organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 1-acetyl-4′-(4-chloro­phen­yl)-5′-(4-nitro­phen­yl)-2-oxo­spiro­[indoline-3,3′-pyrrolidine]-2′,2′-di­carboxyl­ate

aCollege of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: helongcwnu@yahoo.com.cn

(Received 24 August 2009; accepted 2 September 2009; online 9 September 2009)

In the title compound, C31H28ClN3O8, the pyrrolidine ring exhibits an envelope conformation, with the spiro C atom located at the flap position. A spiro junction links the oxindole ring system and the pyrrolidine ring. The planar oxindole ring system is twisted with respect to the nitro­benzene and chloro­benzene rings, with dihedral angles of 62.34 (11) and 75.93 (9)°, respectively. In the crystal, a weak C—H⋯O interaction links the molecules into chains and two intramolecular C—H⋯O close contacts are seen.

Related literature

For general background to the spiro­oxindole–pyrrolidine ring system, see: Garnick & Lequesne (1978[Garnick, R. L. & Lequesne, P. W. (1978). J. Am. Chem. Soc. 100, 4213-4219.]); Jossang et al. (1991[Jossang, A., Jossang, P., Hadi, H. A., Sevenet, T. & Bodo, B. (1991). J. Org. Chem. 156, 6527-6530.]). For the biological activity of pyrrolidine-containing compounds and their use in catalysis, see: Grigg (1995[Grigg, R. (1995). Tetrahedron Asymmetry, 6, 2475-2486.]); Kravchenko et al. (2005[Kravchenko, D. V., Kysil, V. M., Tkachenko, S. E., Maliarchouk, S., Okun, I. M. & Ivachtchenko, A. V. (2005). Eur. J. Med. Chem. pp. 1377-1383.]); Witherup et al. (1995[Witherup, K. M., Ransom, R. W., Graham, A. C., Bernard, A. M., Salvatore, M. J., Lumma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc. 117, 6682-6685.]). For the biological activity of oxindole derivatives, see: Glover et al. (1998[Glover, V., Halker, J. M., Wathins, P. J., Clow, A., Goodwin, B. L. & Sandler, M. (1998). J. Neurochem. 51, 656-659.]); Bhattacharya et al. (1982[Bhattacharya, S. K., Glover, V., Melntyre, I., Oxenkrug, G. & Sandler, M. (1982). Neurosci. Lett. 92, 218-221.]).

[Scheme 1]

Experimental

Crystal data
  • C31H28ClN3O8

  • Mr = 606.01

  • Orthorhombic, P 21 21 21

  • a = 9.780 (2) Å

  • b = 14.859 (3) Å

  • c = 20.466 (5) Å

  • V = 2974.1 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.61 mm−1

  • T = 293 K

  • 0.40 × 0.38 × 0.32 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.565, Tmax = 0.626

  • 27366 measured reflections

  • 4732 independent reflections

  • 4456 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.066

  • S = 1.00

  • 4732 reflections

  • 403 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 2017 Friedel pairs

  • Flack parameter: 0.020 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10C⋯O8i 0.96 2.51 3.387 (4) 152
C11—H11⋯O3 0.98 2.54 3.200 (3) 125
C21—H21⋯O3 0.93 2.44 3.181 (3) 136
Symmetry code: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z].

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The spirooxindole-pyrrolidine unit is a privileged heterocyclic motif that forms the core of a large family of alkaloid natural products with strong bioactivity profiles and interesting structural properties such as alstonia muelleriana and horsfiline (Garnick & Lequesne, 1978; Jossang et al., 1991). Pyrrolidine-containing compounds are of significant importance because of their biological activities and widespread employment in catalysis (Grigg et al., 1995; Witherup et al., 1995; Kravchenko et al., 2005). Oxindole derivatives are of importance in the total synthesis of indole and oxindole alkaloids such as potent inhibitors of monoamine oxidase (MAO) in human urine and rat tissues (Glover et al., 1998) and atrial natriuretic peptide-stimulated guanylate cyclase and a potent antagonist of in vitro receptor binding by atrial natriuretic peptide besides possessing a wide range of central nervous system activities (Bhattacharya et al., 1982). We report herein the crystal structure of the title compound.

The molecular structure of (I) is shown in Fig. 1. In the molecule, the pyrrolidine ring exhibits an envelope conformation. The oxyindole ring forms dihedral angles of 62.34 (11)°, 75.93 (9)° with nitrophenyl and chlorophenyl rings, respectively. The crystal packing is stabilized by C—H···O hydrogen bonding (Table 1).

Related literature top

For general background to the spirooxindole–pyrrolidine ring system, see: Garnick & Lequesne (1978); Jossang et al. (1991). For the biological activity of pyrrolidine-containing compounds and their use in catalysis, see: Grigg et al. (1995); Kravchenko et al. (2005); Witherup et al. (1995). For the biological activity of oxindole derivatives, see: Glover et al. (1998); Bhattacharya et al. (1982).

Experimental top

1-acetyl-3-(4-chlorobenzylidene)indolin-2-one (0.09 g, 0.3 mmol), diethyl 2-aminomalonate (0.035 g, 0.2 mmol) and 4-nitrobenzaldehyde (0.036 g, 0.24 mmol) were dissolved in dichloromethane (2 ml). To the stirred mixture, acetic acid (0.006 g, 0.1 mmol) was added. After the mixture had been stirred at 273 K for 24 h, the reaction was quenched with a saturated solution of sodium bicarbonate (5 ml). The mixture was extracted with diethyl ether, removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel to give target compound. Colourless single crystals suitable for X-ray diffraction were obtained by recrystallization from ethanol.

Refinement top

One ethyl group is disordered over two sites, occupancies were refined to 0.663 (5):0.337 (5). Imino H atoms were located in a difference Fourier map and were refined isotropically. The carbon-bound H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and refined using a riding model, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). The minor disordered component is omitted for clarity.
Diethyl 1-acetyl-4'-(4-chlorophenyl)-5'-(4-nitrophenyl)- 2-oxospiro[indoline-3,3'-pyrrolidine]-2',2'-dicarboxylate top
Crystal data top
C31H28ClN3O8F(000) = 1264
Mr = 606.01Dx = 1.353 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 19085 reflections
a = 9.780 (2) Åθ = 2.2–62.6°
b = 14.859 (3) ŵ = 1.61 mm1
c = 20.466 (5) ÅT = 293 K
V = 2974.1 (11) Å3Block, colourless
Z = 40.40 × 0.38 × 0.32 mm
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
4732 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source4456 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
ω scansθmax = 62.7°, θmin = 3.7°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1110
Tmin = 0.565, Tmax = 0.626k = 1616
27366 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.01P)2 + 1.12P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4732 reflectionsΔρmax = 0.12 e Å3
403 parametersΔρmin = 0.15 e Å3
0 restraintsAbsolute structure: Flack (1983), with 2017 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.020 (15)
Crystal data top
C31H28ClN3O8V = 2974.1 (11) Å3
Mr = 606.01Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.780 (2) ŵ = 1.61 mm1
b = 14.859 (3) ÅT = 293 K
c = 20.466 (5) Å0.40 × 0.38 × 0.32 mm
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
4732 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4456 reflections with I > 2σ(I)
Tmin = 0.565, Tmax = 0.626Rint = 0.034
27366 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066Δρmax = 0.12 e Å3
S = 1.00Δρmin = 0.15 e Å3
4732 reflectionsAbsolute structure: Flack (1983), with 2017 Friedel pairs
403 parametersAbsolute structure parameter: 0.020 (15)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl11.09946 (7)0.04005 (5)0.15933 (4)0.0854 (2)
O10.64684 (17)0.06223 (10)0.10179 (8)0.0676 (4)
O20.6735 (2)0.19830 (13)0.17061 (9)0.0952 (6)
O30.4061 (2)0.20875 (10)0.04919 (9)0.0884 (6)
O40.36139 (19)0.12113 (11)0.13466 (8)0.0711 (5)
O50.13360 (19)0.01337 (13)0.03482 (10)0.0905 (6)
O60.28979 (16)0.05350 (10)0.10874 (8)0.0645 (4)
O70.5892 (3)0.37919 (15)0.29155 (11)0.1140 (8)
O80.4917 (3)0.45986 (14)0.22027 (12)0.1298 (10)
N10.5298 (3)0.38745 (15)0.24018 (12)0.0773 (6)
N20.3198 (2)0.07998 (13)0.03716 (9)0.0550 (5)
H40.252 (2)0.0467 (15)0.0536 (11)0.057 (7)*
N30.60487 (19)0.09166 (11)0.09909 (8)0.0524 (4)
C10.4012 (3)0.23572 (15)0.04607 (12)0.0635 (6)
H10.35360.26520.07910.076*
C20.4675 (3)0.28445 (15)0.00113 (13)0.0653 (6)
H20.46430.34700.00060.078*
C30.5388 (3)0.24359 (14)0.05103 (12)0.0618 (6)
H30.58260.27740.08310.074*
C40.5428 (2)0.15029 (13)0.05182 (10)0.0500 (5)
C50.4780 (2)0.09924 (13)0.00393 (10)0.0465 (5)
C60.4053 (2)0.14167 (14)0.04455 (11)0.0554 (5)
H60.35930.10820.07600.067*
C70.4978 (2)0.00011 (13)0.01833 (10)0.0463 (5)
C80.5901 (2)0.00172 (14)0.07806 (10)0.0517 (5)
C90.6535 (3)0.11918 (18)0.16049 (12)0.0661 (6)
C100.6741 (4)0.0499 (2)0.21150 (12)0.0956 (9)
H10A0.59430.01250.21420.143*
H10B0.68930.07870.25290.143*
H10C0.75200.01370.20050.143*
C110.5600 (2)0.05979 (13)0.03652 (10)0.0475 (5)
H110.57880.11830.01630.057*
C120.4372 (2)0.07482 (13)0.08216 (10)0.0505 (5)
H120.42650.02210.11050.061*
C130.3575 (2)0.05148 (13)0.02874 (10)0.0501 (5)
C140.3776 (2)0.13656 (15)0.07181 (12)0.0601 (6)
C150.3784 (3)0.19894 (19)0.17846 (14)0.0859 (8)
H15A0.33450.25110.15910.103*
H15B0.33340.18640.21970.103*
C160.5243 (4)0.2199 (2)0.19082 (17)0.1080 (11)
H16A0.53080.26980.22050.162*
H16B0.56840.16830.20970.162*
H16C0.56830.23510.15040.162*
C170.2462 (3)0.00796 (15)0.05735 (12)0.0580 (6)
C180.1908 (18)0.1190 (11)0.1331 (5)0.078 (3)0.663 (5)
H18A0.10770.08970.14790.093*0.663 (5)
H18B0.16790.16300.09980.093*0.663 (5)
C190.2687 (5)0.1632 (4)0.1910 (3)0.1042 (18)0.663 (5)
H19A0.21140.20780.21120.156*0.663 (5)
H19B0.35060.19120.17510.156*0.663 (5)
H19C0.29200.11800.22260.156*0.663 (5)
C18B0.201 (4)0.109 (2)0.1530 (12)0.078 (3)0.337 (5)
H18C0.10510.09580.14460.093*0.337 (5)
H18D0.22010.09450.19830.093*0.337 (5)
C19B0.2277 (11)0.2020 (8)0.1410 (6)0.1042 (18)0.337 (5)
H19D0.16890.23830.16770.156*0.337 (5)
H19E0.21110.21520.09570.156*0.337 (5)
H19F0.32140.21500.15130.156*0.337 (5)
C200.4548 (2)0.15803 (14)0.12431 (10)0.0520 (5)
C210.4107 (3)0.24182 (15)0.10433 (13)0.0880 (10)
H210.36400.24770.06500.106*
C220.4351 (4)0.31696 (17)0.14218 (13)0.0920 (10)
H220.40560.37340.12850.110*
C230.5028 (2)0.30745 (15)0.19981 (11)0.0591 (6)
C240.5454 (3)0.22572 (15)0.22211 (11)0.0637 (6)
H240.58990.22040.26210.076*
C250.5206 (3)0.15126 (15)0.18380 (11)0.0612 (6)
H250.54890.09500.19840.073*
C260.6926 (2)0.02983 (13)0.06711 (10)0.0482 (5)
C270.8076 (2)0.08192 (15)0.05669 (12)0.0619 (6)
H270.80080.13230.03000.074*
C280.9330 (2)0.06145 (17)0.08482 (12)0.0688 (7)
H281.00890.09780.07750.083*
C290.9422 (2)0.01330 (16)0.12345 (11)0.0611 (6)
C300.8322 (2)0.06705 (15)0.13547 (11)0.0622 (6)
H300.84080.11750.16210.075*
C310.7064 (2)0.04538 (15)0.10724 (11)0.0583 (5)
H310.63070.08160.11530.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0629 (4)0.1033 (5)0.0900 (5)0.0142 (4)0.0124 (3)0.0004 (4)
O10.0756 (11)0.0570 (9)0.0701 (10)0.0076 (8)0.0155 (8)0.0078 (8)
O20.1405 (18)0.0780 (13)0.0672 (11)0.0327 (13)0.0184 (12)0.0167 (10)
O30.1411 (18)0.0437 (9)0.0805 (12)0.0019 (10)0.0153 (13)0.0014 (9)
O40.0926 (13)0.0613 (10)0.0595 (10)0.0072 (9)0.0060 (9)0.0083 (8)
O50.0607 (11)0.0989 (14)0.1119 (15)0.0141 (10)0.0127 (11)0.0356 (12)
O60.0650 (9)0.0594 (9)0.0692 (10)0.0006 (8)0.0083 (8)0.0157 (8)
O70.154 (2)0.0987 (15)0.0888 (15)0.0116 (15)0.0374 (16)0.0396 (12)
O80.195 (3)0.0629 (13)0.1315 (19)0.0220 (16)0.0478 (19)0.0379 (13)
N10.0878 (16)0.0643 (14)0.0798 (16)0.0093 (12)0.0046 (13)0.0251 (12)
N20.0546 (11)0.0537 (11)0.0566 (11)0.0051 (9)0.0018 (9)0.0087 (9)
N30.0583 (11)0.0502 (10)0.0487 (10)0.0053 (8)0.0071 (9)0.0043 (8)
C10.0697 (15)0.0501 (13)0.0708 (15)0.0102 (12)0.0029 (13)0.0104 (11)
C20.0719 (16)0.0399 (12)0.0840 (17)0.0005 (11)0.0056 (14)0.0018 (12)
C30.0664 (14)0.0449 (12)0.0739 (15)0.0098 (11)0.0039 (13)0.0123 (11)
C40.0516 (11)0.0450 (11)0.0533 (12)0.0037 (9)0.0016 (10)0.0026 (10)
C50.0514 (12)0.0369 (10)0.0510 (12)0.0004 (9)0.0002 (9)0.0026 (9)
C60.0590 (13)0.0463 (12)0.0610 (13)0.0031 (10)0.0055 (11)0.0019 (10)
C70.0525 (12)0.0377 (10)0.0487 (11)0.0001 (9)0.0032 (9)0.0006 (9)
C80.0529 (12)0.0497 (12)0.0523 (12)0.0009 (10)0.0001 (10)0.0019 (10)
C90.0693 (15)0.0755 (17)0.0534 (13)0.0155 (13)0.0037 (12)0.0043 (13)
C100.132 (3)0.098 (2)0.0573 (15)0.014 (2)0.0244 (17)0.0039 (15)
C110.0546 (12)0.0357 (10)0.0521 (11)0.0015 (9)0.0004 (10)0.0010 (9)
C120.0595 (13)0.0397 (11)0.0523 (12)0.0044 (9)0.0005 (10)0.0022 (9)
C130.0540 (12)0.0412 (11)0.0552 (12)0.0020 (9)0.0000 (10)0.0038 (9)
C140.0651 (14)0.0495 (13)0.0658 (15)0.0077 (11)0.0064 (12)0.0007 (11)
C150.105 (2)0.0771 (18)0.0751 (17)0.0016 (17)0.0107 (17)0.0251 (15)
C160.112 (3)0.100 (2)0.112 (3)0.006 (2)0.011 (2)0.048 (2)
C170.0604 (14)0.0491 (12)0.0645 (14)0.0033 (10)0.0052 (12)0.0050 (11)
C180.078 (3)0.076 (4)0.080 (7)0.010 (3)0.007 (6)0.031 (5)
C190.092 (3)0.116 (4)0.105 (4)0.007 (3)0.015 (3)0.060 (3)
C18B0.078 (3)0.076 (4)0.080 (7)0.010 (3)0.007 (6)0.031 (5)
C19B0.092 (3)0.116 (4)0.105 (4)0.007 (3)0.015 (3)0.060 (3)
C200.0603 (13)0.0450 (11)0.0507 (12)0.0084 (10)0.0007 (10)0.0051 (9)
C210.138 (3)0.0526 (14)0.0734 (16)0.0306 (16)0.0429 (18)0.0163 (13)
C220.141 (3)0.0499 (14)0.0848 (19)0.0320 (16)0.0378 (19)0.0142 (13)
C230.0673 (15)0.0525 (13)0.0576 (13)0.0043 (11)0.0008 (11)0.0163 (11)
C240.0789 (16)0.0616 (14)0.0506 (12)0.0091 (13)0.0038 (12)0.0063 (11)
C250.0818 (17)0.0478 (12)0.0540 (13)0.0077 (12)0.0038 (12)0.0027 (10)
C260.0533 (11)0.0392 (11)0.0522 (12)0.0026 (9)0.0021 (10)0.0053 (9)
C270.0607 (14)0.0519 (13)0.0731 (15)0.0013 (11)0.0011 (12)0.0100 (11)
C280.0524 (14)0.0690 (16)0.0849 (18)0.0069 (12)0.0008 (12)0.0059 (14)
C290.0580 (14)0.0645 (14)0.0608 (13)0.0121 (11)0.0028 (11)0.0111 (11)
C300.0674 (15)0.0516 (13)0.0674 (15)0.0039 (11)0.0043 (12)0.0038 (11)
C310.0620 (13)0.0495 (12)0.0635 (13)0.0034 (11)0.0037 (11)0.0053 (11)
Geometric parameters (Å, º) top
Cl1—C291.750 (2)C12—H120.9800
O1—C81.203 (2)C13—C171.519 (3)
O2—C91.210 (3)C13—C141.554 (3)
O3—C141.201 (3)C15—C161.482 (4)
O4—C141.316 (3)C15—H15A0.9700
O4—C151.472 (3)C15—H15B0.9700
O5—C171.197 (3)C16—H16A0.9600
O6—C171.321 (3)C16—H16B0.9600
O6—C181.460 (16)C16—H16C0.9600
O6—C18B1.50 (3)C18—C191.555 (15)
O7—N11.208 (3)C18—H18A0.9700
O8—N11.209 (3)C18—H18B0.9700
N1—C231.471 (3)C19—H19A0.9600
N2—C131.461 (3)C19—H19B0.9600
N2—C121.474 (3)C19—H19C0.9600
N2—H40.90 (2)C18B—C19B1.43 (4)
N3—C91.404 (3)C18B—H18C0.9700
N3—C81.411 (3)C18B—H18D0.9700
N3—C41.437 (3)C19B—H19D0.9600
C1—C21.370 (3)C19B—H19E0.9600
C1—C61.398 (3)C19B—H19F0.9600
C1—H10.9300C20—C211.380 (3)
C2—C31.377 (3)C20—C251.381 (3)
C2—H20.9300C21—C221.380 (3)
C3—C41.387 (3)C21—H210.9300
C3—H30.9300C22—C231.360 (3)
C4—C51.392 (3)C22—H220.9300
C5—C61.374 (3)C23—C241.363 (3)
C5—C71.518 (3)C24—C251.378 (3)
C6—H60.9300C24—H240.9300
C7—C81.520 (3)C25—H250.9300
C7—C111.554 (3)C26—C271.382 (3)
C7—C131.585 (3)C26—C311.393 (3)
C9—C101.479 (4)C27—C281.388 (3)
C10—H10A0.9600C27—H270.9300
C10—H10B0.9600C28—C291.366 (3)
C10—H10C0.9600C28—H280.9300
C11—C261.508 (3)C29—C301.362 (3)
C11—C121.537 (3)C30—C311.398 (3)
C11—H110.9800C30—H300.9300
C12—C201.517 (3)C31—H310.9300
C14—O4—C15116.40 (19)O4—C15—C16112.2 (2)
C17—O6—C18113.5 (6)O4—C15—H15A109.2
C17—O6—C18B125.0 (13)C16—C15—H15A109.2
C18—O6—C18B17.2 (12)O4—C15—H15B109.2
O7—N1—O8122.1 (2)C16—C15—H15B109.2
O7—N1—C23119.5 (2)H15A—C15—H15B107.9
O8—N1—C23118.3 (2)C15—C16—H16A109.5
C13—N2—C12111.43 (17)C15—C16—H16B109.5
C13—N2—H4112.0 (15)H16A—C16—H16B109.5
C12—N2—H4108.5 (15)C15—C16—H16C109.5
C9—N3—C8125.68 (18)H16A—C16—H16C109.5
C9—N3—C4124.68 (18)H16B—C16—H16C109.5
C8—N3—C4109.00 (16)O5—C17—O6124.7 (2)
C2—C1—C6119.9 (2)O5—C17—C13123.4 (2)
C2—C1—H1120.0O6—C17—C13112.0 (2)
C6—C1—H1120.0O6—C18—C19102.5 (9)
C1—C2—C3121.9 (2)O6—C18—H18A111.3
C1—C2—H2119.0C19—C18—H18A111.3
C3—C2—H2119.0O6—C18—H18B111.3
C2—C3—C4117.6 (2)C19—C18—H18B111.3
C2—C3—H3121.2H18A—C18—H18B109.2
C4—C3—H3121.2C19B—C18B—O6109 (2)
C3—C4—C5121.6 (2)C19B—C18B—H18C110.0
C3—C4—N3128.8 (2)O6—C18B—H18C110.0
C5—C4—N3109.64 (16)C19B—C18B—H18D110.0
C6—C5—C4119.60 (18)O6—C18B—H18D110.0
C6—C5—C7130.76 (18)H18C—C18B—H18D108.4
C4—C5—C7109.57 (18)C18B—C19B—H19D109.5
C5—C6—C1119.3 (2)C18B—C19B—H19E109.5
C5—C6—H6120.3H19D—C19B—H19E109.5
C1—C6—H6120.3C18B—C19B—H19F109.5
C5—C7—C8102.40 (16)H19D—C19B—H19F109.5
C5—C7—C11117.69 (17)H19E—C19B—H19F109.5
C8—C7—C11111.05 (16)C21—C20—C25118.2 (2)
C5—C7—C13112.56 (17)C21—C20—C12122.09 (19)
C8—C7—C13114.50 (17)C25—C20—C12119.66 (19)
C11—C7—C1399.26 (15)C22—C21—C20120.7 (2)
O1—C8—N3125.27 (19)C22—C21—H21119.7
O1—C8—C7125.77 (19)C20—C21—H21119.7
N3—C8—C7108.86 (17)C23—C22—C21119.1 (2)
O2—C9—N3119.4 (2)C23—C22—H22120.4
O2—C9—C10122.2 (2)C21—C22—H22120.4
N3—C9—C10118.4 (2)C22—C23—C24122.1 (2)
C9—C10—H10A109.5C22—C23—N1119.4 (2)
C9—C10—H10B109.5C24—C23—N1118.5 (2)
H10A—C10—H10B109.5C23—C24—C25118.1 (2)
C9—C10—H10C109.5C23—C24—H24120.9
H10A—C10—H10C109.5C25—C24—H24120.9
H10B—C10—H10C109.5C24—C25—C20121.7 (2)
C26—C11—C12117.55 (17)C24—C25—H25119.2
C26—C11—C7117.90 (16)C20—C25—H25119.2
C12—C11—C7102.50 (16)C27—C26—C31117.5 (2)
C26—C11—H11106.0C27—C26—C11118.09 (18)
C12—C11—H11106.0C31—C26—C11124.4 (2)
C7—C11—H11106.0C26—C27—C28122.1 (2)
N2—C12—C20113.65 (17)C26—C27—H27118.9
N2—C12—C11103.66 (16)C28—C27—H27118.9
C20—C12—C11112.04 (18)C29—C28—C27118.5 (2)
N2—C12—H12109.1C29—C28—H28120.8
C20—C12—H12109.1C27—C28—H28120.8
C11—C12—H12109.1C30—C29—C28121.9 (2)
N2—C13—C17110.12 (18)C30—C29—Cl1119.01 (18)
N2—C13—C14108.65 (17)C28—C29—Cl1119.05 (19)
C17—C13—C14110.18 (18)C29—C30—C31119.1 (2)
N2—C13—C7103.52 (16)C29—C30—H30120.5
C17—C13—C7113.09 (16)C31—C30—H30120.5
C14—C13—C7111.02 (17)C26—C31—C30120.9 (2)
O3—C14—O4124.1 (2)C26—C31—H31119.6
O3—C14—C13122.5 (2)C30—C31—H31119.6
O4—C14—C13113.43 (19)
C6—C1—C2—C30.3 (4)C8—C7—C13—C1438.4 (2)
C1—C2—C3—C40.7 (4)C11—C7—C13—C1479.90 (19)
C2—C3—C4—C50.3 (4)C15—O4—C14—O30.8 (4)
C2—C3—C4—N3177.5 (2)C15—O4—C14—C13179.8 (2)
C9—N3—C4—C312.0 (4)N2—C13—C14—O324.4 (3)
C8—N3—C4—C3176.8 (2)C17—C13—C14—O3145.1 (3)
C9—N3—C4—C5166.0 (2)C7—C13—C14—O388.8 (3)
C8—N3—C4—C55.3 (2)N2—C13—C14—O4156.19 (19)
C3—C4—C5—C61.6 (3)C17—C13—C14—O435.5 (3)
N3—C4—C5—C6176.57 (19)C7—C13—C14—O490.6 (2)
C3—C4—C5—C7178.9 (2)C14—O4—C15—C1679.3 (3)
N3—C4—C5—C70.8 (2)C18—O6—C17—O55.4 (7)
C4—C5—C6—C11.9 (3)C18B—O6—C17—O59.4 (15)
C7—C5—C6—C1178.6 (2)C18—O6—C17—C13173.4 (7)
C2—C1—C6—C51.0 (4)C18B—O6—C17—C13171.8 (15)
C6—C5—C7—C8179.5 (2)N2—C13—C17—O515.1 (3)
C4—C5—C7—C83.5 (2)C14—C13—C17—O5104.8 (3)
C6—C5—C7—C1157.4 (3)C7—C13—C17—O5130.3 (2)
C4—C5—C7—C11125.59 (19)N2—C13—C17—O6163.76 (18)
C6—C5—C7—C1357.1 (3)C14—C13—C17—O676.4 (2)
C4—C5—C7—C13119.90 (19)C7—C13—C17—O648.5 (2)
C9—N3—C8—O119.7 (4)C17—O6—C18—C19178.6 (6)
C4—N3—C8—O1169.1 (2)C18B—O6—C18—C1946 (7)
C9—N3—C8—C7163.62 (19)C17—O6—C18B—C19B108 (2)
C4—N3—C8—C77.5 (2)C18—O6—C18B—C19B55 (6)
C5—C7—C8—O1169.9 (2)N2—C12—C20—C2127.4 (3)
C11—C7—C8—O143.5 (3)C11—C12—C20—C2189.7 (3)
C13—C7—C8—O167.9 (3)N2—C12—C20—C25154.6 (2)
C5—C7—C8—N36.7 (2)C11—C12—C20—C2588.3 (2)
C11—C7—C8—N3133.17 (18)C25—C20—C21—C221.7 (4)
C13—C7—C8—N3115.43 (19)C12—C20—C21—C22176.3 (3)
C8—N3—C9—O2173.1 (3)C20—C21—C22—C230.3 (5)
C4—N3—C9—O217.0 (4)C21—C22—C23—C241.2 (5)
C8—N3—C9—C108.8 (4)C21—C22—C23—N1179.6 (3)
C4—N3—C9—C10161.0 (2)O7—N1—C23—C22179.6 (3)
C5—C7—C11—C2652.6 (3)O8—N1—C23—C220.7 (4)
C8—C7—C11—C2664.9 (2)O7—N1—C23—C240.4 (4)
C13—C7—C11—C26174.27 (17)O8—N1—C23—C24179.9 (3)
C5—C7—C11—C1278.2 (2)C22—C23—C24—C251.3 (4)
C8—C7—C11—C12164.33 (16)N1—C23—C24—C25179.5 (2)
C13—C7—C11—C1243.47 (17)C23—C24—C25—C200.1 (4)
C13—N2—C12—C20133.41 (19)C21—C20—C25—C241.6 (4)
C13—N2—C12—C1111.5 (2)C12—C20—C25—C24176.5 (2)
C26—C11—C12—N2165.99 (17)C12—C11—C26—C27123.4 (2)
C7—C11—C12—N234.98 (18)C7—C11—C26—C27113.1 (2)
C26—C11—C12—C2071.1 (2)C12—C11—C26—C3154.3 (3)
C7—C11—C12—C20157.92 (16)C7—C11—C26—C3169.3 (3)
C12—N2—C13—C17137.36 (18)C31—C26—C27—C280.2 (3)
C12—N2—C13—C14101.9 (2)C11—C26—C27—C28177.6 (2)
C12—N2—C13—C716.2 (2)C26—C27—C28—C290.7 (4)
C5—C7—C13—N288.8 (2)C27—C28—C29—C300.7 (4)
C8—C7—C13—N2154.82 (17)C27—C28—C29—Cl1179.96 (19)
C11—C7—C13—N236.52 (19)C28—C29—C30—C310.3 (4)
C5—C7—C13—C1730.4 (2)Cl1—C29—C30—C31179.52 (18)
C8—C7—C13—C1786.0 (2)C27—C26—C31—C300.3 (3)
C11—C7—C13—C17155.66 (17)C11—C26—C31—C30177.9 (2)
C5—C7—C13—C14154.82 (17)C29—C30—C31—C260.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10C···O8i0.962.513.387 (4)152
C11—H11···O30.982.543.200 (3)125
C21—H21···O30.932.443.181 (3)136
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC31H28ClN3O8
Mr606.01
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.780 (2), 14.859 (3), 20.466 (5)
V3)2974.1 (11)
Z4
Radiation typeCu Kα
µ (mm1)1.61
Crystal size (mm)0.40 × 0.38 × 0.32
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.565, 0.626
No. of measured, independent and
observed [I > 2σ(I)] reflections
27366, 4732, 4456
Rint0.034
(sin θ/λ)max1)0.576
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.066, 1.00
No. of reflections4732
No. of parameters403
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.15
Absolute structureFlack (1983), with 2017 Friedel pairs
Absolute structure parameter0.020 (15)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10C···O8i0.962.513.387 (4)152.0
C11—H11···O30.982.543.200 (3)124.5
C21—H21···O30.932.443.181 (3)136.4
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

The diffraction data were collected at the Centre for Test and Analysis, Chengdu Branch, Chinese Academy of Sciences. The author acknowledges financial support from China West Normal University.

References

First citationBhattacharya, S. K., Glover, V., Melntyre, I., Oxenkrug, G. & Sandler, M. (1982). Neurosci. Lett. 92, 218–221.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGarnick, R. L. & Lequesne, P. W. (1978). J. Am. Chem. Soc. 100, 4213–4219.  CrossRef CAS Web of Science Google Scholar
First citationGlover, V., Halker, J. M., Wathins, P. J., Clow, A., Goodwin, B. L. & Sandler, M. (1998). J. Neurochem. 51, 656–659.  CrossRef Web of Science Google Scholar
First citationGrigg, R. (1995). Tetrahedron Asymmetry, 6, 2475–2486.  CrossRef CAS Web of Science Google Scholar
First citationJossang, A., Jossang, P., Hadi, H. A., Sevenet, T. & Bodo, B. (1991). J. Org. Chem. 156, 6527–6530.  CrossRef Web of Science Google Scholar
First citationKravchenko, D. V., Kysil, V. M., Tkachenko, S. E., Maliarchouk, S., Okun, I. M. & Ivachtchenko, A. V. (2005). Eur. J. Med. Chem. pp. 1377–1383.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWitherup, K. M., Ransom, R. W., Graham, A. C., Bernard, A. M., Salvatore, M. J., Lumma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc. 117, 6682–6685.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds