organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(1,3-Benzodioxol-5-ylmethyl­ene)nicotinohydrazide monohydrate

aDepartment of Applied Chemistry, College of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: bfyu2008@126.com

(Received 21 August 2009; accepted 28 August 2009; online 5 September 2009)

In the title compound, C14H11N3O3·H2O, the planar [maximum deviation 0.135 (1) Å] 1,3-benzodioxole ring system is oriented at a dihedral angle of 13.93 (7)° with respect to the pyridine ring. Extensive inter­molecular N—H⋯O, O—H⋯O, O—H⋯N and weak C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For applications of Schiff base compounds, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N3O3·H2O

  • Mr = 287.28

  • Monoclinic, P 21 /n

  • a = 8.6414 (2) Å

  • b = 12.0874 (2) Å

  • c = 13.4464 (3) Å

  • β = 103.161 (1)°

  • V = 1367.61 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.26 × 0.21 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.982

  • 19494 measured reflections

  • 2691 independent reflections

  • 1839 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.04

  • 2691 reflections

  • 199 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4i 0.86 2.04 2.8819 (17) 164
O4—H4A⋯N3 0.848 (9) 1.980 (17) 2.825 (2) 174 (2)
O4—H4B⋯O3ii 0.839 (9) 2.106 (15) 2.9019 (19) 158.2 (16)
C3—H3B⋯O3iii 0.97 2.57 3.495 (2) 160
C8—H8A⋯O4i 0.93 2.51 3.312 (2) 144
C11—H11A⋯O4i 0.93 2.45 3.324 (2) 156
Symmetry codes: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL

Supporting information


Comment top

The chemistry of Schiff bases has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). As part of our interest in the coordination chemistry of Schiff bases, we have synthesized the title compound and report here its crystal structure.

The title molecule crystallizes in the E conformation (Fig. 1), with the N2—N1—C8—C7 torsion angle of 179.60 (13)°. The dihedral angle between the 1,3-benzodioxole ring system and the pyridine ring is 13.93 (7)°. The extensive intermolecular classic N—H···O, O—H···O, O—H···N and weak C—H···O hydrogen bonding is present in the crystal structure (Table 1 and Fig. 2).

Related literature top

For applications of Schiff base compounds, see: Kahwa et al. (1986); Santos et al. (2001).

Experimental top

Nicotinohydrazide (1 mmol, 0.137 g) was dissolved in ethanol (15 ml). The solution was stirred at 351 K for several min, and then the 1,3-benzodioxole-5-carbaldehyde (1 mmol, 0.150 g) in ethanol (8 mm l) was added dropwise. The mixture was refluxed for 2 h. The solid product was isolated and recrystallized from methanol-water solution. Colourless single crystals of the title compound were obtained after 3 d.

Refinement top

H atoms of water molecule are located in a difference Fourier map and refined isotropically with O—H and H···H distances restrained to 0.85 (1) and 1.37 (2) A. Other H atoms were positioned geometrically and refined as riding with C—H = 0.93 (aromatic), 0.97 Å (methylene) and N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The unit cell packing diagram showing intermolecular hydrogen bonding as dashed lines.
(E)-N'-(1,3-Benzodioxol-5-ylmethylene)nicotinohydrazide monohydrate top
Crystal data top
C14H11N3O3·H2OF(000) = 600
Mr = 287.28Dx = 1.395 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2884 reflections
a = 8.6414 (2) Åθ = 2.3–26.0°
b = 12.0874 (2) ŵ = 0.11 mm1
c = 13.4464 (3) ÅT = 293 K
β = 103.161 (1)°Block, colourless
V = 1367.61 (5) Å30.26 × 0.21 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2691 independent reflections
Radiation source: fine-focus sealed tube1839 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1010
Tmin = 0.974, Tmax = 0.982k = 1414
19494 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.0682P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.010
2691 reflectionsΔρmax = 0.15 e Å3
199 parametersΔρmin = 0.13 e Å3
3 restraintsExtinction correction: SHELXTL (Version 5.1; Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0058 (14)
Crystal data top
C14H11N3O3·H2OV = 1367.61 (5) Å3
Mr = 287.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6414 (2) ŵ = 0.11 mm1
b = 12.0874 (2) ÅT = 293 K
c = 13.4464 (3) Å0.26 × 0.21 × 0.17 mm
β = 103.161 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2691 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1839 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.982Rint = 0.044
19494 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0413 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.15 e Å3
2691 reflectionsΔρmin = 0.13 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.25573 (14)0.30595 (11)0.16863 (10)0.0528 (4)
C70.46242 (17)0.23623 (12)0.09399 (11)0.0469 (4)
O30.08396 (13)0.45982 (9)0.23857 (10)0.0702 (4)
C100.09502 (16)0.32960 (12)0.28168 (11)0.0442 (4)
O20.84690 (15)0.27321 (11)0.03215 (11)0.0807 (4)
N20.12618 (14)0.27993 (10)0.20830 (10)0.0516 (4)
H2A0.09720.21220.21160.062*
C20.65230 (18)0.34247 (13)0.03595 (12)0.0522 (4)
N30.33050 (15)0.39773 (11)0.32710 (11)0.0596 (4)
O10.73361 (16)0.43293 (10)0.01301 (11)0.0842 (5)
C60.53331 (19)0.14169 (13)0.06740 (13)0.0544 (4)
H6A0.49080.07320.07810.065*
C80.32492 (19)0.22390 (13)0.13835 (12)0.0530 (4)
H8A0.28600.15320.14490.064*
C110.12747 (19)0.22473 (13)0.31162 (13)0.0523 (4)
H11A0.06060.16590.30590.063*
C50.66608 (19)0.14538 (13)0.02518 (13)0.0576 (5)
H5A0.71420.08140.00840.069*
C130.35719 (19)0.29587 (15)0.35623 (13)0.0607 (5)
H13A0.44660.28350.38220.073*
C40.72117 (19)0.24715 (14)0.00991 (13)0.0530 (4)
C90.04620 (17)0.36199 (12)0.24153 (12)0.0489 (4)
C10.52308 (19)0.34048 (12)0.07778 (12)0.0520 (4)
H1B0.47710.40530.09480.062*
C120.26006 (19)0.20836 (14)0.34996 (13)0.0606 (5)
H12A0.28340.13840.37140.073*
C140.20100 (18)0.41282 (13)0.29066 (12)0.0523 (4)
H14A0.18050.48370.27000.063*
C30.8597 (2)0.38998 (17)0.02752 (16)0.0772 (6)
H3B0.85350.41970.09530.093*
H3C0.96120.41120.01570.093*
O40.59280 (17)0.54330 (10)0.28071 (14)0.0854 (5)
H4A0.5119 (16)0.5021 (15)0.2985 (18)0.112 (8)*
H4B0.6745 (16)0.5040 (15)0.2633 (16)0.102 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0450 (7)0.0537 (8)0.0663 (9)0.0044 (6)0.0260 (7)0.0009 (7)
C70.0436 (8)0.0483 (9)0.0525 (9)0.0015 (7)0.0187 (7)0.0012 (7)
O30.0679 (8)0.0461 (7)0.1111 (10)0.0071 (5)0.0505 (7)0.0048 (6)
C100.0375 (8)0.0476 (9)0.0491 (9)0.0033 (6)0.0135 (7)0.0031 (7)
O20.0748 (9)0.0758 (9)0.1108 (11)0.0141 (7)0.0614 (8)0.0153 (7)
N20.0440 (7)0.0454 (7)0.0729 (9)0.0049 (6)0.0294 (7)0.0021 (6)
C20.0550 (10)0.0463 (9)0.0600 (10)0.0091 (7)0.0234 (8)0.0017 (7)
N30.0461 (8)0.0603 (9)0.0782 (10)0.0029 (7)0.0260 (7)0.0028 (7)
O10.0930 (10)0.0566 (8)0.1237 (11)0.0162 (7)0.0675 (9)0.0050 (7)
C60.0545 (10)0.0448 (9)0.0698 (11)0.0030 (7)0.0262 (8)0.0015 (8)
C80.0500 (9)0.0483 (9)0.0663 (11)0.0057 (7)0.0249 (8)0.0030 (8)
C110.0499 (9)0.0474 (9)0.0645 (10)0.0006 (7)0.0235 (8)0.0002 (8)
C50.0563 (10)0.0476 (10)0.0754 (12)0.0023 (7)0.0286 (9)0.0088 (8)
C130.0483 (10)0.0688 (11)0.0733 (12)0.0067 (8)0.0312 (9)0.0040 (9)
C40.0455 (9)0.0601 (10)0.0597 (10)0.0035 (7)0.0252 (8)0.0067 (8)
C90.0448 (9)0.0466 (9)0.0593 (10)0.0027 (7)0.0200 (8)0.0003 (7)
C10.0540 (9)0.0454 (9)0.0621 (10)0.0009 (7)0.0245 (8)0.0062 (7)
C120.0624 (11)0.0522 (10)0.0754 (12)0.0086 (8)0.0329 (10)0.0020 (8)
C140.0472 (9)0.0467 (9)0.0672 (10)0.0015 (7)0.0216 (8)0.0019 (8)
C30.0742 (13)0.0751 (13)0.0953 (15)0.0113 (11)0.0461 (11)0.0042 (11)
O40.0518 (8)0.0474 (7)0.1622 (15)0.0012 (6)0.0353 (9)0.0012 (8)
Geometric parameters (Å, º) top
N1—C81.2719 (19)O1—C31.423 (2)
N1—N21.3815 (16)C6—C51.392 (2)
C7—C61.382 (2)C6—H6A0.9300
C7—C11.401 (2)C8—H8A0.9300
C7—C81.453 (2)C11—C121.374 (2)
O3—C91.2299 (17)C11—H11A0.9300
C10—C111.378 (2)C5—C41.351 (2)
C10—C141.384 (2)C5—H5A0.9300
C10—C91.4946 (19)C13—C121.365 (2)
O2—C41.3709 (18)C13—H13A0.9300
O2—C31.416 (2)C1—H1B0.9300
N2—C91.3423 (18)C12—H12A0.9300
N2—H2A0.8600C14—H14A0.9300
C2—C11.360 (2)C3—H3B0.9700
C2—O11.3723 (18)C3—H3C0.9700
C2—C41.378 (2)O4—H4A0.848 (9)
N3—C131.328 (2)O4—H4B0.839 (9)
N3—C141.3324 (19)
C8—N1—N2115.31 (13)C6—C5—H5A121.9
C6—C7—C1120.01 (14)N3—C13—C12123.35 (15)
C6—C7—C8118.26 (13)N3—C13—H13A118.3
C1—C7—C8121.73 (14)C12—C13—H13A118.3
C11—C10—C14117.41 (13)C5—C4—O2127.70 (15)
C11—C10—C9125.71 (14)C5—C4—C2122.33 (14)
C14—C10—C9116.88 (13)O2—C4—C2109.96 (14)
C4—O2—C3105.81 (12)O3—C9—N2122.63 (13)
C9—N2—N1118.97 (12)O3—C9—C10120.53 (13)
C9—N2—H2A120.5N2—C9—C10116.83 (13)
N1—N2—H2A120.5C2—C1—C7116.86 (14)
C1—C2—O1128.15 (14)C2—C1—H1B121.6
C1—C2—C4122.21 (14)C7—C1—H1B121.6
O1—C2—C4109.64 (13)C13—C12—C11119.27 (16)
C13—N3—C14116.88 (14)C13—C12—H12A120.4
C2—O1—C3105.75 (13)C11—C12—H12A120.4
C7—C6—C5122.29 (14)N3—C14—C10124.09 (15)
C7—C6—H6A118.9N3—C14—H14A118.0
C5—C6—H6A118.9C10—C14—H14A118.0
N1—C8—C7122.63 (15)O2—C3—O1108.74 (13)
N1—C8—H8A118.7O2—C3—H3B109.9
C7—C8—H8A118.7O1—C3—H3B109.9
C12—C11—C10118.99 (15)O2—C3—H3C109.9
C12—C11—H11A120.5O1—C3—H3C109.9
C10—C11—H11A120.5H3B—C3—H3C108.3
C4—C5—C6116.29 (14)H4A—O4—H4B109.5 (18)
C4—C5—H5A121.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.862.042.8819 (17)164
O4—H4A···N30.85 (1)1.98 (2)2.825 (2)174 (2)
O4—H4B···O3ii0.84 (1)2.11 (2)2.9019 (19)158 (2)
C3—H3B···O3iii0.972.573.495 (2)160
C8—H8A···O4i0.932.513.312 (2)144
C11—H11A···O4i0.932.453.324 (2)156
Symmetry codes: (i) x1/2, y1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H11N3O3·H2O
Mr287.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.6414 (2), 12.0874 (2), 13.4464 (3)
β (°) 103.161 (1)
V3)1367.61 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.26 × 0.21 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.974, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
19494, 2691, 1839
Rint0.044
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.04
No. of reflections2691
No. of parameters199
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.13

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.862.042.8819 (17)164
O4—H4A···N30.848 (9)1.980 (17)2.825 (2)174 (2)
O4—H4B···O3ii0.839 (9)2.106 (15)2.9019 (19)158.2 (16)
C3—H3B···O3iii0.972.573.495 (2)160
C8—H8A···O4i0.932.513.312 (2)144
C11—H11A···O4i0.932.453.324 (2)156
Symmetry codes: (i) x1/2, y1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y+1, z.
 

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds