metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1212-m1213

(2,2′-Bi­pyridine-κ2N,N′){N-[2-oxido-5-(phenyl­diazen­yl)benzyl­­idene-κO]glycinato-κ2N,O}copper(II)

aSchool of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, People's Republic of China
*Correspondence e-mail: zgq1118@163.com

(Received 18 August 2009; accepted 9 September 2009; online 16 September 2009)

In the title compound, [Cu(C15H11N3O3)(C10H8N2)], the CuII atom is five-coordinated in a distorted square-pyramidal CuN3O2 geometry. The basal positions are occupied by three donor atoms from the tridentate Schiff base ligand and by one N atom from the 2,2′-bipyridine ligand. The axial position is occupied by the other N atom of the 2,2′-bipyridine ligand. The crystal structure is consolidated by weak C—H⋯O hydrogen bonds. In addition, ππ inter­actions between adjacent pyridine rings (centroid–centroid distances = 3.238 and 3.313 Å) may also stabilize the crystal packing.

Related literature

For related structures of copper(II) with Schiff base ligands, see: Raso et al. (1996[Raso, A. G., Fiol, J. J., Badenas, F. & Quiros, M. (1996). Polyhedron, 18, 4407-4413.], 1999[Raso, A. G., Fiol, J. J., Zafra, A. L., Cabrero, A., Mata, I. & Molins, E. (1999). Polyhedron, 18, 871-878.]); Reddy et al. (2002[Reddy, P. A. N., Nethaji, M. & Chakravarty, A. R. (2002). Inorg. Chim. Acta, 337, 450-458.]); Wang et al. (2005[Wang, M. Z., Cai, G. L., Meng, Z. X. & Liu, B. L. (2005). J. Chem. Crystallogr. 35, 43-47.]); Warda (1997[Warda, S. A. (1997). Acta Cryst. C53, 1759-1761.], 1998a[Warda, S. A. (1998a). Acta Cryst. C54, 1754-1755.],b[Warda, S. A. (1998b). Acta Cryst. C54, 187-189.],c[Warda, S. A. (1998c). Acta Cryst. C54, 768-770.]). For the synthesis of the ligand, see: Wei et al. (2007[Wei, T. B., Guo, X. D., Wang, J. & Zhang, Y. M. (2007). Chin. J. Org. Chem. 27, 1121-1125.]). For the synthesis of the title compound, see: Plesch et al. (1997[Plesch, G., Friebel, C., Warda, S. A., Sivý, J. & Švajlenová, O. (1997). Transition Met. Chem. 22, 433-440.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C15H11N3O3)(C10H8N2)]

  • Mr = 500.99

  • Monoclinic, P 21 /c

  • a = 12.604 (3) Å

  • b = 12.487 (3) Å

  • c = 13.962 (3) Å

  • β = 93.05 (3)°

  • V = 2194.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.820, Tmax = 0.820

  • 11072 measured reflections

  • 3882 independent reflections

  • 3331 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.074

  • S = 1.07

  • 3882 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9303 (15)
Cu1—N3 1.9354 (17)
Cu1—O2 1.9501 (15)
Cu1—N1 2.0282 (17)
Cu1—N2 2.2392 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25⋯O3i 0.93 2.56 3.250 (3) 131
C12—H12B⋯O3ii 0.97 2.44 3.365 (3) 160
C4—H4⋯O2iii 0.93 2.50 3.082 (3) 121
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y, -z+1; (iii) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Considerable efforts have been devoted to copper(II) complexes of tridentate Schiff base ligands of the N-alkylidene or N-arylidene aminoacidato type. These compound are interesting in terms of their structural varieties, their electrochemical properties as well as their nature as potential model substances for a number of important biological systems (Raso et al., 1996, 1999). Several stuctural studies have been performed on Schiff base copper(II) complexes derived from salicylaldehyde and animo acids (Reddy et al., 2002; Wang et al., 2005; Warda, 1997, 1998a,b,c). We report here the crystal structure of the title CuII complex.

The structure consists of a discrete monomeric square-pyramidal CuII complex (Fig. 1 and Table 1). The basal positions are occupied by three donor atoms from the tridentate Schiff base ligand, which furnishes an ONO donor set, with the fourth position occupied by one N atom from the 2, 2'-bipyridine ligand. The axial position is occupied by the other N atom of the 2, 2'-bipyridine igand. The Cu atom is displaced from the O1/O2/N1/N3 basal plane toward the N2 atom by -0.0169 Å.

The 2,2'-bipyridine ligand and the benzene ring (C20···C25) are essentially planar and form a dihedral angle of 92.5° and 15.8°, respectively, with the benzene ring of the Schiff base ligand.

The crystal structure is stabilized by weak hydrogen bonds, such as C4—H4···O2 (3.082 Å), C3—H3···O1 (3.365 Å) and C25—H25···O3 (3.250 Å). The π-π interactions between the adjacent pyridine rings [C1···C9 (3.238 Å) and C2···C10 (3.313 Å)] play important role in the stability of the complex (Fig. 2 and Table 2).

Related literature top

For related structures of copper(II) with Schiff base ligands, see: Raso et al. (1996, 1999); Reddy et al. (2002); Wang et al. (2005); Warda (1997, 1998a,b,c). For the synthesis of the ligand, see: Wei et al. (2007). For the synthesis of the title compound, see: Plesch et al. (1997).

Experimental top

The compound of 5-(phenyldiazenyl)salicylaldehyde was synthesized as described in the literature (Wei et al., 2007). The title compound was synthesized as described in the literature (Plesch et al., 1997): To glycine (1.00 mmol) and potassium hydroxide (1.00 mmol) in 10 ml of methanol was added 5-(phenyldiazenyl)salicylaldehyde (1.00 mmol) in 30 ml of dimethylfomamide dropwise. The yellowish-brown solution was stirred for 2.0 h at 333 K. The resultant mixture was added dropwise to copper(II) acetate monohydrate (1.00 mmol) and 2, 2'-bipyridine (1.00 mmol) in 10 ml of methanol, and heated with stirring for 2.0 h at 333 K. The dark green solution was filtered and left for several days. Dark-green crystals had formed that were filtered off, washed with water, and dried under vacuum.

Refinement top

In the title compound, all H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A view of the crystal packing along the a axis. Hydrogen bonds are shown as dashed lines.
(2,2'-Bipyridine-κ2N,N'){N-[5-(phenyldiazenyl)salicylidene]glycinato-κ3N,O,O'}copper(II) top
Crystal data top
[Cu(C15H11N3O3)(C10H8N2)]F(000) = 1028
Mr = 500.99Dx = 1.516 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5614 reflections
a = 12.604 (3) Åθ = 2.2–27.5°
b = 12.487 (3) ŵ = 1.03 mm1
c = 13.962 (3) ÅT = 296 K
β = 93.05 (3)°Block, dark green
V = 2194.3 (9) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3882 independent reflections
Radiation source: fine-focus sealed tube3331 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 25.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1510
Tmin = 0.820, Tmax = 0.820k = 1414
11072 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.837P]
where P = (Fo2 + 2Fc2)/3
3882 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Cu(C15H11N3O3)(C10H8N2)]V = 2194.3 (9) Å3
Mr = 500.99Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.604 (3) ŵ = 1.03 mm1
b = 12.487 (3) ÅT = 296 K
c = 13.962 (3) Å0.20 × 0.20 × 0.20 mm
β = 93.05 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3882 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3331 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.820Rint = 0.020
11072 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.07Δρmax = 0.21 e Å3
3882 reflectionsΔρmin = 0.36 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.192784 (18)0.04691 (2)0.315857 (17)0.03322 (9)
C10.09307 (19)0.18579 (18)0.36777 (16)0.0465 (5)
H10.16060.21380.36090.056*
C20.0121 (2)0.2551 (2)0.38779 (17)0.0522 (6)
H20.02470.32820.39420.063*
C30.0875 (2)0.2136 (2)0.39801 (17)0.0555 (6)
H30.14370.25860.41120.067*
C40.10356 (18)0.1052 (2)0.38851 (16)0.0469 (6)
H40.17060.07590.39530.056*
C50.01873 (16)0.04031 (17)0.36876 (14)0.0356 (5)
C60.02777 (16)0.07837 (17)0.36193 (14)0.0367 (5)
C70.12214 (18)0.1328 (2)0.37705 (17)0.0513 (6)
H70.18400.09510.38810.062*
C80.1224 (2)0.2431 (2)0.37532 (18)0.0571 (7)
H80.18480.28040.38470.069*
C90.0307 (2)0.29785 (19)0.35978 (16)0.0493 (6)
H90.02950.37230.35990.059*
C100.05944 (18)0.23985 (17)0.34394 (14)0.0414 (5)
H100.12180.27670.33290.050*
C110.32869 (16)0.00987 (18)0.47223 (15)0.0380 (5)
C120.38063 (17)0.05212 (17)0.39264 (14)0.0386 (5)
H12A0.37730.12840.40550.046*
H12B0.45480.03180.39070.046*
C130.36753 (16)0.04938 (16)0.22099 (14)0.0344 (5)
H130.43590.07750.22420.041*
C140.31658 (16)0.03250 (15)0.12687 (14)0.0321 (4)
C150.37072 (17)0.06897 (17)0.04804 (14)0.0368 (5)
H150.43850.09770.05820.044*
C160.32614 (17)0.06347 (16)0.04450 (14)0.0380 (5)
C170.22613 (18)0.01671 (18)0.05992 (15)0.0436 (5)
H170.19610.01100.12200.052*
C180.17160 (18)0.02104 (18)0.01584 (15)0.0414 (5)
H180.10520.05210.00370.050*
C190.21339 (16)0.01413 (16)0.11159 (14)0.0329 (4)
C200.50636 (17)0.19390 (17)0.19420 (14)0.0380 (5)
C210.59128 (18)0.26270 (19)0.17756 (16)0.0474 (6)
H210.61410.28040.11510.057*
C220.64230 (19)0.3052 (2)0.25454 (18)0.0547 (6)
H220.69850.35270.24380.066*
C230.60982 (19)0.2772 (2)0.34675 (17)0.0512 (6)
H230.64470.30530.39820.061*
C240.52609 (19)0.20795 (19)0.36326 (16)0.0469 (6)
H240.50490.18910.42580.056*
C250.47297 (18)0.16593 (18)0.28733 (15)0.0426 (5)
H250.41580.11970.29860.051*
N10.06132 (13)0.13269 (13)0.34377 (11)0.0337 (4)
N20.07904 (14)0.08041 (14)0.35774 (12)0.0387 (4)
N30.32500 (13)0.02827 (13)0.30014 (11)0.0322 (4)
N40.37471 (15)0.10262 (15)0.12741 (12)0.0440 (4)
N50.45784 (15)0.15498 (15)0.11024 (12)0.0421 (4)
O10.15568 (11)0.04915 (11)0.17994 (10)0.0393 (3)
O20.25223 (12)0.07232 (13)0.44568 (10)0.0437 (4)
O30.36149 (13)0.00378 (16)0.55548 (11)0.0560 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02967 (15)0.03941 (16)0.03078 (14)0.00550 (10)0.00342 (10)0.00006 (10)
C10.0491 (14)0.0435 (14)0.0464 (13)0.0057 (11)0.0006 (10)0.0030 (10)
C20.0697 (17)0.0393 (13)0.0475 (13)0.0076 (12)0.0005 (12)0.0042 (10)
C30.0613 (17)0.0569 (16)0.0491 (14)0.0210 (13)0.0113 (12)0.0023 (12)
C40.0420 (13)0.0571 (16)0.0426 (13)0.0055 (11)0.0105 (10)0.0074 (11)
C50.0351 (11)0.0443 (12)0.0275 (10)0.0011 (9)0.0040 (8)0.0025 (9)
C60.0364 (11)0.0469 (12)0.0267 (10)0.0055 (9)0.0024 (8)0.0019 (9)
C70.0367 (12)0.0621 (16)0.0558 (14)0.0076 (11)0.0098 (11)0.0021 (12)
C80.0506 (15)0.0612 (17)0.0600 (16)0.0252 (13)0.0065 (12)0.0030 (13)
C90.0635 (16)0.0422 (13)0.0423 (13)0.0164 (12)0.0023 (11)0.0004 (10)
C100.0484 (13)0.0409 (13)0.0350 (11)0.0052 (10)0.0031 (10)0.0009 (9)
C110.0321 (11)0.0486 (13)0.0333 (11)0.0042 (10)0.0031 (9)0.0010 (9)
C120.0359 (11)0.0458 (13)0.0338 (11)0.0063 (9)0.0017 (9)0.0021 (9)
C130.0293 (10)0.0367 (11)0.0374 (11)0.0036 (9)0.0033 (9)0.0020 (9)
C140.0327 (11)0.0314 (11)0.0324 (10)0.0018 (8)0.0036 (8)0.0009 (8)
C150.0353 (11)0.0395 (12)0.0358 (11)0.0046 (9)0.0055 (9)0.0006 (9)
C160.0456 (13)0.0366 (12)0.0323 (11)0.0002 (9)0.0072 (9)0.0001 (9)
C170.0490 (14)0.0506 (14)0.0307 (11)0.0055 (11)0.0007 (10)0.0018 (9)
C180.0416 (12)0.0456 (13)0.0366 (11)0.0094 (10)0.0010 (9)0.0017 (9)
C190.0351 (11)0.0295 (10)0.0343 (11)0.0004 (8)0.0037 (9)0.0021 (8)
C200.0416 (12)0.0392 (12)0.0340 (11)0.0052 (9)0.0085 (9)0.0012 (9)
C210.0454 (13)0.0555 (15)0.0413 (12)0.0025 (11)0.0034 (10)0.0030 (11)
C220.0415 (13)0.0637 (16)0.0594 (16)0.0094 (12)0.0083 (11)0.0035 (12)
C230.0496 (14)0.0568 (15)0.0488 (14)0.0030 (12)0.0178 (11)0.0109 (11)
C240.0580 (15)0.0499 (14)0.0334 (11)0.0053 (11)0.0083 (10)0.0026 (10)
C250.0471 (13)0.0427 (12)0.0385 (12)0.0026 (10)0.0054 (10)0.0002 (10)
N10.0341 (9)0.0380 (10)0.0291 (8)0.0038 (7)0.0028 (7)0.0005 (7)
N20.0374 (10)0.0401 (10)0.0387 (10)0.0021 (8)0.0028 (8)0.0028 (8)
N30.0300 (9)0.0365 (10)0.0299 (9)0.0018 (7)0.0002 (7)0.0007 (7)
N40.0503 (11)0.0494 (11)0.0329 (9)0.0043 (9)0.0081 (8)0.0009 (8)
N50.0479 (11)0.0448 (11)0.0343 (10)0.0015 (9)0.0087 (8)0.0003 (8)
O10.0357 (8)0.0498 (9)0.0325 (7)0.0130 (7)0.0039 (6)0.0001 (6)
O20.0373 (8)0.0599 (10)0.0339 (8)0.0103 (7)0.0030 (6)0.0062 (7)
O30.0504 (10)0.0857 (13)0.0313 (8)0.0114 (9)0.0034 (7)0.0015 (8)
Geometric parameters (Å, º) top
Cu1—O11.9303 (15)C12—H12A0.9700
Cu1—N31.9354 (17)C12—H12B0.9700
Cu1—O21.9501 (15)C13—N31.281 (3)
Cu1—N12.0282 (17)C13—C141.447 (3)
Cu1—N22.2392 (18)C13—H130.9300
C1—N21.334 (3)C14—C151.402 (3)
C1—C21.377 (3)C14—C191.431 (3)
C1—H10.9300C15—C161.383 (3)
C2—C31.373 (3)C15—H150.9300
C2—H20.9300C16—C171.395 (3)
C3—C41.375 (4)C16—N41.424 (3)
C3—H30.9300C17—C181.375 (3)
C4—C51.381 (3)C17—H170.9300
C4—H40.9300C18—C191.413 (3)
C5—N21.347 (3)C18—H180.9300
C5—C61.489 (3)C19—O11.306 (2)
C6—N11.347 (3)C20—C211.382 (3)
C6—C71.395 (3)C20—C251.390 (3)
C7—C81.378 (4)C20—N51.435 (3)
C7—H70.9300C21—C221.387 (3)
C8—C91.370 (4)C21—H210.9300
C8—H80.9300C22—C231.375 (3)
C9—C101.375 (3)C22—H220.9300
C9—H90.9300C23—C241.375 (3)
C10—N11.338 (3)C23—H230.9300
C10—H100.9300C24—C251.387 (3)
C11—O31.225 (2)C24—H240.9300
C11—O21.279 (3)C25—H250.9300
C11—C121.530 (3)N4—N51.247 (2)
C12—N31.467 (3)
O1—Cu1—N393.47 (7)C14—C13—H13117.7
O1—Cu1—O2166.50 (7)C15—C14—C19119.47 (18)
N3—Cu1—O283.90 (7)C15—C14—C13117.05 (18)
O1—Cu1—N191.35 (6)C19—C14—C13123.42 (17)
N3—Cu1—N1174.37 (7)C16—C15—C14121.80 (19)
O2—Cu1—N190.74 (7)C16—C15—H15119.1
O1—Cu1—N298.17 (7)C14—C15—H15119.1
N3—Cu1—N2104.62 (7)C15—C16—C17118.92 (19)
O2—Cu1—N295.31 (7)C15—C16—N4124.85 (19)
N1—Cu1—N277.52 (7)C17—C16—N4116.23 (19)
N2—C1—C2123.0 (2)C18—C17—C16120.6 (2)
N2—C1—H1118.5C18—C17—H17119.7
C2—C1—H1118.5C16—C17—H17119.7
C3—C2—C1118.4 (2)C17—C18—C19122.0 (2)
C3—C2—H2120.8C17—C18—H18119.0
C1—C2—H2120.8C19—C18—H18119.0
C2—C3—C4119.5 (2)O1—C19—C18118.48 (18)
C2—C3—H3120.3O1—C19—C14124.38 (18)
C4—C3—H3120.3C18—C19—C14117.13 (18)
C3—C4—C5119.1 (2)C21—C20—C25120.44 (19)
C3—C4—H4120.5C21—C20—N5115.65 (19)
C5—C4—H4120.5C25—C20—N5123.9 (2)
N2—C5—C4121.9 (2)C20—C21—C22119.6 (2)
N2—C5—C6115.48 (18)C20—C21—H21120.2
C4—C5—C6122.6 (2)C22—C21—H21120.2
N1—C6—C7120.6 (2)C23—C22—C21120.1 (2)
N1—C6—C5116.83 (17)C23—C22—H22120.0
C7—C6—C5122.5 (2)C21—C22—H22120.0
C8—C7—C6119.0 (2)C24—C23—C22120.3 (2)
C8—C7—H7120.5C24—C23—H23119.9
C6—C7—H7120.5C22—C23—H23119.9
C9—C8—C7120.1 (2)C23—C24—C25120.5 (2)
C9—C8—H8120.0C23—C24—H24119.7
C7—C8—H8120.0C25—C24—H24119.7
C8—C9—C10118.3 (2)C24—C25—C20119.1 (2)
C8—C9—H9120.9C24—C25—H25120.5
C10—C9—H9120.9C20—C25—H25120.5
N1—C10—C9122.8 (2)C10—N1—C6119.21 (18)
N1—C10—H10118.6C10—N1—Cu1122.89 (15)
C9—C10—H10118.6C6—N1—Cu1117.90 (14)
O3—C11—O2124.8 (2)C1—N2—C5118.15 (19)
O3—C11—C12118.9 (2)C1—N2—Cu1130.14 (15)
O2—C11—C12116.29 (18)C5—N2—Cu1111.61 (14)
N3—C12—C11109.50 (17)C13—N3—C12121.03 (17)
N3—C12—H12A109.8C13—N3—Cu1126.86 (14)
C11—C12—H12A109.8C12—N3—Cu1111.89 (12)
N3—C12—H12B109.8N5—N4—C16114.62 (18)
C11—C12—H12B109.8N4—N5—C20114.24 (18)
H12A—C12—H12B108.2C19—O1—Cu1126.76 (13)
N3—C13—C14124.59 (18)C11—O2—Cu1114.61 (13)
N3—C13—H13117.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···O3i0.932.563.250 (3)131
C12—H12B···O3ii0.972.443.365 (3)160
C4—H4···O2iii0.932.503.082 (3)121
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C15H11N3O3)(C10H8N2)]
Mr500.99
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.604 (3), 12.487 (3), 13.962 (3)
β (°) 93.05 (3)
V3)2194.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.820, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
11072, 3882, 3331
Rint0.020
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.074, 1.07
No. of reflections3882
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.36

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.9303 (15)Cu1—N12.0282 (17)
Cu1—N31.9354 (17)Cu1—N22.2392 (18)
Cu1—O21.9501 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···O3i0.932.563.250 (3)131.0
C12—H12B···O3ii0.972.443.365 (3)160.1
C4—H4···O2iii0.932.503.082 (3)121.1
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1; (iii) x, y, z+1.
 

Acknowledgements

This research was supported by the National Sciences Foundation of China (No. 20877036) and the High-Level Personnel Foundation of Pingdingshan University (No. 2009001).

References

First citationBruker (2008). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPlesch, G., Friebel, C., Warda, S. A., Sivý, J. & Švajlenová, O. (1997). Transition Met. Chem. 22, 433–440.  CSD CrossRef CAS Web of Science Google Scholar
First citationRaso, A. G., Fiol, J. J., Badenas, F. & Quiros, M. (1996). Polyhedron, 18, 4407–4413.  CSD CrossRef Web of Science Google Scholar
First citationRaso, A. G., Fiol, J. J., Zafra, A. L., Cabrero, A., Mata, I. & Molins, E. (1999). Polyhedron, 18, 871–878.  Web of Science CSD CrossRef Google Scholar
First citationReddy, P. A. N., Nethaji, M. & Chakravarty, A. R. (2002). Inorg. Chim. Acta, 337, 450–458.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, M. Z., Cai, G. L., Meng, Z. X. & Liu, B. L. (2005). J. Chem. Crystallogr. 35, 43–47.  Web of Science CSD CrossRef Google Scholar
First citationWarda, S. A. (1997). Acta Cryst. C53, 1759–1761.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWarda, S. A. (1998a). Acta Cryst. C54, 1754–1755.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWarda, S. A. (1998b). Acta Cryst. C54, 187–189.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWarda, S. A. (1998c). Acta Cryst. C54, 768–770.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWei, T. B., Guo, X. D., Wang, J. & Zhang, Y. M. (2007). Chin. J. Org. Chem. 27, 1121–1125.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1212-m1213
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds