organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(3,4-Di­chloro­benzyl­­idene)nicotino­hydrazide monohydrate

aDepartment of Applied Chemistry, College of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: bfyu2008@126.com

(Received 21 August 2009; accepted 28 August 2009; online 5 September 2009)

In the title compound, C13H9Cl2N3O·H2O, the 3,4-dichloro­benzene ring is nearly coplanar with the pyridine ring, making a dihedral angle of 4.78 (8)°. Inter­molecular O—H⋯O, O—H⋯N, N—H⋯O and weak C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For applications of Schiff base compounds, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9Cl2N3O·H2O

  • Mr = 312.15

  • Monoclinic, P 21 /c

  • a = 8.2080 (3) Å

  • b = 12.3294 (4) Å

  • c = 13.7089 (4) Å

  • β = 91.522 (2)°

  • V = 1386.85 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 296 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.893, Tmax = 0.954

  • 20965 measured reflections

  • 3032 independent reflections

  • 2150 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.02

  • 3032 reflections

  • 189 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O 0.85 (2) 1.995 (16) 2.8059 (19) 160 (2)
O1—H1B⋯N3i 0.85 (2) 2.079 (12) 2.909 (2) 166 (2)
N2—H2A⋯O1ii 0.86 2.00 2.842 (2) 165
C7—H7A⋯O1ii 0.93 2.55 3.314 (2) 140
C10—H10A⋯O1ii 0.93 2.39 3.304 (2) 167
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of Schiff bases has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). As part of our interest in the coordination chemistry of Schiff bases, we have synthesized the title compound and report here its crystal structure.

The title molecule crystallizes in the E conformation (Fig. 1), with the N2—N1—C7—C6 torsion angle of 179.81 (15)°. The molecule structure is nearly planar, the dihedral angle between the 3,4-dichlorobenzene ring and the pyridine ring is 4.78 (8)°. The extensive intermolecular classic O—H···O, O—H···N, N—H···O and weak C—H···O hydrogen bonding is present in the crystal structure (Table 1 and Fig. 2).

Related literature top

For applications of Schiff base compounds, see: Kahwa et al. (1986); Santos et al. (2001).

Experimental top

Nicotinohydrazide (1 mmol, 0.137 g) was dissolved in ethanol (15 ml). The solution was stirred for several minitutes at 351 K, then the 3,4-dichlorobenzaldehyde (1 mmol, 0.175 g) in ethanol (8 ml) was added dropwise, and the mixture was stirred at refluxing temperature for 2 h. The solid product was isolated and recrystallized from methanol-water solution. Colourless single crystals were obtained after 3 d.

Refinement top

H atoms of water molecule are located in a difference Fourier map and refined isotropically, with O—H and H···H distances restrained to 0.85 (2) and 1.37 (2) Å. Other H atoms were positioned geometrically and refined as riding with C—H = 0.93 (aromatic) and N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The unit cell packing diagram showing the intermolecular hydrogen bonding as dashed lines.
(E)-N'-(3,4-Dichlorobenzylidene)nicotinohydrazide monohydrate top
Crystal data top
C13H9Cl2N3O·H2OF(000) = 640
Mr = 312.15Dx = 1.495 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3887 reflections
a = 8.2080 (3) Åθ = 2.5–27.0°
b = 12.3294 (4) ŵ = 0.47 mm1
c = 13.7089 (4) ÅT = 296 K
β = 91.522 (2)°Block, colourless
V = 1386.85 (8) Å30.40 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3032 independent reflections
Radiation source: fine-focus sealed tube2150 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1010
Tmin = 0.893, Tmax = 0.954k = 1515
20965 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.3048P]
where P = (Fo2 + 2Fc2)/3
3032 reflections(Δ/σ)max = 0.022
189 parametersΔρmax = 0.15 e Å3
3 restraintsΔρmin = 0.20 e Å3
Crystal data top
C13H9Cl2N3O·H2OV = 1386.85 (8) Å3
Mr = 312.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2080 (3) ŵ = 0.47 mm1
b = 12.3294 (4) ÅT = 296 K
c = 13.7089 (4) Å0.40 × 0.20 × 0.10 mm
β = 91.522 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3032 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2150 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.954Rint = 0.042
20965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0363 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.15 e Å3
3032 reflectionsΔρmin = 0.20 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.01836 (7)0.35397 (5)0.67808 (4)0.07194 (19)
Cl20.02126 (7)0.10476 (5)0.62576 (4)0.0725 (2)
N20.46330 (18)0.25736 (12)0.18259 (10)0.0462 (4)
H2A0.46940.18920.16980.055*
N10.38507 (18)0.29373 (12)0.26366 (10)0.0471 (4)
O0.52773 (19)0.42935 (10)0.14108 (9)0.0657 (4)
C60.2369 (2)0.25413 (14)0.40566 (13)0.0448 (4)
C80.5303 (2)0.33162 (14)0.12366 (12)0.0457 (4)
C40.0960 (2)0.20492 (15)0.55082 (13)0.0482 (4)
C30.0803 (2)0.31321 (16)0.57470 (13)0.0487 (4)
C100.6343 (2)0.18316 (14)0.01178 (13)0.0501 (4)
H10A0.59920.13140.05590.060*
C20.1439 (2)0.39176 (15)0.51490 (14)0.0527 (5)
H20.13440.46460.53150.063*
C90.6100 (2)0.29128 (13)0.03370 (12)0.0420 (4)
C130.6619 (2)0.36685 (15)0.03277 (13)0.0519 (5)
H13A0.64630.44040.02140.062*
C50.1740 (2)0.17586 (15)0.46627 (13)0.0483 (4)
H5A0.18410.10290.45010.058*
C70.3221 (2)0.22160 (15)0.31757 (13)0.0480 (4)
H7A0.33010.14870.30110.058*
C10.2212 (2)0.36294 (14)0.43093 (14)0.0508 (5)
H10.26320.41640.39090.061*
O10.5421 (2)0.52708 (11)0.32595 (11)0.0651 (4)
N30.7054 (2)0.14870 (12)0.06903 (11)0.0564 (4)
C110.7563 (2)0.22393 (16)0.13096 (14)0.0558 (5)
H11A0.80770.20140.18710.067*
C120.7366 (3)0.33289 (16)0.11592 (14)0.0575 (5)
H12A0.77310.38300.16110.069*
H1B0.599 (3)0.4849 (16)0.3622 (14)0.092 (9)*
H1A0.515 (3)0.4919 (18)0.2749 (11)0.102 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0761 (4)0.0845 (4)0.0562 (3)0.0074 (3)0.0190 (3)0.0066 (3)
Cl20.0856 (4)0.0646 (3)0.0679 (3)0.0098 (3)0.0148 (3)0.0166 (3)
N20.0585 (9)0.0371 (7)0.0434 (8)0.0010 (7)0.0081 (7)0.0042 (6)
N10.0519 (9)0.0439 (8)0.0458 (8)0.0025 (7)0.0058 (6)0.0041 (7)
O0.1088 (12)0.0353 (7)0.0541 (8)0.0024 (7)0.0196 (7)0.0034 (6)
C60.0423 (10)0.0429 (9)0.0492 (9)0.0002 (8)0.0026 (7)0.0017 (8)
C80.0558 (11)0.0386 (9)0.0427 (9)0.0027 (8)0.0004 (8)0.0014 (7)
C40.0463 (11)0.0494 (10)0.0490 (10)0.0031 (8)0.0013 (8)0.0069 (8)
C30.0436 (10)0.0562 (11)0.0466 (10)0.0029 (9)0.0052 (8)0.0032 (8)
C100.0666 (12)0.0379 (9)0.0461 (10)0.0021 (9)0.0079 (8)0.0030 (8)
C20.0546 (12)0.0435 (10)0.0603 (11)0.0024 (9)0.0084 (9)0.0050 (9)
C90.0466 (10)0.0379 (9)0.0414 (9)0.0006 (8)0.0016 (7)0.0014 (7)
C130.0654 (12)0.0379 (9)0.0527 (10)0.0046 (8)0.0061 (9)0.0011 (8)
C50.0502 (11)0.0411 (9)0.0535 (10)0.0017 (8)0.0018 (8)0.0016 (8)
C70.0508 (11)0.0424 (10)0.0509 (10)0.0001 (8)0.0040 (8)0.0050 (8)
C10.0528 (11)0.0413 (10)0.0590 (11)0.0007 (8)0.0119 (9)0.0013 (8)
O10.1057 (13)0.0364 (7)0.0533 (8)0.0038 (8)0.0052 (8)0.0022 (7)
N30.0752 (11)0.0435 (9)0.0512 (9)0.0039 (8)0.0131 (8)0.0031 (7)
C110.0632 (13)0.0558 (12)0.0490 (10)0.0018 (10)0.0123 (9)0.0050 (9)
C120.0703 (13)0.0488 (11)0.0541 (11)0.0098 (10)0.0163 (10)0.0021 (9)
Geometric parameters (Å, º) top
Cl1—C31.7255 (18)C10—H10A0.9300
Cl2—C41.7291 (18)C2—C11.376 (2)
N2—C81.348 (2)C2—H20.9300
N2—N11.3736 (19)C9—C131.378 (2)
N2—H2A0.8600C13—C121.374 (3)
N1—C71.275 (2)C13—H13A0.9300
O—C81.229 (2)C5—H5A0.9300
C6—C51.383 (2)C7—H7A0.9300
C6—C11.392 (2)C1—H10.9300
C6—C71.467 (2)O1—H1B0.85 (2)
C8—C91.497 (2)O1—H1A0.85 (2)
C4—C31.381 (3)N3—C111.332 (2)
C4—C51.386 (2)C11—C121.369 (3)
C3—C21.380 (3)C11—H11A0.9300
C10—N31.335 (2)C12—H12A0.9300
C10—C91.382 (2)
C8—N2—N1118.04 (14)C13—C9—C8118.00 (15)
C8—N2—H2A121.0C10—C9—C8124.65 (15)
N1—N2—H2A121.0C12—C13—C9119.66 (17)
C7—N1—N2116.54 (15)C12—C13—H13A120.2
C5—C6—C1118.97 (17)C9—C13—H13A120.2
C5—C6—C7119.85 (16)C6—C5—C4120.70 (17)
C1—C6—C7121.15 (16)C6—C5—H5A119.7
O—C8—N2122.71 (16)C4—C5—H5A119.7
O—C8—C9119.75 (16)N1—C7—C6119.73 (16)
N2—C8—C9117.54 (15)N1—C7—H7A120.1
C3—C4—C5119.74 (16)C6—C7—H7A120.1
C3—C4—Cl2120.84 (14)C2—C1—C6120.31 (17)
C5—C4—Cl2119.42 (14)C2—C1—H1119.8
C4—C3—C2119.88 (16)C6—C1—H1119.8
C4—C3—Cl1121.65 (14)H1B—O1—H1A107.2 (18)
C2—C3—Cl1118.47 (15)C11—N3—C10117.30 (16)
N3—C10—C9123.78 (17)N3—C11—C12123.14 (17)
N3—C10—H10A118.1N3—C11—H11A118.4
C9—C10—H10A118.1C12—C11—H11A118.4
C1—C2—C3120.39 (17)C11—C12—C13118.75 (18)
C1—C2—H2119.8C11—C12—H12A120.6
C3—C2—H2119.8C13—C12—H12A120.6
C13—C9—C10117.35 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O0.85 (2)2.00 (2)2.8059 (19)160 (2)
O1—H1B···N3i0.85 (2)2.08 (1)2.909 (2)166 (2)
N2—H2A···O1ii0.862.002.842 (2)165
C7—H7A···O1ii0.932.553.314 (2)140
C10—H10A···O1ii0.932.393.304 (2)167
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H9Cl2N3O·H2O
Mr312.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.2080 (3), 12.3294 (4), 13.7089 (4)
β (°) 91.522 (2)
V3)1386.85 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.893, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
20965, 3032, 2150
Rint0.042
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.02
No. of reflections3032
No. of parameters189
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.20

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O0.85 (2)1.995 (16)2.8059 (19)160 (2)
O1—H1B···N3i0.85 (2)2.079 (12)2.909 (2)166 (2)
N2—H2A···O1ii0.862.002.842 (2)165
C7—H7A···O1ii0.932.553.314 (2)140
C10—H10A···O1ii0.932.393.304 (2)167
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds