metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bi­pyridine)(5-iso­thio­cyanato-1,10-phenanthroline)ruthenium(II) bis­­(hexa­fluoridophosphate) aceto­nitrile solvate

aDépartement de Chimie, Université de Montréal, CP 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3J7
*Correspondence e-mail: amlan.kumar.pal@umontreal.ca

(Received 21 August 2009; accepted 1 September 2009; online 9 September 2009)

The title compound, [Ru(C10H8N2)2(C13H7N3S)](PF6)2·CH3CN, was synthesized by the reaction of thio­phosgene and bis­(2,2′-bipyridine)(1,10-phenanthrolin-5-amine)ruthenium(II) bis­(hexa­fluoridophosphate). The RuII atom adopts a slightly distorted octa­hedral RuN6 coordinaton formed by four N atoms of two bipyridine ligands and by two N atoms of the 1,10-phenantroline ligand. The isothio­cyanate group is almost linear, with an N—C—S angle of 174.4 (6)°. Two of the three hexa­fluoridophosphate counter-anions are located on inversion centres.

Related literature

The title compound was previously synthesized by two other groups (Ryan et al., 1992[Ryan, E. M., O'Kennedy, R., Feeney, I. M. M., Kelly, J. M. & Vos, J. G. (1992). Bioconjug. Chem. 3, 285-290.]; Khimich et al., 2007[Khimich, N. N., Zdravkov, A. V., Aleksashkina, M. A. & Chepik, L. F. (2007). Russ. J. Appl. Chem. 80, 358-363.]). However, the crystal structure was not reported at that time. For the crystal structures of related compounds, see: Ye et al. (1999[Ye, B.-H., Ji, L.-N., Xue, F. & Mak, T. C. W. (1999). Transition Met. Chem. 24, 8-12.]); Huang & Ogawa (2006[Huang, W. & Ogawa, T. (2006). Polyhedron, 25, 1379-1385.]); Batey et al. (2007[Batey, H. D., Whitwood, A. C. & Duhme-Klair, A.-K. (2007). Inorg. Chem. 46, 6516-6528.]). For the importance and applications of RuII complexes with bipyridine ligands, see: Bertini et al. (1994[Bertini, I., Gray, H. B., Lippard, S. J. & Valentine, J. S. (1994). Bioinorganic Chemistry. Mill Valley, California: University Science Books.]); Medlycott & Hanan (2005[Medlycott, E. A. & Hanan, G. S. (2005). Chem. Soc. Rev. 34, 133-142.], 2006[Medlycott, E. A. & Hanan, G. S. (2006). Coord. Chem. Rev. 250, 1763-1782.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C10H8N2)2(C13H7N3S)](PF6)2·C2H3N

  • Mr = 981.71

  • Triclinic, [P \overline 1]

  • a = 9.129 (3) Å

  • b = 12.397 (4) Å

  • c = 17.084 (5) Å

  • α = 88.618 (4)°

  • β = 89.704 (5)°

  • γ = 72.870 (4)°

  • V = 1847.1 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 150 K

  • 0.24 × 0.13 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.83, Tmax = 0.95

  • 178384 measured reflections

  • 6687 independent reflections

  • 6155 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.152

  • S = 1.18

  • 6687 reflections

  • 536 parameters

  • H-atom parameters constrained

  • Δρmax = 1.45 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Selected bond lengths (Å)

Ru—N1 2.056 (4)
Ru—N3 2.059 (4)
Ru—N2 2.059 (4)
Ru—N4 2.064 (4)
Ru—N6 2.065 (4)
Ru—N5 2.072 (4)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: UdMX (Maris, 2004[Maris, T. (2004). UdMX. Université de Montréal, Montréal, Québec, Canada.]).

Supporting information


Comment top

RuII polypyridyl complexes, mainly [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) and its derivatives have been studied extensively during the past three decades for their excellent photophysical properties characterized by long excited state lifetimes which makes them suitable choice for chromophores in light-harvesting devices (Medlycott & Hanan, 2005, 2006). Such good emissive properties of this class of compounds also make them useful in labelling biomolecules (Bertini et al., 1994). The title compound can be used to label biomolecules through a thiourea linkage by reaction of the isothiocyanate group on it with an amino group of the protein (Ryan et al., 1992; Khimich et al., 2007).

The crystal structure of the title compound reveals that the ruthenium atom has a slightly distorted octahedral coordinaton sphere and the isothiocyanate group is almost linear with a N—C—S angle of 174.4 (6)°. The six Ru—N bond distances falls in a short range of 2.056 (4) to 2.072 (4) Å, with the two longer ones being that with the phenanthroline moiety. The bite angles for the 2,2'-bipyridine lingands are 79.03 (16)° and 78.91 (15)°, while that for the phenanthroline is 78.91 (15)°.

For crystal structures of related RuII complexes with bidentate polypyridyl ligands, see: Ye et al. (1999); Huang & Ogawa (2006); Batey et al. (2007).

Related literature top

The title compound was previously synthesized by two other groups (Ryan et al., 1992; Khimich et al., 2007). However, the crystal structure was not reported at that time. For the crystal structures of related compounds, see: Ye et al. (1999); Huang & Ogawa (2006); Batey et al. (2007). For the importance and applications of RuII complexes with bipyridine ligands, see: Bertini et al. (1994); Medlycott & Hanan (2005, 2006).

Experimental top

Bis(2,2'-bipyridine)(1,10-phenanthroline-5-amine)ruthenium(II) bis(hexafluoridophosphate) (450 mg, 0.5 mmol) was dissolved in acetone (100 ml). To this dark red solution was added Na2CO3 (212 mg, 2.0 mmol). After addition of CSCl2 (0.5 ml) to the reaction mixture under N2 atmosphere, it was stirred for 7 h. Then the solvent was evaporated under reduced pressure and the residue dissolved in dichloromethane and filtered. The filtrate was dried over anhydrous Na2SO4. After removal of the solvent under reduced pressure, a red crystalline compound was obtained. Yield: 446 mg (95%). Red crystals suitable for X-ray crystallography were grown by slow diffusion of isopropyl ether into a dilute acetonitrile solution of the title compound.

Refinement top

The H atoms were positioned geometrically (aromatic C—H: 0.95 Å, methyl C—H: 0.98 Å) and were included in the riding model approximation; their temperature factors were set to 1.2 times those of the equivalent isotropic temperature factors of the parent site. The highest remaining electron density peaks are close to the Ru atom, with distances of 0.84 and 0.94 Å, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: UdMX (Maris, 2004).

Figures top
[Figure 1] Fig. 1. View of the cation in the title compound. Thermal ellipsoids are shown at the 50% probability level. H atoms, hexafluoridophosphate anions and the acetonitrile solvent molecule have been omitted for clarity.
Bis(2,2'-bipyridine)(5-isothiocyanato-1,10-phenanthroline)ruthenium(II) bis(hexafluoridophosphate) acetonitrile solvate top
Crystal data top
[Ru(C10H8N2)2(C13H7N3S)](PF6)2·C2H3NZ = 2
Mr = 981.71F(000) = 980
Triclinic, P1Dx = 1.765 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.129 (3) ÅCell parameters from 32297 reflections
b = 12.397 (4) Åθ = 2.3–24.9°
c = 17.084 (5) ŵ = 0.67 mm1
α = 88.618 (4)°T = 150 K
β = 89.704 (5)°Block, red
γ = 72.870 (4)°0.24 × 0.13 × 0.10 mm
V = 1847.1 (10) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6687 independent reflections
Radiation source: X-ray sealed tube6155 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 8.3 pixels mm-1θmax = 25.3°, θmin = 1.2°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.83, Tmax = 0.95l = 2020
178384 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0708P)2 + 4.8035P]
where P = (Fo2 + 2Fc2)/3
6687 reflections(Δ/σ)max = 0.001
536 parametersΔρmax = 1.45 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
[Ru(C10H8N2)2(C13H7N3S)](PF6)2·C2H3Nγ = 72.870 (4)°
Mr = 981.71V = 1847.1 (10) Å3
Triclinic, P1Z = 2
a = 9.129 (3) ÅMo Kα radiation
b = 12.397 (4) ŵ = 0.67 mm1
c = 17.084 (5) ÅT = 150 K
α = 88.618 (4)°0.24 × 0.13 × 0.10 mm
β = 89.704 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
6687 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6155 reflections with I > 2σ(I)
Tmin = 0.83, Tmax = 0.95Rint = 0.061
178384 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.18Δρmax = 1.45 e Å3
6687 reflectionsΔρmin = 0.86 e Å3
536 parameters
Special details top

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker smart diffractometer equiped with an APEX II CCD Detector, a graphite monochromator. The crystal-to-detector distance was 5.0 cm, and the data collection was carried out in 512 x 512 pixel mode. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 10.0 degree scan in 33 frames over four different parts of the reciprocal space (132 frames total).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru0.38640 (4)0.62025 (3)0.24834 (2)0.03144 (14)
S0.09857 (19)0.94046 (14)0.70014 (10)0.0591 (4)
N10.4231 (4)0.7694 (3)0.2119 (2)0.0367 (8)
N20.3529 (5)0.6162 (4)0.1294 (2)0.0388 (9)
N30.6085 (4)0.5205 (3)0.2332 (2)0.0357 (8)
N40.3658 (5)0.4625 (3)0.2763 (2)0.0341 (8)
N50.4022 (5)0.6486 (3)0.3666 (2)0.0369 (9)
N60.1613 (5)0.7088 (3)0.2710 (2)0.0360 (9)
N70.0887 (6)0.8460 (4)0.5781 (3)0.0602 (13)
C10.4583 (6)0.8450 (4)0.2582 (3)0.0431 (11)
H10.46780.83030.31300.052*
C20.4806 (6)0.9433 (4)0.2279 (4)0.0519 (14)
H20.50660.99470.26150.062*
C30.4652 (6)0.9660 (5)0.1489 (4)0.0565 (15)
H30.47911.03380.12750.068*
C40.4294 (6)0.8901 (5)0.1012 (4)0.0510 (13)
H40.41830.90480.04640.061*
C50.4095 (5)0.7919 (4)0.1334 (3)0.0410 (11)
C60.3705 (5)0.7049 (4)0.0877 (3)0.0409 (11)
C70.3534 (6)0.7108 (5)0.0063 (3)0.0536 (14)
H70.37040.77220.02290.064*
C80.3122 (7)0.6279 (6)0.0310 (3)0.0581 (15)
H80.29780.63220.08610.070*
C90.2917 (7)0.5380 (5)0.0119 (3)0.0524 (13)
H90.26230.48000.01320.063*
C100.3144 (6)0.5336 (4)0.0915 (3)0.0430 (11)
H100.30270.47060.12090.052*
C110.7259 (6)0.5555 (4)0.2073 (3)0.0433 (11)
H110.70920.63380.19680.052*
C120.8704 (6)0.4822 (5)0.1952 (3)0.0463 (12)
H120.95060.50990.17600.056*
C130.8972 (6)0.3692 (5)0.2112 (3)0.0459 (12)
H130.99620.31770.20420.055*
C140.7764 (6)0.3316 (4)0.2379 (3)0.0410 (11)
H140.79220.25370.24980.049*
C150.6340 (6)0.4075 (4)0.2469 (3)0.0371 (10)
C160.4958 (6)0.3749 (4)0.2704 (3)0.0359 (10)
C170.4963 (7)0.2647 (4)0.2856 (3)0.0447 (12)
H170.58690.20400.27860.054*
C180.3620 (7)0.2441 (4)0.3113 (3)0.0464 (12)
H180.36040.16930.32340.056*
C190.2330 (6)0.3325 (4)0.3189 (3)0.0442 (12)
H190.14020.31980.33610.053*
C200.2374 (6)0.4408 (4)0.3015 (3)0.0386 (10)
H200.14690.50200.30750.046*
C210.5229 (6)0.6167 (4)0.4138 (3)0.0440 (11)
H210.61730.57080.39360.053*
C220.5166 (7)0.6483 (5)0.4923 (3)0.0534 (14)
H220.60530.62490.52460.064*
C230.3801 (7)0.7136 (5)0.5214 (3)0.0505 (13)
H230.37410.73550.57460.061*
C240.2514 (6)0.7481 (4)0.4746 (3)0.0436 (12)
C250.1014 (7)0.8152 (4)0.5000 (3)0.0453 (12)
C260.0220 (7)0.8445 (5)0.4516 (4)0.0527 (14)
H260.11820.88930.47050.063*
C270.0085 (6)0.8087 (4)0.3729 (3)0.0450 (12)
C280.1299 (6)0.8342 (5)0.3191 (4)0.0505 (13)
H280.22950.87750.33480.061*
C290.1060 (6)0.7975 (5)0.2446 (3)0.0495 (13)
H290.18840.81390.20820.059*
C300.0415 (6)0.7351 (4)0.2220 (3)0.0437 (11)
H300.05720.71030.16960.052*
C310.1371 (6)0.7452 (4)0.3460 (3)0.0400 (11)
C320.2664 (6)0.7137 (4)0.3967 (3)0.0405 (11)
C330.0016 (7)0.8891 (4)0.6287 (3)0.0510 (13)
P11.00000.50000.50000.0572 (6)
F110.9341 (5)0.5008 (5)0.4141 (3)0.0975 (15)
F120.8596 (5)0.4634 (3)0.5351 (3)0.0808 (13)
F130.9038 (5)0.6276 (3)0.5092 (3)0.0901 (15)
P20.50001.00000.50000.0427 (4)
F210.4009 (6)0.9596 (4)0.5648 (3)0.0951 (15)
F220.6131 (6)0.8810 (4)0.5037 (5)0.145 (3)
F230.4083 (11)0.9609 (7)0.4380 (4)0.177 (4)
P30.17933 (17)0.24155 (12)0.02025 (9)0.0502 (4)
F310.1520 (7)0.1887 (4)0.1024 (3)0.113 (2)
F320.0179 (5)0.2320 (4)0.0039 (5)0.129 (2)
F330.2061 (9)0.2892 (4)0.0615 (3)0.129 (2)
F340.3376 (6)0.2461 (4)0.0479 (4)0.1127 (19)
F350.1002 (5)0.3654 (3)0.0503 (3)0.0762 (11)
F360.2583 (5)0.1159 (3)0.0085 (2)0.0712 (10)
C400.8638 (9)0.0429 (5)0.1327 (4)0.0609 (16)
C411.0145 (9)0.0209 (6)0.1065 (5)0.0735 (19)
H41A1.06210.02960.07800.110*
H41B1.00560.08050.07180.110*
H41C1.07790.05500.15190.110*
N80.7473 (8)0.0933 (5)0.1538 (4)0.0753 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru0.0366 (2)0.0291 (2)0.0311 (2)0.01360 (15)0.00462 (14)0.00054 (14)
S0.0651 (9)0.0567 (9)0.0595 (9)0.0231 (7)0.0200 (7)0.0170 (7)
N10.038 (2)0.0318 (19)0.042 (2)0.0128 (16)0.0057 (17)0.0009 (16)
N20.039 (2)0.045 (2)0.032 (2)0.0127 (18)0.0064 (16)0.0004 (17)
N30.038 (2)0.036 (2)0.036 (2)0.0148 (17)0.0040 (16)0.0035 (16)
N40.044 (2)0.0305 (19)0.0313 (19)0.0155 (17)0.0008 (16)0.0018 (15)
N50.046 (2)0.0314 (19)0.039 (2)0.0206 (17)0.0010 (18)0.0002 (16)
N60.041 (2)0.0303 (19)0.039 (2)0.0144 (16)0.0103 (17)0.0019 (16)
N70.076 (3)0.056 (3)0.053 (3)0.025 (3)0.022 (3)0.016 (2)
C10.044 (3)0.033 (2)0.053 (3)0.012 (2)0.009 (2)0.002 (2)
C20.044 (3)0.032 (3)0.081 (4)0.013 (2)0.013 (3)0.004 (3)
C30.048 (3)0.039 (3)0.083 (4)0.015 (2)0.011 (3)0.018 (3)
C40.047 (3)0.048 (3)0.061 (3)0.020 (2)0.007 (3)0.016 (3)
C50.035 (2)0.040 (3)0.047 (3)0.011 (2)0.008 (2)0.007 (2)
C60.034 (2)0.049 (3)0.041 (3)0.015 (2)0.002 (2)0.005 (2)
C70.050 (3)0.073 (4)0.041 (3)0.026 (3)0.002 (2)0.017 (3)
C80.055 (3)0.092 (5)0.035 (3)0.034 (3)0.004 (2)0.003 (3)
C90.052 (3)0.071 (4)0.041 (3)0.028 (3)0.002 (2)0.009 (3)
C100.046 (3)0.046 (3)0.041 (3)0.020 (2)0.002 (2)0.005 (2)
C110.045 (3)0.039 (3)0.049 (3)0.016 (2)0.004 (2)0.006 (2)
C120.038 (3)0.055 (3)0.050 (3)0.018 (2)0.004 (2)0.010 (2)
C130.042 (3)0.048 (3)0.044 (3)0.007 (2)0.000 (2)0.013 (2)
C140.046 (3)0.037 (3)0.039 (3)0.010 (2)0.001 (2)0.005 (2)
C150.045 (3)0.038 (2)0.030 (2)0.014 (2)0.0004 (19)0.0069 (18)
C160.046 (3)0.034 (2)0.031 (2)0.017 (2)0.0028 (19)0.0040 (18)
C170.057 (3)0.032 (2)0.046 (3)0.013 (2)0.002 (2)0.004 (2)
C180.064 (3)0.034 (3)0.049 (3)0.026 (2)0.003 (2)0.001 (2)
C190.053 (3)0.045 (3)0.043 (3)0.027 (2)0.004 (2)0.002 (2)
C200.042 (3)0.041 (3)0.037 (2)0.018 (2)0.003 (2)0.002 (2)
C210.049 (3)0.041 (3)0.047 (3)0.019 (2)0.002 (2)0.003 (2)
C220.065 (4)0.051 (3)0.047 (3)0.021 (3)0.009 (3)0.002 (2)
C230.065 (4)0.047 (3)0.044 (3)0.023 (3)0.005 (3)0.003 (2)
C240.057 (3)0.037 (3)0.043 (3)0.024 (2)0.010 (2)0.003 (2)
C250.058 (3)0.041 (3)0.042 (3)0.023 (2)0.014 (2)0.004 (2)
C260.056 (3)0.042 (3)0.061 (3)0.017 (3)0.019 (3)0.003 (2)
C270.054 (3)0.035 (3)0.050 (3)0.020 (2)0.012 (2)0.002 (2)
C280.041 (3)0.047 (3)0.064 (4)0.014 (2)0.005 (2)0.003 (3)
C290.043 (3)0.047 (3)0.059 (3)0.014 (2)0.003 (2)0.005 (2)
C300.044 (3)0.042 (3)0.048 (3)0.018 (2)0.001 (2)0.004 (2)
C310.047 (3)0.030 (2)0.048 (3)0.018 (2)0.009 (2)0.003 (2)
C320.056 (3)0.029 (2)0.042 (3)0.021 (2)0.014 (2)0.0019 (19)
C330.063 (3)0.039 (3)0.056 (3)0.022 (3)0.014 (3)0.004 (2)
P10.0660 (14)0.0391 (10)0.0700 (14)0.0214 (10)0.0305 (11)0.0011 (9)
F110.081 (3)0.127 (4)0.083 (3)0.028 (3)0.022 (2)0.014 (3)
F120.088 (3)0.057 (2)0.107 (3)0.037 (2)0.051 (2)0.008 (2)
F130.103 (3)0.045 (2)0.123 (4)0.022 (2)0.060 (3)0.005 (2)
P20.0473 (10)0.0392 (9)0.0432 (10)0.0152 (8)0.0076 (8)0.0015 (8)
F210.112 (4)0.068 (3)0.104 (3)0.028 (2)0.058 (3)0.008 (2)
F220.096 (4)0.054 (3)0.268 (8)0.002 (2)0.091 (5)0.028 (4)
F230.297 (10)0.212 (8)0.097 (4)0.193 (8)0.071 (5)0.027 (4)
P30.0517 (8)0.0431 (7)0.0573 (9)0.0161 (6)0.0128 (7)0.0050 (6)
F310.170 (5)0.068 (3)0.100 (3)0.032 (3)0.080 (4)0.011 (2)
F320.066 (3)0.074 (3)0.248 (8)0.018 (2)0.009 (4)0.045 (4)
F330.223 (7)0.065 (3)0.073 (3)0.002 (3)0.052 (4)0.006 (2)
F340.073 (3)0.094 (3)0.176 (6)0.031 (3)0.002 (3)0.034 (4)
F350.079 (3)0.050 (2)0.102 (3)0.0215 (18)0.034 (2)0.0191 (19)
F360.078 (2)0.0481 (19)0.083 (3)0.0129 (17)0.027 (2)0.0085 (18)
C400.076 (5)0.045 (3)0.071 (4)0.032 (3)0.005 (3)0.004 (3)
C410.086 (5)0.063 (4)0.079 (5)0.033 (4)0.021 (4)0.006 (3)
N80.077 (4)0.059 (3)0.094 (5)0.027 (3)0.002 (3)0.015 (3)
Geometric parameters (Å, º) top
Ru—N12.056 (4)C17—H170.95
Ru—N32.059 (4)C18—C191.360 (8)
Ru—N22.059 (4)C18—H180.95
Ru—N42.064 (4)C19—C201.381 (7)
Ru—N62.065 (4)C19—H190.95
Ru—N52.072 (4)C20—H200.95
S—C331.554 (6)C21—C221.403 (8)
N1—C11.350 (6)C21—H210.95
N1—C51.363 (6)C22—C231.369 (8)
N2—C61.345 (6)C22—H220.95
N2—C101.357 (6)C23—C241.379 (8)
N3—C111.339 (6)C23—H230.95
N3—C151.365 (6)C24—C321.401 (7)
N4—C201.344 (6)C24—C251.448 (8)
N4—C161.358 (6)C25—C261.356 (8)
N5—C211.326 (7)C26—C271.419 (8)
N5—C321.370 (6)C26—H260.95
N6—C301.337 (7)C27—C281.402 (8)
N6—C311.365 (6)C27—C311.412 (7)
N7—C331.197 (7)C28—C291.356 (8)
N7—C251.391 (7)C28—H280.95
C1—C21.382 (7)C29—C301.398 (8)
C1—H10.95C29—H290.95
C2—C31.371 (9)C30—H300.95
C2—H20.95C31—C321.420 (8)
C3—C41.370 (9)P1—F13i1.578 (4)
C3—H30.95P1—F131.578 (4)
C4—C51.383 (7)P1—F111.588 (5)
C4—H40.95P1—F11i1.588 (5)
C5—C61.472 (7)P1—F121.591 (3)
C6—C71.396 (7)P1—F12i1.591 (3)
C7—C81.366 (9)P2—F23ii1.526 (5)
C7—H70.95P2—F231.526 (5)
C8—C91.376 (9)P2—F22ii1.531 (4)
C8—H80.95P2—F221.531 (4)
C9—C101.374 (7)P2—F211.589 (4)
C9—H90.95P2—F21ii1.589 (4)
C10—H100.95P3—F341.540 (5)
C11—C121.381 (7)P3—F331.549 (5)
C11—H110.95P3—F321.571 (5)
C12—C131.370 (8)P3—F311.585 (5)
C12—H120.95P3—F351.589 (4)
C13—C141.388 (8)P3—F361.600 (4)
C13—H130.95C40—N81.125 (9)
C14—C151.372 (7)C40—C411.445 (10)
C14—H140.95C41—H41a0.98
C15—C161.484 (7)C41—H41b0.98
C16—C171.383 (7)C41—H41c0.98
C17—C181.390 (8)
N1—Ru—N396.28 (15)N4—C20—H20118.9
N1—Ru—N279.03 (16)C19—C20—H20118.9
N3—Ru—N288.79 (16)N5—C21—C22122.5 (5)
N1—Ru—N4174.09 (15)N5—C21—H21118.7
N3—Ru—N478.91 (15)C22—C21—H21118.7
N2—Ru—N497.32 (15)C23—C22—C21118.6 (5)
N1—Ru—N688.69 (15)C23—C22—H22120.7
N3—Ru—N6174.60 (15)C21—C22—H22120.7
N2—Ru—N694.23 (16)C22—C23—C24120.8 (5)
N4—Ru—N696.25 (15)C22—C23—H23119.6
N1—Ru—N594.83 (15)C24—C23—H23119.6
N3—Ru—N597.41 (16)C23—C24—C32117.4 (5)
N2—Ru—N5171.75 (16)C23—C24—C25125.1 (5)
N4—Ru—N589.23 (14)C32—C24—C25117.5 (5)
N6—Ru—N580.03 (16)C26—C25—N7121.2 (5)
C1—N1—C5118.4 (4)C26—C25—C24122.4 (5)
C1—N1—RU126.2 (3)N7—C25—C24116.4 (5)
C5—N1—RU115.4 (3)C25—C26—C27120.5 (5)
C6—N2—C10118.9 (4)C25—C26—H26119.7
C6—N2—RU115.5 (3)C27—C26—H26119.7
C10—N2—RU125.6 (3)C28—C27—C31117.4 (5)
C11—N3—C15117.9 (4)C28—C27—C26124.4 (5)
C11—N3—RU126.1 (3)C31—C27—C26118.3 (5)
C15—N3—RU115.9 (3)C29—C28—C27120.3 (5)
C20—N4—C16118.5 (4)C29—C28—H28119.9
C20—N4—RU125.6 (3)C27—C28—H28119.9
C16—N4—RU115.9 (3)C28—C29—C30119.2 (5)
C21—N5—C32118.1 (4)C28—C29—H29120.4
C21—N5—RU129.4 (4)C30—C29—H29120.4
C32—N5—RU112.4 (3)N6—C30—C29122.9 (5)
C30—N6—C31118.0 (4)N6—C30—H30118.6
C30—N6—RU128.5 (3)C29—C30—H30118.6
C31—N6—RU113.5 (3)N6—C31—C27122.3 (5)
C33—N7—C25144.9 (6)N6—C31—C32116.4 (4)
N1—C1—C2121.7 (5)C27—C31—C32121.3 (5)
N1—C1—H1119.1N5—C32—C24122.5 (5)
C2—C1—H1119.1N5—C32—C31117.5 (4)
C3—C2—C1119.6 (6)C24—C32—C31119.9 (5)
C3—C2—H2120.2N7—C33—S174.4 (6)
C1—C2—H2120.2F13i—P1—F13180.0 (4)
C4—C3—C2119.3 (5)F13i—P1—F1189.6 (3)
C4—C3—H3120.4F13—P1—F1190.4 (3)
C2—C3—H3120.4F13i—P1—F11i90.4 (3)
C3—C4—C5119.7 (5)F13—P1—F11i89.6 (3)
C3—C4—H4120.2F11—P1—F11i180.000 (2)
C5—C4—H4120.2F13i—P1—F1290.9 (2)
N1—C5—C4121.3 (5)F13—P1—F1289.1 (2)
N1—C5—C6114.6 (4)F11—P1—F1290.3 (3)
C4—C5—C6124.1 (5)F11i—P1—F1289.7 (3)
N2—C6—C7120.8 (5)F13i—P1—F12i89.1 (2)
N2—C6—C5115.5 (4)F13—P1—F12i90.9 (2)
C7—C6—C5123.7 (5)F11—P1—F12i89.7 (3)
C8—C7—C6119.7 (5)F11i—P1—F12i90.3 (3)
C8—C7—H7120.2F12—P1—F12i180.000 (1)
C6—C7—H7120.2F23ii—P2—F23180.0 (6)
C7—C8—C9119.6 (5)F23ii—P2—F22ii89.3 (5)
C7—C8—H8120.2F23—P2—F22ii90.7 (5)
C9—C8—H8120.2F23ii—P2—F2290.7 (5)
C10—C9—C8119.0 (5)F23—P2—F2289.3 (5)
C10—C9—H9120.5F22ii—P2—F22180.0 (6)
C8—C9—H9120.5F23ii—P2—F2191.9 (4)
N2—C10—C9122.1 (5)F23—P2—F2188.1 (4)
N2—C10—H10118.9F22ii—P2—F2191.9 (3)
C9—C10—H10118.9F22—P2—F2188.1 (3)
N3—C11—C12122.6 (5)F23ii—P2—F21ii88.1 (4)
N3—C11—H11118.7F23—P2—F21ii91.9 (4)
C12—C11—H11118.7F22ii—P2—F21ii88.1 (3)
C13—C12—C11119.5 (5)F22—P2—F21ii91.9 (3)
C13—C12—H12120.2F21—P2—F21ii180.000 (2)
C11—C12—H12120.2F34—P3—F3390.6 (4)
C12—C13—C14118.6 (5)F34—P3—F32176.7 (4)
C12—C13—H13120.7F33—P3—F3292.6 (4)
C14—C13—H13120.7F34—P3—F3190.3 (4)
C15—C14—C13119.6 (5)F33—P3—F31178.0 (3)
C15—C14—H14120.2F32—P3—F3186.6 (4)
C13—C14—H14120.2F34—P3—F3591.2 (3)
N3—C15—C14121.7 (5)F33—P3—F3590.9 (2)
N3—C15—C16114.5 (4)F32—P3—F3589.8 (2)
C14—C15—C16123.7 (4)F31—P3—F3590.9 (2)
N4—C16—C17121.5 (5)F34—P3—F3688.8 (3)
N4—C16—C15114.7 (4)F33—P3—F3690.2 (2)
C17—C16—C15123.8 (5)F32—P3—F3690.1 (2)
C16—C17—C18119.0 (5)F31—P3—F3688.0 (2)
C16—C17—H17120.5F35—P3—F36178.9 (2)
C18—C17—H17120.5N8—C40—C41179.0 (8)
C19—C18—C17119.2 (5)C40—C41—H41A109.5
C19—C18—H18120.4C40—C41—H41B109.5
C17—C18—H18120.4H41A—C41—H41B109.5
C18—C19—C20119.7 (5)C40—C41—H41C109.5
C18—C19—H19120.2H41A—C41—H41C109.5
C20—C19—H19120.2H41B—C41—H41C109.5
N4—C20—C19122.1 (5)
N3—RU—N1—C192.9 (4)C6—N2—C10—C90.5 (8)
N2—RU—N1—C1179.6 (4)RU—N2—C10—C9178.9 (4)
N6—RU—N1—C185.0 (4)C8—C9—C10—N21.6 (9)
N5—RU—N1—C15.1 (4)C15—N3—C11—C120.8 (7)
N3—RU—N1—C587.3 (3)RU—N3—C11—C12176.9 (4)
N2—RU—N1—C50.2 (3)N3—C11—C12—C131.0 (8)
N6—RU—N1—C594.8 (3)C11—C12—C13—C141.2 (8)
N5—RU—N1—C5174.7 (3)C12—C13—C14—C150.5 (7)
N1—RU—N2—C60.4 (3)C11—N3—C15—C142.6 (7)
N3—RU—N2—C696.2 (4)RU—N3—C15—C14179.0 (3)
N4—RU—N2—C6174.9 (3)C11—N3—C15—C16176.1 (4)
N6—RU—N2—C688.3 (4)RU—N3—C15—C160.3 (5)
N1—RU—N2—C10179.0 (4)C13—C14—C15—N32.5 (7)
N3—RU—N2—C1084.4 (4)C13—C14—C15—C16176.1 (4)
N4—RU—N2—C105.7 (4)C20—N4—C16—C173.4 (7)
N6—RU—N2—C1091.2 (4)RU—N4—C16—C17178.3 (4)
N1—RU—N3—C110.1 (4)C20—N4—C16—C15176.4 (4)
N2—RU—N3—C1178.9 (4)RU—N4—C16—C151.9 (5)
N4—RU—N3—C11176.6 (4)N3—C15—C16—N41.4 (6)
N5—RU—N3—C1195.6 (4)C14—C15—C16—N4179.9 (4)
N1—RU—N3—C15176.0 (3)N3—C15—C16—C17178.8 (4)
N2—RU—N3—C1597.2 (3)C14—C15—C16—C170.1 (7)
N4—RU—N3—C150.5 (3)N4—C16—C17—C183.2 (7)
N5—RU—N3—C1588.3 (3)C15—C16—C17—C18176.5 (5)
N3—RU—N4—C20176.8 (4)C16—C17—C18—C191.6 (8)
N2—RU—N4—C2095.9 (4)C17—C18—C19—C200.3 (8)
N6—RU—N4—C200.8 (4)C16—N4—C20—C192.1 (7)
N5—RU—N4—C2079.1 (4)RU—N4—C20—C19179.9 (4)
N3—RU—N4—C161.3 (3)C18—C19—C20—N40.6 (8)
N2—RU—N4—C1686.0 (3)C32—N5—C21—C220.8 (7)
N6—RU—N4—C16178.9 (3)RU—N5—C21—C22176.3 (4)
N5—RU—N4—C1699.0 (3)N5—C21—C22—C230.6 (8)
N1—RU—N5—C2193.1 (4)C21—C22—C23—C240.2 (8)
N3—RU—N5—C213.9 (4)C22—C23—C24—C320.1 (8)
N4—RU—N5—C2182.6 (4)C22—C23—C24—C25178.8 (5)
N6—RU—N5—C21179.1 (4)C33—N7—C25—C265.7 (12)
N1—RU—N5—C3284.1 (3)C33—N7—C25—C24172.5 (8)
N3—RU—N5—C32178.9 (3)C23—C24—C25—C26178.5 (5)
N4—RU—N5—C32100.2 (3)C32—C24—C25—C260.3 (7)
N6—RU—N5—C323.7 (3)C23—C24—C25—N70.4 (8)
N1—RU—N6—C3087.0 (4)C32—C24—C25—N7178.5 (4)
N2—RU—N6—C308.1 (4)N7—C25—C26—C27177.5 (5)
N4—RU—N6—C3089.8 (4)C24—C25—C26—C270.6 (8)
N5—RU—N6—C30177.9 (4)C25—C26—C27—C28179.5 (5)
N1—RU—N6—C3191.9 (3)C25—C26—C27—C312.0 (8)
N2—RU—N6—C31170.8 (3)C31—C27—C28—C290.7 (8)
N4—RU—N6—C3191.4 (3)C26—C27—C28—C29179.2 (5)
N5—RU—N6—C313.2 (3)C27—C28—C29—C300.8 (8)
C5—N1—C1—C20.1 (7)C31—N6—C30—C290.2 (7)
RU—N1—C1—C2179.9 (4)RU—N6—C30—C29179.0 (4)
N1—C1—C2—C30.8 (8)C28—C29—C30—N60.5 (8)
C1—C2—C3—C40.7 (8)C30—N6—C31—C270.1 (6)
C2—C3—C4—C50.0 (8)RU—N6—C31—C27179.1 (3)
C1—N1—C5—C40.7 (7)C30—N6—C31—C32178.8 (4)
RU—N1—C5—C4179.2 (4)RU—N6—C31—C322.2 (5)
C1—N1—C5—C6179.8 (4)C28—C27—C31—N60.3 (7)
RU—N1—C5—C60.0 (5)C26—C27—C31—N6178.9 (4)
C3—C4—C5—N10.7 (8)C28—C27—C31—C32178.9 (4)
C3—C4—C5—C6179.8 (5)C26—C27—C31—C322.4 (7)
C10—N2—C6—C71.6 (7)C21—N5—C32—C240.5 (7)
RU—N2—C6—C7178.9 (4)RU—N5—C32—C24177.1 (3)
C10—N2—C6—C5178.9 (4)C21—N5—C32—C31178.7 (4)
RU—N2—C6—C50.6 (5)RU—N5—C32—C313.8 (5)
N1—C5—C6—N20.4 (6)C23—C24—C32—N50.1 (7)
C4—C5—C6—N2178.7 (5)C25—C24—C32—N5179.0 (4)
N1—C5—C6—C7179.1 (5)C23—C24—C32—C31179.1 (4)
C4—C5—C6—C71.8 (8)C25—C24—C32—C310.1 (7)
N2—C6—C7—C82.7 (8)N6—C31—C32—N51.1 (6)
C5—C6—C7—C8177.9 (5)C27—C31—C32—N5177.6 (4)
C6—C7—C8—C91.6 (9)N6—C31—C32—C24179.8 (4)
C7—C8—C9—C100.5 (9)C27—C31—C32—C241.5 (7)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Ru(C10H8N2)2(C13H7N3S)](PF6)2·C2H3N
Mr981.71
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)9.129 (3), 12.397 (4), 17.084 (5)
α, β, γ (°)88.618 (4), 89.704 (5), 72.870 (4)
V3)1847.1 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.24 × 0.13 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.83, 0.95
No. of measured, independent and
observed [I > 2σ(I)] reflections
178384, 6687, 6155
Rint0.061
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.152, 1.18
No. of reflections6687
No. of parameters536
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.45, 0.86

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), UdMX (Maris, 2004).

Selected bond lengths (Å) top
Ru—N12.056 (4)Ru—N42.064 (4)
Ru—N32.059 (4)Ru—N62.065 (4)
Ru—N22.059 (4)Ru—N52.072 (4)
 

Acknowledgements

The authors are greatful to the Natural Sciences and Engineering Research Council of Canada and the Université de Montréal for financial support.

References

First citationBatey, H. D., Whitwood, A. C. & Duhme-Klair, A.-K. (2007). Inorg. Chem. 46, 6516–6528.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBertini, I., Gray, H. B., Lippard, S. J. & Valentine, J. S. (1994). Bioinorganic Chemistry. Mill Valley, California: University Science Books.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, W. & Ogawa, T. (2006). Polyhedron, 25, 1379–1385.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhimich, N. N., Zdravkov, A. V., Aleksashkina, M. A. & Chepik, L. F. (2007). Russ. J. Appl. Chem. 80, 358–363.  Web of Science CrossRef CAS Google Scholar
First citationMaris, T. (2004). UdMX. Université de Montréal, Montréal, Québec, Canada.  Google Scholar
First citationMedlycott, E. A. & Hanan, G. S. (2005). Chem. Soc. Rev. 34, 133–142.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMedlycott, E. A. & Hanan, G. S. (2006). Coord. Chem. Rev. 250, 1763–1782.  Web of Science CrossRef CAS Google Scholar
First citationRyan, E. M., O'Kennedy, R., Feeney, I. M. M., Kelly, J. M. & Vos, J. G. (1992). Bioconjug. Chem. 3, 285–290.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, B.-H., Ji, L.-N., Xue, F. & Mak, T. C. W. (1999). Transition Met. Chem. 24, 8–12.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds