organic compounds
2-Cyanoanilinium bromide
aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn
In the cation of the title compound, C7H7N2+·Br−, the nitrile group and the benzene ring are almost coplanar (r.m.s. deviation = 0.0043 Å). In the crystal, the cations and anions are connected by intermolecular N—H⋯Br hydrogen bonds, forming a two-dimensional network parallel to (010).
Related literature
For nitrile derivatives, see: Fu et al. (2008); Wang et al. (2002). Nitrile derivatives used in the construction of novel metal-organic frameworks. For applications of metal-organic coordination compounds, see: Fu et al. (2007); Chen et al. (2000); Fu & Xiong (2008); Xiong et al. (1999); Xie et al. (2003); Zhang et al. (2001).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809035223/xu2593sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809035223/xu2593Isup2.hkl
The commercial 2-aminobenzonitrile (3 mmol, 0.55 g) and HBr (0.5 ml) were dissolved in ethanol (20 ml). Colourless needle-shaped crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation at room temperature.
All H atoms attached to C and N atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å, N—H = 0.89 Å and Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N). A rotating-group model was used for the -NH3 group.
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C7H7N2+·Br− | F(000) = 392 |
Mr = 199.06 | Dx = 1.696 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 1581 reflections |
a = 5.7844 (12) Å | θ = 2.6–27.5° |
b = 15.896 (3) Å | µ = 5.19 mm−1 |
c = 8.4882 (17) Å | T = 298 K |
β = 92.72 (3)° | Needle, colourless |
V = 779.6 (3) Å3 | 0.40 × 0.05 × 0.05 mm |
Z = 4 |
Rigaku Mercury2 diffractometer | 1773 independent reflections |
Radiation source: fine-focus sealed tube | 1581 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 2.6° |
CCD profile fitting scans | h = −7→7 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −20→20 |
Tmin = 0.65, Tmax = 0.77 | l = −10→11 |
3848 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.025 | w = 1/[σ2(Fo2) + (0.0143P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.050 | (Δ/σ)max < 0.001 |
S = 0.87 | Δρmax = 0.47 e Å−3 |
1773 reflections | Δρmin = −0.41 e Å−3 |
93 parameters | Extinction correction: SHELXTL (Version 5.1; Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
2 restraints | Extinction coefficient: 0.0206 (8) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 872 Friedels pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.004 (13) |
C7H7N2+·Br− | V = 779.6 (3) Å3 |
Mr = 199.06 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 5.7844 (12) Å | µ = 5.19 mm−1 |
b = 15.896 (3) Å | T = 298 K |
c = 8.4882 (17) Å | 0.40 × 0.05 × 0.05 mm |
β = 92.72 (3)° |
Rigaku Mercury2 diffractometer | 1773 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 1581 reflections with I > 2σ(I) |
Tmin = 0.65, Tmax = 0.77 | Rint = 0.034 |
3848 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.050 | Δρmax = 0.47 e Å−3 |
S = 0.87 | Δρmin = −0.41 e Å−3 |
1773 reflections | Absolute structure: Flack (1983), 872 Friedels pairs |
93 parameters | Absolute structure parameter: 0.004 (13) |
2 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.05750 (10) | 0.208462 (17) | 0.44566 (9) | 0.04064 (12) | |
N1 | 0.0515 (5) | 0.32177 (17) | 0.7619 (3) | 0.0347 (6) | |
H1A | 0.0332 | 0.2950 | 0.6701 | 0.052* | |
H1B | −0.0713 | 0.3127 | 0.8188 | 0.052* | |
H1C | 0.1780 | 0.3027 | 0.8140 | 0.052* | |
C6 | −0.0799 (6) | 0.4675 (3) | 0.7945 (5) | 0.0372 (10) | |
H6 | −0.2028 | 0.4473 | 0.8503 | 0.045* | |
C3 | 0.2867 (8) | 0.5276 (3) | 0.6309 (5) | 0.0451 (11) | |
H3 | 0.4102 | 0.5483 | 0.5762 | 0.054* | |
C1 | 0.0755 (6) | 0.4115 (2) | 0.7337 (5) | 0.0309 (9) | |
C4 | 0.1322 (8) | 0.5822 (3) | 0.6917 (5) | 0.0500 (12) | |
H4 | 0.1516 | 0.6399 | 0.6788 | 0.060* | |
C7 | 0.4233 (6) | 0.3856 (2) | 0.5783 (4) | 0.0410 (8) | |
N2 | 0.5521 (6) | 0.3440 (2) | 0.5163 (4) | 0.0618 (10) | |
C2 | 0.2611 (6) | 0.4411 (3) | 0.6501 (4) | 0.0346 (9) | |
C5 | −0.0547 (7) | 0.5521 (3) | 0.7733 (5) | 0.0474 (12) | |
H5 | −0.1613 | 0.5894 | 0.8130 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.03349 (17) | 0.04202 (18) | 0.04729 (19) | −0.0034 (2) | 0.01111 (12) | −0.0112 (3) |
N1 | 0.0284 (14) | 0.0369 (15) | 0.0396 (16) | −0.0027 (12) | 0.0104 (12) | −0.0036 (13) |
C6 | 0.031 (2) | 0.043 (2) | 0.038 (2) | −0.0023 (18) | 0.0075 (17) | −0.0038 (18) |
C3 | 0.044 (3) | 0.046 (3) | 0.046 (3) | −0.012 (2) | 0.007 (2) | 0.003 (2) |
C1 | 0.027 (2) | 0.035 (2) | 0.0309 (18) | 0.0005 (15) | 0.0021 (15) | −0.0028 (15) |
C4 | 0.065 (3) | 0.031 (2) | 0.055 (3) | −0.004 (2) | 0.008 (2) | 0.003 (2) |
C7 | 0.0303 (18) | 0.049 (2) | 0.044 (2) | −0.0078 (17) | 0.0101 (16) | 0.0045 (18) |
N2 | 0.049 (2) | 0.070 (2) | 0.069 (2) | 0.0068 (19) | 0.031 (2) | 0.0025 (18) |
C2 | 0.032 (2) | 0.039 (2) | 0.032 (2) | −0.0017 (17) | 0.0039 (17) | 0.0032 (16) |
C5 | 0.056 (3) | 0.041 (2) | 0.045 (3) | 0.012 (2) | 0.006 (2) | −0.007 (2) |
N1—C1 | 1.455 (5) | C3—C2 | 1.393 (6) |
N1—H1A | 0.8900 | C3—H3 | 0.9300 |
N1—H1B | 0.8900 | C1—C2 | 1.396 (5) |
N1—H1C | 0.8900 | C4—C5 | 1.396 (6) |
C6—C5 | 1.366 (6) | C4—H4 | 0.9300 |
C6—C1 | 1.382 (5) | C7—N2 | 1.142 (4) |
C6—H6 | 0.9300 | C7—C2 | 1.444 (6) |
C3—C4 | 1.365 (6) | C5—H5 | 0.9300 |
C1—N1—H1A | 109.5 | C6—C1—N1 | 120.1 (3) |
C1—N1—H1B | 109.5 | C2—C1—N1 | 119.7 (3) |
H1A—N1—H1B | 109.5 | C3—C4—C5 | 120.4 (4) |
C1—N1—H1C | 109.5 | C3—C4—H4 | 119.8 |
H1A—N1—H1C | 109.5 | C5—C4—H4 | 119.8 |
H1B—N1—H1C | 109.5 | N2—C7—C2 | 177.0 (4) |
C5—C6—C1 | 120.6 (4) | C3—C2—C1 | 118.7 (4) |
C5—C6—H6 | 119.7 | C3—C2—C7 | 118.6 (4) |
C1—C6—H6 | 119.7 | C1—C2—C7 | 122.6 (4) |
C4—C3—C2 | 120.5 (4) | C6—C5—C4 | 119.5 (4) |
C4—C3—H3 | 119.7 | C6—C5—H5 | 120.2 |
C2—C3—H3 | 119.7 | C4—C5—H5 | 120.2 |
C6—C1—C2 | 120.2 (4) | ||
C5—C6—C1—C2 | 0.2 (6) | N1—C1—C2—C3 | −177.0 (4) |
C5—C6—C1—N1 | 177.8 (4) | C6—C1—C2—C7 | −177.4 (4) |
C2—C3—C4—C5 | −0.4 (7) | N1—C1—C2—C7 | 5.0 (6) |
C4—C3—C2—C1 | −0.5 (6) | C1—C6—C5—C4 | −1.1 (7) |
C4—C3—C2—C7 | 177.6 (4) | C3—C4—C5—C6 | 1.2 (7) |
C6—C1—C2—C3 | 0.6 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Br1 | 0.89 | 2.36 | 3.234 (3) | 168 |
N1—H1B···Br1i | 0.89 | 2.47 | 3.355 (3) | 173 |
N1—H1C···Br1ii | 0.89 | 2.42 | 3.286 (3) | 164 |
Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) x+1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C7H7N2+·Br− |
Mr | 199.06 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 298 |
a, b, c (Å) | 5.7844 (12), 15.896 (3), 8.4882 (17) |
β (°) | 92.72 (3) |
V (Å3) | 779.6 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.19 |
Crystal size (mm) | 0.40 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Rigaku Mercury2 diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.65, 0.77 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3848, 1773, 1581 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.050, 0.87 |
No. of reflections | 1773 |
No. of parameters | 93 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.41 |
Absolute structure | Flack (1983), 872 Friedels pairs |
Absolute structure parameter | 0.004 (13) |
Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Br1 | 0.89 | 2.36 | 3.234 (3) | 167.6 |
N1—H1B···Br1i | 0.89 | 2.47 | 3.355 (3) | 172.6 |
N1—H1C···Br1ii | 0.89 | 2.42 | 3.286 (3) | 163.7 |
Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) x+1/2, −y+1/2, z+1/2. |
Acknowledgements
This work was supported by the Outstanding Doctoral Dissertation Fund from Southeast University.
References
Chen, Z.-F., Xiong, R.-G., Zhang, J., Zuo, J.-L., You, X.-Z., Che, C.-M. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4010–4012. Web of Science CrossRef Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H., Huang, S.-P. & -, D. (2007). J. Am. Chem. Soc. 129, 5346–5347. Web of Science CSD CrossRef PubMed CAS Google Scholar
Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948. Web of Science CSD CrossRef Google Scholar
Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191–1194. CAS Google Scholar
Xie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712–3715. Web of Science CSD CrossRef Google Scholar
Xiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051–1052. Web of Science CSD CrossRef CAS Google Scholar
Zhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118–4121. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The construction of metal-organic coordination compounds has attracted much attention owing to potential functions, such as permittivity, fluorescence, magnetism and optical properties (Fu et al., 2007; Chen et al., 2000; Fu & Xiong (2008); Xie et al., 2003; Zhang et al., 2001; Xiong et al., 1999). Nitrile derivatives are a class of excellent ligands for the construction of novel metal-organic frameworks (Wang et al., 2002; Fu et al., 2008). We report here the crystal structure of the title compound.
In the 2-cyanoanilinium cation (Fig.1), the nitrile group and the benzene ring are almost coplanar. The nitrile group C7≡N2 bond length of 1.142 (4) Å is within the normal range.
In the crystal structure, all the amine group H atoms are involved in N—H···Br hydrogen bonds (Table 1) with Br- anions. These hydrogen bonds along with N—H···Br hydrogen bonds link the ionic units into a two-dimensional network (Fig. 2) parallel to the (0 1 0) plane.