organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Eth­­oxy-4-[2-(3-nitro­phen­yl)­hydrazono­meth­yl]phenol

aEnergy Research Institute Co. Ltd, Henan Academy of Sciences, Zhengzhou 450000, People's Republic of China, and bKey Laboratory of Surface and Interface Science of Henan, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: junqiangchen2009@126.com

(Received 11 September 2009; accepted 18 September 2009; online 26 September 2009)

The title Schiff base compound, C15H15N3O4, was prepared from a condensation reaction of 3-eth­oxy-4-hydroxy­benz­aldehyde and 3-nitro­phenyl­hydrazine. The mol­ecule is nearly planar; the dihedral angle between the hydroxy­benzene ring and the nitro­benzene ring is 6.57 (7)°. O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonding helps to stabilize the crystal structure.

Related literature

For applications of Schiff base compounds, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N3O4

  • Mr = 301.30

  • Monoclinic, P 21 /n

  • a = 12.4160 (6) Å

  • b = 7.7429 (4) Å

  • c = 16.2249 (9) Å

  • β = 110.497 (6)°

  • V = 1461.04 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.20 × 0.16 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.982

  • 5606 measured reflections

  • 2835 independent reflections

  • 1558 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.077

  • S = 0.80

  • 2835 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.89 (2) 2.14 (2) 2.6582 (16) 116.7 (18)
O2—H2A⋯N1i 0.89 (2) 2.32 (2) 3.0345 (19) 137.0 (15)
C11—H11A⋯O2ii 0.93 2.56 3.340 (2) 141
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of Schiff base has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). As part of our study of the coordination chemistry of Schiff bases, we synthesized the title compound and determined its crystal structure.

The molecular structure of (I) is shown in Fig. 1. The hydroxybenzene ring and the nitrobenzene ring is roughly co-planar, making a dihedral angle of 6.57 (7)°. Intramolecular O—H···O hydrogen bond and intermolecular O—H···N and C—H···O hydrogen bonds are observed (Table 1), they help to stabilize the crystal structure (Fig. 2).

Related literature top

For applications of Schiff base compounds, see: Kahwa et al. (1986); Santos et al. (2001).

Experimental top

2-Nitrophenylhydrazine (1 mmol, 0.153 g) was dissolved in anhydrous ethanol (15 ml). The solution was stirred for several min at 351 K, 3-ethoxy-4-hydroxybenzaldehyde (1 mmol, 0.166 g) in ethanol (8 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The solid product was isolated and recrystallized from methanol, red single crystals were obtained after 3 d.

Refinement top

Hydroxy H atom was located in a difference Fourier map and refined isotropically. The other H atoms were positioned geometrically and refined as riding with C—H = 0.93 (aromatic), 0.97 (methylene), 0.96 Å (methyl) and N—H = 0.86 Å, with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level, showing intramolecular hydrogen bonds as dashed line.
[Figure 2] Fig. 2. The unit cell packing diagram showing intermolecular hydrogen bonding as dashed lines.
2-Ethoxy-4-[2-(3-nitrophenyl)hydrazonomethyl]phenol top
Crystal data top
C15H15N3O4F(000) = 632
Mr = 301.30Dx = 1.370 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1850 reflections
a = 12.4160 (6) Åθ = 3.2–28.2°
b = 7.7429 (4) ŵ = 0.10 mm1
c = 16.2249 (9) ÅT = 296 K
β = 110.497 (6)°Block, red
V = 1461.04 (13) Å30.20 × 0.16 × 0.13 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2835 independent reflections
Radiation source: fine-focus sealed tube1558 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 26.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1515
Tmin = 0.979, Tmax = 0.982k = 98
5606 measured reflectionsl = 2010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 0.80 w = 1/[σ2(Fo2) + (0.0412P)2]
where P = (Fo2 + 2Fc2)/3
2835 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C15H15N3O4V = 1461.04 (13) Å3
Mr = 301.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.4160 (6) ŵ = 0.10 mm1
b = 7.7429 (4) ÅT = 296 K
c = 16.2249 (9) Å0.20 × 0.16 × 0.13 mm
β = 110.497 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2835 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1558 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.982Rint = 0.022
5606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 0.80Δρmax = 0.13 e Å3
2835 reflectionsΔρmin = 0.16 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13682 (9)0.87732 (14)0.23604 (7)0.0531 (3)
O20.22167 (11)0.78440 (15)0.40430 (8)0.0574 (3)
N10.50471 (10)1.09280 (16)0.17334 (8)0.0449 (3)
C60.44686 (13)0.95951 (18)0.28540 (10)0.0400 (4)
C100.58320 (12)1.20825 (19)0.06891 (10)0.0408 (4)
C110.47700 (12)1.22659 (19)0.00284 (10)0.0424 (4)
H11A0.40991.19370.01170.051*
N30.36075 (12)1.31235 (19)0.14578 (10)0.0586 (4)
C20.25328 (13)0.89131 (18)0.27554 (10)0.0403 (4)
C40.40865 (14)0.86218 (19)0.41319 (10)0.0498 (4)
H4A0.43530.83530.47280.060*
C50.48479 (13)0.91857 (19)0.37376 (10)0.0467 (4)
H5A0.56250.92900.40720.056*
N20.59659 (11)1.14119 (17)0.15028 (9)0.0566 (4)
H2B0.66491.12910.18810.068*
C90.53084 (13)1.02074 (18)0.24853 (10)0.0449 (4)
H9A0.60831.00660.28170.054*
C10.32963 (13)0.94411 (18)0.23613 (10)0.0415 (4)
H1B0.30300.96970.17630.050*
C120.47362 (12)1.29476 (19)0.07618 (10)0.0418 (4)
C30.29426 (14)0.84598 (18)0.36459 (10)0.0424 (4)
C150.68158 (13)1.2571 (2)0.05225 (11)0.0525 (4)
H15A0.75341.24410.09590.063*
O30.27636 (11)1.2634 (2)0.13242 (10)0.1076 (6)
C130.56883 (14)1.3452 (2)0.09402 (11)0.0545 (5)
H13A0.56301.39150.14830.065*
O40.35438 (11)1.3746 (2)0.21577 (9)0.0961 (5)
C70.08594 (14)0.9091 (2)0.14407 (11)0.0570 (5)
H7A0.10260.81450.11120.068*
H7B0.11671.01460.12880.068*
C140.67357 (14)1.3242 (2)0.02778 (12)0.0627 (5)
H14A0.74031.35620.03760.075*
C80.04114 (14)0.9256 (2)0.12228 (12)0.0676 (5)
H8A0.07760.94690.06040.101*
H8B0.05671.02000.15490.101*
H8C0.07070.82060.13760.101*
H2A0.1526 (18)0.777 (2)0.3624 (14)0.100 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0394 (6)0.0719 (8)0.0458 (7)0.0045 (5)0.0122 (5)0.0102 (6)
O20.0559 (8)0.0773 (8)0.0446 (8)0.0088 (7)0.0246 (7)0.0017 (6)
N10.0349 (7)0.0587 (8)0.0418 (8)0.0058 (6)0.0142 (6)0.0001 (7)
C60.0386 (9)0.0409 (9)0.0397 (10)0.0013 (7)0.0127 (8)0.0005 (7)
C100.0327 (9)0.0507 (9)0.0379 (10)0.0041 (7)0.0112 (7)0.0017 (7)
C110.0310 (9)0.0550 (10)0.0429 (10)0.0045 (7)0.0152 (8)0.0059 (8)
N30.0406 (9)0.0810 (10)0.0471 (10)0.0004 (8)0.0064 (8)0.0040 (8)
C20.0376 (9)0.0406 (9)0.0416 (10)0.0012 (7)0.0125 (8)0.0015 (7)
C40.0519 (11)0.0609 (11)0.0333 (10)0.0019 (9)0.0107 (8)0.0043 (8)
C50.0395 (9)0.0525 (10)0.0420 (10)0.0015 (8)0.0065 (8)0.0020 (8)
N20.0293 (7)0.0921 (11)0.0443 (9)0.0077 (7)0.0078 (6)0.0119 (8)
C90.0349 (9)0.0529 (10)0.0421 (11)0.0007 (8)0.0074 (8)0.0006 (8)
C10.0428 (9)0.0441 (9)0.0345 (9)0.0022 (7)0.0098 (7)0.0017 (7)
C120.0338 (9)0.0508 (10)0.0387 (10)0.0019 (7)0.0101 (7)0.0044 (7)
C30.0469 (10)0.0445 (9)0.0391 (10)0.0024 (8)0.0193 (8)0.0002 (7)
C150.0301 (9)0.0729 (12)0.0501 (11)0.0061 (8)0.0087 (8)0.0071 (9)
O30.0362 (8)0.1872 (16)0.0859 (11)0.0113 (9)0.0045 (7)0.0440 (10)
C130.0493 (11)0.0695 (12)0.0447 (11)0.0089 (9)0.0165 (9)0.0063 (8)
O40.0645 (9)0.1613 (15)0.0501 (9)0.0042 (8)0.0043 (7)0.0324 (9)
C70.0453 (10)0.0696 (11)0.0488 (11)0.0090 (9)0.0071 (9)0.0076 (9)
C140.0378 (10)0.0927 (14)0.0594 (13)0.0133 (9)0.0192 (9)0.0098 (10)
C80.0471 (11)0.0812 (12)0.0652 (13)0.0020 (10)0.0081 (9)0.0044 (10)
Geometric parameters (Å, º) top
O1—C21.3654 (16)C4—C31.368 (2)
O1—C71.4234 (18)C4—C51.385 (2)
O2—C31.3643 (18)C4—H4A0.9300
O2—H2A0.89 (2)C5—H5A0.9300
N1—C91.2759 (17)N2—H2B0.8600
N1—N21.3713 (16)C9—H9A0.9300
C6—C51.380 (2)C1—H1B0.9300
C6—C11.3989 (19)C12—C131.369 (2)
C6—C91.451 (2)C15—C141.369 (2)
C10—N21.3735 (19)C15—H15A0.9300
C10—C111.385 (2)C13—C141.376 (2)
C10—C151.393 (2)C13—H13A0.9300
C11—C121.374 (2)C7—C81.497 (2)
C11—H11A0.9300C7—H7A0.9700
N3—O31.2031 (17)C7—H7B0.9700
N3—O41.2105 (17)C14—H14A0.9300
N3—C121.4660 (19)C8—H8A0.9600
C2—C11.3782 (19)C8—H8B0.9600
C2—C31.398 (2)C8—H8C0.9600
C2—O1—C7119.12 (12)C2—C1—C6120.48 (14)
C3—O2—H2A106.4 (14)C2—C1—H1B119.8
C9—N1—N2115.03 (13)C6—C1—H1B119.8
C5—C6—C1118.84 (14)C13—C12—C11124.11 (15)
C5—C6—C9118.04 (14)C13—C12—N3118.29 (15)
C1—C6—C9123.11 (14)C11—C12—N3117.60 (14)
N2—C10—C11123.01 (14)O2—C3—C4118.96 (15)
N2—C10—C15118.04 (14)O2—C3—C2120.94 (14)
C11—C10—C15118.94 (14)C4—C3—C2120.09 (14)
C12—C11—C10118.13 (14)C14—C15—C10120.65 (15)
C12—C11—H11A120.9C14—C15—H15A119.7
C10—C11—H11A120.9C10—C15—H15A119.7
O3—N3—O4121.30 (16)C12—C13—C14116.81 (15)
O3—N3—C12119.33 (15)C12—C13—H13A121.6
O4—N3—C12119.37 (15)C14—C13—H13A121.6
O1—C2—C1126.38 (14)O1—C7—C8107.85 (14)
O1—C2—C3114.05 (13)O1—C7—H7A110.1
C1—C2—C3119.57 (14)C8—C7—H7A110.1
C3—C4—C5120.11 (15)O1—C7—H7B110.1
C3—C4—H4A119.9C8—C7—H7B110.1
C5—C4—H4A119.9H7A—C7—H7B108.4
C6—C5—C4120.84 (15)C15—C14—C13121.35 (15)
C6—C5—H5A119.6C15—C14—H14A119.3
C4—C5—H5A119.6C13—C14—H14A119.3
N1—N2—C10122.22 (13)C7—C8—H8A109.5
N1—N2—H2B118.9C7—C8—H8B109.5
C10—N2—H2B118.9H8A—C8—H8B109.5
N1—C9—C6123.92 (14)C7—C8—H8C109.5
N1—C9—H9A118.0H8A—C8—H8C109.5
C6—C9—H9A118.0H8B—C8—H8C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.89 (2)2.14 (2)2.6582 (16)116.7 (18)
O2—H2A···N1i0.89 (2)2.32 (2)3.0345 (19)137.0 (15)
C11—H11A···O2ii0.932.563.340 (2)141
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H15N3O4
Mr301.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)12.4160 (6), 7.7429 (4), 16.2249 (9)
β (°) 110.497 (6)
V3)1461.04 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.16 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.979, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
5606, 2835, 1558
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.077, 0.80
No. of reflections2835
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.16

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.89 (2)2.14 (2)2.6582 (16)116.7 (18)
O2—H2A···N1i0.89 (2)2.32 (2)3.0345 (19)137.0 (15)
C11—H11A···O2ii0.932.563.340 (2)141
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds