organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(2-Chloro­benzyl­­idene)-4-meth­oxy­benzohydrazide

aCollege of Agriculture and Life Sciences, Ankang University, Ankang Shanxi 725000, People's Republic of China
*Correspondence e-mail: wendong_zhu@126.com

(Received 17 September 2009; accepted 18 September 2009; online 26 September 2009)

The mol­ecule of the title compound, C15H13ClN2O2, adopts an E geometry about the C=N bond. The dihedral angle between the two benzene rings is 62.7 (2)°. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains running along the c axis.

Related literature

For the crystal structures of related hydrazone compounds, see: He & Liu (2005[He, Y.-Z. & Liu, D.-Z. (2005). Acta Cryst. E61, o3855-o3856.]); Zhen & Han (2005[Zhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o4360-o4361.]); Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Qu & Cao (2009[Qu, L.-Z. & Cao, G.-B. (2009). Acta Cryst. E65, o1705.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13ClN2O2

  • Mr = 288.72

  • Monoclinic, P 21 /c

  • a = 11.5488 (9) Å

  • b = 13.4244 (10) Å

  • c = 9.6207 (7) Å

  • β = 107.873 (4)°

  • V = 1419.57 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 K

  • 0.23 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.940, Tmax = 0.948

  • 8562 measured reflections

  • 3084 independent reflections

  • 2304 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.133

  • S = 1.02

  • 3084 reflections

  • 185 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.901 (10) 1.994 (12) 2.8717 (17) 165 (2)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, the crystal structures of hydrazone compounds have attracted much attention (He & Liu, 2005; Zhen & Han, 2005; Fun et al., 2008; Qu & Cao, 2009). In this paper, the new title compound (Fig. 1) is reported.

The molecule of the title compound adopts an E geometry about the C7N1 bond. The dihedral angle between the C1-C6 and C9-C14 benzene rings is 62.7 (2)°.

In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1) to form chains running along the c axis (Fig. 2).

Related literature top

For the crystal structures of related hydrazone compounds, see: He & Liu (2005); Zhen & Han (2005); Fun et al. (2008); Qu & Cao (2009).

Experimental top

Equimolar quantities of 2-chlorobenzaldehyde and 4-methoxybenzohydrazide were refluxed in methanol. Colorless block-shaped crystals were formed by slow evaporation of the solution in air.

Refinement top

H2 was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. The other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 and 0.96 Å, and with Uiso(H) = kUeq(C), where k = 1.2 for Csp2 and 1.5 for methyl C.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the b axis. Hydrogen bonds are drawn as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.
(E)-N'-(2-Chlorobenzylidene)-4-methoxybenzohydrazide top
Crystal data top
C15H13ClN2O2F(000) = 600
Mr = 288.72Dx = 1.351 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2779 reflections
a = 11.5488 (9) Åθ = 2.4–27.4°
b = 13.4244 (10) ŵ = 0.27 mm1
c = 9.6207 (7) ÅT = 298 K
β = 107.873 (4)°Block, colorless
V = 1419.57 (18) Å30.23 × 0.23 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3084 independent reflections
Radiation source: fine-focus sealed tube2304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1412
Tmin = 0.940, Tmax = 0.948k = 1615
8562 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0675P)2 + 0.3322P]
where P = (Fo2 + 2Fc2)/3
3084 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.51 e Å3
Crystal data top
C15H13ClN2O2V = 1419.57 (18) Å3
Mr = 288.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5488 (9) ŵ = 0.27 mm1
b = 13.4244 (10) ÅT = 298 K
c = 9.6207 (7) Å0.23 × 0.23 × 0.20 mm
β = 107.873 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3084 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2304 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.948Rint = 0.022
8562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.19 e Å3
3084 reflectionsΔρmin = 0.51 e Å3
185 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.23118 (7)1.10791 (5)0.47212 (9)0.0924 (3)
N10.19678 (13)0.85010 (10)0.71097 (14)0.0399 (3)
N20.24583 (13)0.76562 (10)0.67022 (14)0.0403 (3)
O10.29267 (12)0.69949 (9)0.89788 (12)0.0479 (3)
O20.46641 (14)0.34135 (10)0.58877 (16)0.0628 (4)
C10.12586 (16)1.01500 (13)0.65257 (19)0.0447 (4)
C20.14399 (19)1.10494 (14)0.5909 (3)0.0583 (5)
C30.0947 (2)1.19280 (17)0.6231 (3)0.0813 (8)
H30.10891.25250.58200.098*
C40.0258 (3)1.1916 (2)0.7147 (4)0.0884 (9)
H40.00731.25060.73590.106*
C50.0045 (2)1.1040 (2)0.7763 (3)0.0803 (8)
H50.04311.10370.83860.096*
C60.05407 (18)1.01637 (17)0.7455 (2)0.0567 (5)
H60.03930.95720.78740.068*
C70.18011 (16)0.92262 (12)0.62146 (18)0.0413 (4)
H70.20240.91680.53670.050*
C80.29077 (15)0.69279 (12)0.77010 (17)0.0370 (4)
C90.33550 (15)0.60262 (11)0.71352 (17)0.0369 (4)
C100.29691 (16)0.57429 (13)0.56828 (18)0.0432 (4)
H100.24210.61430.50020.052*
C110.33849 (17)0.48743 (13)0.52260 (19)0.0469 (4)
H110.31090.46920.42470.056*
C120.42069 (17)0.42791 (13)0.6221 (2)0.0460 (4)
C130.4634 (2)0.45714 (15)0.7671 (2)0.0586 (5)
H130.52150.41880.83400.070*
C140.42027 (19)0.54236 (14)0.81211 (19)0.0530 (5)
H140.44800.56030.91010.064*
C150.4283 (2)0.31064 (15)0.4399 (3)0.0627 (6)
H15A0.34200.30000.40820.094*
H15B0.46890.24980.43040.094*
H15C0.44840.36140.38090.094*
H20.260 (2)0.7642 (19)0.5831 (15)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0982 (5)0.0642 (4)0.1289 (6)0.0040 (3)0.0556 (5)0.0324 (4)
N10.0465 (8)0.0383 (7)0.0371 (7)0.0016 (6)0.0163 (6)0.0040 (6)
N20.0580 (9)0.0354 (7)0.0325 (7)0.0047 (6)0.0210 (6)0.0006 (6)
O10.0710 (8)0.0470 (7)0.0313 (6)0.0005 (6)0.0239 (6)0.0015 (5)
O20.0811 (10)0.0446 (7)0.0629 (9)0.0194 (7)0.0224 (7)0.0000 (6)
C10.0416 (9)0.0428 (9)0.0427 (9)0.0038 (7)0.0026 (7)0.0065 (7)
C20.0513 (11)0.0422 (10)0.0734 (14)0.0026 (8)0.0073 (10)0.0011 (9)
C30.0709 (15)0.0410 (12)0.116 (2)0.0081 (10)0.0049 (15)0.0041 (12)
C40.0755 (17)0.0652 (16)0.114 (2)0.0275 (13)0.0131 (16)0.0280 (15)
C50.0658 (15)0.090 (2)0.0834 (17)0.0276 (13)0.0203 (13)0.0204 (14)
C60.0497 (11)0.0618 (12)0.0556 (11)0.0110 (9)0.0117 (9)0.0076 (9)
C70.0481 (9)0.0388 (8)0.0370 (8)0.0014 (7)0.0130 (7)0.0021 (7)
C80.0445 (9)0.0373 (8)0.0315 (8)0.0034 (7)0.0149 (7)0.0010 (6)
C90.0462 (9)0.0358 (8)0.0305 (8)0.0005 (7)0.0144 (7)0.0039 (6)
C100.0495 (10)0.0426 (9)0.0335 (8)0.0077 (8)0.0070 (7)0.0011 (7)
C110.0557 (11)0.0453 (9)0.0364 (9)0.0047 (8)0.0092 (8)0.0058 (7)
C120.0553 (11)0.0366 (8)0.0487 (10)0.0045 (8)0.0199 (8)0.0033 (7)
C130.0757 (14)0.0529 (11)0.0432 (10)0.0211 (10)0.0123 (9)0.0116 (8)
C140.0746 (13)0.0511 (11)0.0301 (8)0.0108 (9)0.0114 (8)0.0057 (8)
C150.0724 (14)0.0442 (11)0.0751 (14)0.0017 (9)0.0277 (11)0.0144 (10)
Geometric parameters (Å, º) top
Cl1—C21.740 (3)C5—H50.9300
N1—C71.275 (2)C6—H60.9300
N1—N21.3773 (19)C7—H70.9300
N2—C81.357 (2)C8—C91.483 (2)
N2—H20.901 (10)C9—C101.383 (2)
O1—C81.2261 (19)C9—C141.394 (2)
O2—C121.355 (2)C10—C111.383 (2)
O2—C151.424 (3)C10—H100.9300
C1—C21.389 (3)C11—C121.378 (2)
C1—C61.394 (3)C11—H110.9300
C1—C71.461 (2)C12—C131.386 (3)
C2—C31.385 (3)C13—C141.370 (3)
C3—C41.356 (4)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.373 (4)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C5—C61.379 (3)C15—H15C0.9600
C7—N1—N2115.26 (14)O1—C8—C9121.78 (14)
C8—N2—N1119.53 (13)N2—C8—C9115.37 (13)
C8—N2—H2120.3 (16)C10—C9—C14117.97 (15)
N1—N2—H2119.3 (16)C10—C9—C8123.68 (14)
C12—O2—C15117.63 (15)C14—C9—C8118.35 (14)
C2—C1—C6117.37 (18)C11—C10—C9121.14 (16)
C2—C1—C7121.33 (18)C11—C10—H10119.4
C6—C1—C7121.29 (17)C9—C10—H10119.4
C3—C2—C1121.2 (2)C12—C11—C10120.04 (16)
C3—C2—Cl1119.16 (19)C12—C11—H11120.0
C1—C2—Cl1119.59 (15)C10—C11—H11120.0
C4—C3—C2119.9 (2)O2—C12—C11124.65 (17)
C4—C3—H3120.1O2—C12—C13115.91 (16)
C2—C3—H3120.1C11—C12—C13119.43 (16)
C3—C4—C5120.6 (2)C14—C13—C12120.20 (17)
C3—C4—H4119.7C14—C13—H13119.9
C5—C4—H4119.7C12—C13—H13119.9
C4—C5—C6119.8 (3)C13—C14—C9121.14 (17)
C4—C5—H5120.1C13—C14—H14119.4
C6—C5—H5120.1C9—C14—H14119.4
C5—C6—C1121.1 (2)O2—C15—H15A109.5
C5—C6—H6119.4O2—C15—H15B109.5
C1—C6—H6119.4H15A—C15—H15B109.5
N1—C7—C1119.69 (16)O2—C15—H15C109.5
N1—C7—H7120.2H15A—C15—H15C109.5
C1—C7—H7120.2H15B—C15—H15C109.5
O1—C8—N2122.83 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.90 (1)1.99 (1)2.8717 (17)165 (2)
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H13ClN2O2
Mr288.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.5488 (9), 13.4244 (10), 9.6207 (7)
β (°) 107.873 (4)
V3)1419.57 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.23 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.940, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
8562, 3084, 2304
Rint0.022
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.133, 1.02
No. of reflections3084
No. of parameters185
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.51

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.901 (10)1.994 (12)2.8717 (17)165 (2)
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

The Scientific Research Project of the Education Office of Shanxi Province (Project No. 08JK213) is acknowledged for support of this study.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, Y.-Z. & Liu, D.-Z. (2005). Acta Cryst. E61, o3855–o3856.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQu, L.-Z. & Cao, G.-B. (2009). Acta Cryst. E65, o1705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o4360–o4361.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds