organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Cyano­anilinium bromide

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 18 August 2009; accepted 1 September 2009; online 9 September 2009)

In the cation of the title compound, C7H7N2+·Br, the nitrile group and the benzene ring are almost coplanar (r.m.s. deviation = 0.0043 Å). In the crystal, the cations and anions are connected by inter­molecular N—H⋯Br hydrogen bonds, forming a two-dimensional network parallel to (010).

Related literature

For nitrile derivatives, see: Fu et al. (2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.]); Wang et al. (2002[Wang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191-1194.]). Nitrile derivatives used in the construction of novel metal-organic frameworks. For applications of metal-organic coordination compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H., Huang, S.-P. & -, D. (2007). J. Am. Chem. Soc. 129, 5346-5347.]); Chen et al. (2000[Chen, Z.-F., Xiong, R.-G., Zhang, J., Zuo, J.-L., You, X.-Z., Che, C.-M. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4010-4012.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]); Xiong et al. (1999[Xiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051-1052.]); Xie et al. (2003[Xie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712-3715.]); Zhang et al. (2001[Zhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118-4121.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7N2+·Br

  • Mr = 199.06

  • Monoclinic, C c

  • a = 5.7844 (12) Å

  • b = 15.896 (3) Å

  • c = 8.4882 (17) Å

  • β = 92.72 (3)°

  • V = 779.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.19 mm−1

  • T = 298 K

  • 0.40 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.65, Tmax = 0.77

  • 3848 measured reflections

  • 1773 independent reflections

  • 1581 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.050

  • S = 0.87

  • 1773 reflections

  • 93 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.41 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 872 Friedels pairs

  • Flack parameter: 0.004 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1 0.89 2.36 3.234 (3) 168
N1—H1B⋯Br1i 0.89 2.47 3.355 (3) 173
N1—H1C⋯Br1ii 0.89 2.42 3.286 (3) 164
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of metal-organic coordination compounds has attracted much attention owing to potential functions, such as permittivity, fluorescence, magnetism and optical properties (Fu et al., 2007; Chen et al., 2000; Fu & Xiong (2008); Xie et al., 2003; Zhang et al., 2001; Xiong et al., 1999). Nitrile derivatives are a class of excellent ligands for the construction of novel metal-organic frameworks (Wang et al., 2002; Fu et al., 2008). We report here the crystal structure of the title compound.

In the 2-cyanoanilinium cation (Fig.1), the nitrile group and the benzene ring are almost coplanar. The nitrile group C7N2 bond length of 1.142 (4) Å is within the normal range.

In the crystal structure, all the amine group H atoms are involved in N—H···Br hydrogen bonds (Table 1) with Br- anions. These hydrogen bonds along with N—H···Br hydrogen bonds link the ionic units into a two-dimensional network (Fig. 2) parallel to the (0 1 0) plane.

Related literature top

For applications of metal-organic coordination compounds, see: Fu et al. (2007); Chen et al. (2000); Fu & Xiong (2008); Xiong et al. (1999); Xie et al. (2003); Zhang et al. (2001). For nitrile derivatives, see: Fu et al. (2008); Wang et al. (2002).

Experimental top

The commercial 2-aminobenzonitrile (3 mmol, 0.55 g) and HBr (0.5 ml) were dissolved in ethanol (20 ml). Colourless needle-shaped crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation at room temperature.

Refinement top

All H atoms attached to C and N atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å, N—H = 0.89 Å and Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N). A rotating-group model was used for the -NH3 group.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis showing the N—H···Br hydrogen bonding (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
2-Cyanoanilinium bromide top
Crystal data top
C7H7N2+·BrF(000) = 392
Mr = 199.06Dx = 1.696 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1581 reflections
a = 5.7844 (12) Åθ = 2.6–27.5°
b = 15.896 (3) ŵ = 5.19 mm1
c = 8.4882 (17) ÅT = 298 K
β = 92.72 (3)°Needle, colourless
V = 779.6 (3) Å30.40 × 0.05 × 0.05 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
1773 independent reflections
Radiation source: fine-focus sealed tube1581 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.6°
CCD profile fitting scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2020
Tmin = 0.65, Tmax = 0.77l = 1011
3848 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0143P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.050(Δ/σ)max < 0.001
S = 0.87Δρmax = 0.47 e Å3
1773 reflectionsΔρmin = 0.41 e Å3
93 parametersExtinction correction: SHELXTL (Version 5.1; Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0206 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 872 Friedels pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.004 (13)
Crystal data top
C7H7N2+·BrV = 779.6 (3) Å3
Mr = 199.06Z = 4
Monoclinic, CcMo Kα radiation
a = 5.7844 (12) ŵ = 5.19 mm1
b = 15.896 (3) ÅT = 298 K
c = 8.4882 (17) Å0.40 × 0.05 × 0.05 mm
β = 92.72 (3)°
Data collection top
Rigaku Mercury2
diffractometer
1773 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1581 reflections with I > 2σ(I)
Tmin = 0.65, Tmax = 0.77Rint = 0.034
3848 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.050Δρmax = 0.47 e Å3
S = 0.87Δρmin = 0.41 e Å3
1773 reflectionsAbsolute structure: Flack (1983), 872 Friedels pairs
93 parametersAbsolute structure parameter: 0.004 (13)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.05750 (10)0.208462 (17)0.44566 (9)0.04064 (12)
N10.0515 (5)0.32177 (17)0.7619 (3)0.0347 (6)
H1A0.03320.29500.67010.052*
H1B0.07130.31270.81880.052*
H1C0.17800.30270.81400.052*
C60.0799 (6)0.4675 (3)0.7945 (5)0.0372 (10)
H60.20280.44730.85030.045*
C30.2867 (8)0.5276 (3)0.6309 (5)0.0451 (11)
H30.41020.54830.57620.054*
C10.0755 (6)0.4115 (2)0.7337 (5)0.0309 (9)
C40.1322 (8)0.5822 (3)0.6917 (5)0.0500 (12)
H40.15160.63990.67880.060*
C70.4233 (6)0.3856 (2)0.5783 (4)0.0410 (8)
N20.5521 (6)0.3440 (2)0.5163 (4)0.0618 (10)
C20.2611 (6)0.4411 (3)0.6501 (4)0.0346 (9)
C50.0547 (7)0.5521 (3)0.7733 (5)0.0474 (12)
H50.16130.58940.81300.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03349 (17)0.04202 (18)0.04729 (19)0.0034 (2)0.01111 (12)0.0112 (3)
N10.0284 (14)0.0369 (15)0.0396 (16)0.0027 (12)0.0104 (12)0.0036 (13)
C60.031 (2)0.043 (2)0.038 (2)0.0023 (18)0.0075 (17)0.0038 (18)
C30.044 (3)0.046 (3)0.046 (3)0.012 (2)0.007 (2)0.003 (2)
C10.027 (2)0.035 (2)0.0309 (18)0.0005 (15)0.0021 (15)0.0028 (15)
C40.065 (3)0.031 (2)0.055 (3)0.004 (2)0.008 (2)0.003 (2)
C70.0303 (18)0.049 (2)0.044 (2)0.0078 (17)0.0101 (16)0.0045 (18)
N20.049 (2)0.070 (2)0.069 (2)0.0068 (19)0.031 (2)0.0025 (18)
C20.032 (2)0.039 (2)0.032 (2)0.0017 (17)0.0039 (17)0.0032 (16)
C50.056 (3)0.041 (2)0.045 (3)0.012 (2)0.006 (2)0.007 (2)
Geometric parameters (Å, º) top
N1—C11.455 (5)C3—C21.393 (6)
N1—H1A0.8900C3—H30.9300
N1—H1B0.8900C1—C21.396 (5)
N1—H1C0.8900C4—C51.396 (6)
C6—C51.366 (6)C4—H40.9300
C6—C11.382 (5)C7—N21.142 (4)
C6—H60.9300C7—C21.444 (6)
C3—C41.365 (6)C5—H50.9300
C1—N1—H1A109.5C6—C1—N1120.1 (3)
C1—N1—H1B109.5C2—C1—N1119.7 (3)
H1A—N1—H1B109.5C3—C4—C5120.4 (4)
C1—N1—H1C109.5C3—C4—H4119.8
H1A—N1—H1C109.5C5—C4—H4119.8
H1B—N1—H1C109.5N2—C7—C2177.0 (4)
C5—C6—C1120.6 (4)C3—C2—C1118.7 (4)
C5—C6—H6119.7C3—C2—C7118.6 (4)
C1—C6—H6119.7C1—C2—C7122.6 (4)
C4—C3—C2120.5 (4)C6—C5—C4119.5 (4)
C4—C3—H3119.7C6—C5—H5120.2
C2—C3—H3119.7C4—C5—H5120.2
C6—C1—C2120.2 (4)
C5—C6—C1—C20.2 (6)N1—C1—C2—C3177.0 (4)
C5—C6—C1—N1177.8 (4)C6—C1—C2—C7177.4 (4)
C2—C3—C4—C50.4 (7)N1—C1—C2—C75.0 (6)
C4—C3—C2—C10.5 (6)C1—C6—C5—C41.1 (7)
C4—C3—C2—C7177.6 (4)C3—C4—C5—C61.2 (7)
C6—C1—C2—C30.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br10.892.363.234 (3)168
N1—H1B···Br1i0.892.473.355 (3)173
N1—H1C···Br1ii0.892.423.286 (3)164
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H7N2+·Br
Mr199.06
Crystal system, space groupMonoclinic, Cc
Temperature (K)298
a, b, c (Å)5.7844 (12), 15.896 (3), 8.4882 (17)
β (°) 92.72 (3)
V3)779.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.19
Crystal size (mm)0.40 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.65, 0.77
No. of measured, independent and
observed [I > 2σ(I)] reflections
3848, 1773, 1581
Rint0.034
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.050, 0.87
No. of reflections1773
No. of parameters93
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.41
Absolute structureFlack (1983), 872 Friedels pairs
Absolute structure parameter0.004 (13)

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br10.892.363.234 (3)167.6
N1—H1B···Br1i0.892.473.355 (3)172.6
N1—H1C···Br1ii0.892.423.286 (3)163.7
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Outstanding Doctoral Dissertation Fund from Southeast University.

References

First citationChen, Z.-F., Xiong, R.-G., Zhang, J., Zuo, J.-L., You, X.-Z., Che, C.-M. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4010–4012.  Web of Science CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H., Huang, S.-P. & -, D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191–1194.  CAS Google Scholar
First citationXie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712–3715.  Web of Science CSD CrossRef Google Scholar
First citationXiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051–1052.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118–4121.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds