 (16)2.8973 (11)167.6 (15)
N3—H2N3···O10.847 (16)2.441 (16)3.1540 (11)142.3 (14)
N3—H2N3···O30.847 (16)2.345 (16)3.0410 (11)139.7 (14)
O1W—H1W1···O3ii0.82 (2)2.14 (2)2.9051 (10)155.0 (15)
O1W—H2W1···O1vii0.842 (16)1.984 (16)2.8100 (11)166.4 (16)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x, y+1, z1; (v) x, y, z1; (vi) x+1, y+2, z+1; (vii) x, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

This research was supported by Universiti Sains Malaysia (USM) under a Short Term Grant (No. 304/PKIMIA/639039). HKF and JHG thank USM for a Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAngyal, S. J. & Warburton, W. K. (1951). J. Chem. Soc. pp. 2492–2494.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNajafpour, M. M., Hołyńska, M. & Lis, T. (2007). Acta Cryst. E63, o3727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPereira Silva, P. S., Ramos Silva, M., Paixão, J. A. & Matos Beja, A. (2007). Acta Cryst. E63, 2783.  CrossRef Google Scholar
First citationRaczyńska, E. D., Cyrański, M. K., Gutowski, M., Rak, J., Gal, J.-F., Maria, P.-C., Darowska, M. & Duczmal, K. (2003). J. Phys. Org. Chem., 16, 91–106.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, T., Liu, X., Englert, U., Darowska, M. & Duczmal, K. (2009). Chem. Eur. J. 15, 5651–5655.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2508-o2509
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds