organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(Propan-2-yl­­idene)nicotinohydrazide

aDepartment of Applied Chemistry, College of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China, and bSanonda Zhengzhou Pesticide Co Ltd, Zhengzhou 450009, People's Republic of China
*Correspondence e-mail: bfyu2008@126.com

(Received 27 August 2009; accepted 29 August 2009; online 5 September 2009)

Crystals of the title compound, C9H11N3O, were obtained from a condensation reaction of nicotinohydrazide and acetone. In the mol­ecular structure, the pyridine ring is oriented at a dihedral angle of 36.28 (10)° with respect to the amide plane. In the crystal structure, mol­ecules are linked via N—H⋯O hydrogen bonds, forming chains.

Related literature

For applications of Schiff base compounds, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3O

  • Mr = 177.21

  • Monoclinic, P 21 /n

  • a = 7.5439 (4) Å

  • b = 18.0292 (9) Å

  • c = 7.6172 (4) Å

  • β = 115.937 (3)°

  • V = 931.67 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.42 × 0.21 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.990

  • 14297 measured reflections

  • 2172 independent reflections

  • 1301 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.161

  • S = 1.02

  • 2172 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Oi 0.86 2.08 2.9136 (18) 162
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of Schiff bases has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). As part of our interest in the coordination chemistry of Schiff bases, we have synthesized the title compound and report here its crystal structure.

IN the molecular structure (Fig. 1), the pyridine ring is oriented with respect to N2/C4/O plane with a dihedral angle of 36.28 (10)°. In the crystal structure intermolecular N—H···O hydrogen bonding links the molecules to form the one-dimensional chains (Table 1).

Related literature top

For applications of Schiff base compounds, see: Kahwa et al. (1986); Santos et al. (2001).

Experimental top

Nicotinohydrazide (1 mmol, 0.137 g) was dissolved in anhydrous ethanol (15 ml). The mixture was stirred for several min at 351 K, then the acetone (1 mmol, 0.058 g) in ethanol (8 ml) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The solid product was isolated and recrystallized from methanol. Colourless single crystals were obtained after 3 d.

Refinement top

All H atoms were positioned geometrically and refined as riding with C—H = 0.93 (aromatic), 0.96 Å (methyl) and N—H = 0.86 Å. Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C,N) for the others.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
N'-(Propan-2-ylidene)nicotinohydrazide top
Crystal data top
C9H11N3OF(000) = 376
Mr = 177.21Dx = 1.263 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3071 reflections
a = 7.5439 (4) Åθ = 2.3–27.0°
b = 18.0292 (9) ŵ = 0.09 mm1
c = 7.6172 (4) ÅT = 296 K
β = 115.937 (3)°Block, colourless
V = 931.67 (8) Å30.42 × 0.21 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2172 independent reflections
Radiation source: fine-focus sealed tube1301 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 27.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 99
Tmin = 0.978, Tmax = 0.990k = 2323
14297 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0882P)2 + 0.0683P]
where P = (Fo2 + 2Fc2)/3
2172 reflections(Δ/σ)max < 0.001
120 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C9H11N3OV = 931.67 (8) Å3
Mr = 177.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5439 (4) ŵ = 0.09 mm1
b = 18.0292 (9) ÅT = 296 K
c = 7.6172 (4) Å0.42 × 0.21 × 0.12 mm
β = 115.937 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2172 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1301 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.990Rint = 0.046
14297 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
2172 reflectionsΔρmin = 0.22 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6021 (2)0.20018 (9)0.3243 (2)0.0526 (4)
N20.5607 (2)0.23097 (8)0.1426 (2)0.0498 (4)
H2A0.48960.20780.03610.060*
N30.5259 (3)0.44511 (10)0.2362 (3)0.0683 (5)
O0.74766 (19)0.33093 (7)0.29001 (19)0.0640 (4)
C10.5162 (3)0.07664 (11)0.1687 (3)0.0707 (6)
H1A0.37510.07250.10650.106*
H1B0.57310.02900.21840.106*
H1C0.56120.09350.07550.106*
C20.5773 (2)0.13080 (11)0.3328 (3)0.0522 (5)
C30.6197 (3)0.10093 (13)0.5301 (3)0.0748 (6)
H3A0.67120.13980.62520.112*
H3B0.71470.06170.56270.112*
H3C0.50030.08210.52930.112*
C40.6361 (2)0.29792 (10)0.1407 (3)0.0470 (5)
C50.5842 (2)0.33173 (9)0.0540 (2)0.0448 (4)
C60.5646 (3)0.29200 (11)0.2158 (3)0.0553 (5)
H7A0.57700.24060.21010.066*
C70.5262 (3)0.32960 (13)0.3867 (3)0.0649 (6)
H8A0.51290.30400.49780.078*
C80.5083 (3)0.40459 (13)0.3895 (3)0.0678 (6)
H9A0.48210.42920.50550.081*
C90.5659 (3)0.40808 (11)0.0721 (3)0.0547 (5)
H10A0.58270.43530.03770.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0529 (9)0.0484 (9)0.0449 (9)0.0063 (7)0.0108 (7)0.0040 (7)
N20.0472 (8)0.0448 (9)0.0428 (8)0.0020 (7)0.0062 (6)0.0001 (7)
N30.0776 (12)0.0534 (11)0.0617 (11)0.0046 (8)0.0191 (9)0.0067 (9)
O0.0620 (8)0.0498 (8)0.0513 (8)0.0055 (6)0.0019 (6)0.0041 (6)
C10.0713 (13)0.0476 (12)0.0699 (14)0.0045 (10)0.0092 (11)0.0022 (10)
C20.0411 (9)0.0499 (11)0.0542 (11)0.0086 (8)0.0103 (8)0.0066 (9)
C30.0817 (14)0.0678 (14)0.0718 (15)0.0150 (12)0.0306 (12)0.0183 (12)
C40.0382 (8)0.0406 (10)0.0480 (10)0.0027 (7)0.0056 (7)0.0036 (8)
C50.0341 (8)0.0432 (10)0.0481 (11)0.0022 (7)0.0096 (7)0.0036 (8)
C60.0563 (11)0.0473 (11)0.0605 (13)0.0027 (8)0.0239 (9)0.0063 (9)
C70.0699 (13)0.0732 (15)0.0559 (13)0.0130 (11)0.0315 (10)0.0100 (11)
C80.0732 (13)0.0705 (15)0.0555 (13)0.0120 (11)0.0244 (11)0.0041 (11)
C90.0528 (10)0.0466 (11)0.0532 (11)0.0041 (8)0.0127 (8)0.0030 (9)
Geometric parameters (Å, º) top
N1—C21.271 (2)C3—H3A0.9600
N1—N21.394 (2)C3—H3B0.9600
N2—C41.337 (2)C3—H3C0.9600
N2—H2A0.8600C4—C51.489 (2)
N3—C91.330 (2)C5—C61.376 (2)
N3—C81.334 (3)C5—C91.384 (2)
O—C41.232 (2)C6—C71.382 (3)
C1—C21.492 (3)C6—H7A0.9300
C1—H1A0.9600C7—C81.358 (3)
C1—H1B0.9600C7—H8A0.9300
C1—H1C0.9600C8—H9A0.9300
C2—C31.493 (3)C9—H10A0.9300
C2—N1—N2117.96 (15)H3B—C3—H3C109.5
C4—N2—N1117.32 (14)O—C4—N2123.21 (17)
C4—N2—H2A121.3O—C4—C5119.84 (16)
N1—N2—H2A121.3N2—C4—C5116.93 (14)
C9—N3—C8116.26 (18)C6—C5—C9117.46 (17)
C2—C1—H1A109.5C6—C5—C4123.87 (16)
C2—C1—H1B109.5C9—C5—C4118.56 (16)
H1A—C1—H1B109.5C5—C6—C7118.99 (18)
C2—C1—H1C109.5C5—C6—H7A120.5
H1A—C1—H1C109.5C7—C6—H7A120.5
H1B—C1—H1C109.5C8—C7—C6118.78 (19)
N1—C2—C1126.87 (17)C8—C7—H8A120.6
N1—C2—C3115.77 (18)C6—C7—H8A120.6
C1—C2—C3117.34 (18)N3—C8—C7124.1 (2)
C2—C3—H3A109.5N3—C8—H9A117.9
C2—C3—H3B109.5C7—C8—H9A117.9
H3A—C3—H3B109.5N3—C9—C5124.38 (18)
C2—C3—H3C109.5N3—C9—H10A117.8
H3A—C3—H3C109.5C5—C9—H10A117.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Oi0.862.082.9136 (18)162
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC9H11N3O
Mr177.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.5439 (4), 18.0292 (9), 7.6172 (4)
β (°) 115.937 (3)
V3)931.67 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.21 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.978, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
14297, 2172, 1301
Rint0.046
(sin θ/λ)max1)0.655
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.161, 1.02
No. of reflections2172
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Oi0.862.082.9136 (18)162.0
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds