organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-[(2,6-Di­fluoro­phen­­oxy)meth­yl]phen­yl}boronic acid

aPhysical Chemistry Department, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
*Correspondence e-mail: ktom@ch.pw.edu.pl

(Received 6 August 2009; accepted 1 September 2009; online 5 September 2009)

The planes of the two benzene rings in the mol­ecule of the title compound, C13H11BF2O3, form a dihedral angle of 76.06 (3)°; the C—O—C—C torsion angle characterizing the conformation of the central link of the mol­ecule is −79.20 (1)°. The dihydroxy­boron group is not coplanar with the benzene ring bonded to the B atom; one of the C—C—B—O torsion angles is 32.39 (2)°. One of the OH groups of the boronic acid fragment is engaged in an intra­molecular hydrogen bond, whereas the second OH group participates in inter­molecular hydrogen bonding, which leads to the formation of centrosymmetric dimers.

Related literature

For applications of boronic acids and aryl-benzyl ethers, see: Bien et al. (1995[Bien, J. T., Shang, M. & Smith, B. D. (1995). J. Org. Chem. 60, 2147-2152.]); Dai et al. (2009[Dai, H. L., Liu, W. Q., Xu, H., Yang, L. M., Lv, M. & Zheng, Y. T. (2009). Chem. Pharm. Bull. 57, 84-86.]); Miyaura & Suzuki (1995[Miyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457-2483.]). For the structure of a related boronic acid, see: Serwatowski et al. (2006[Serwatowski, J., Klis, T. & Kacprzak, K. (2006). Acta Cryst. E62, o1308-o1309.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11BF2O3

  • Mr = 264.03

  • Monoclinic, P 21 /c

  • a = 7.6660 (7) Å

  • b = 14.2299 (13) Å

  • c = 11.3595 (13) Å

  • β = 101.146 (9)°

  • V = 1215.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.77 × 0.49 × 0.31 mm

Data collection
  • Oxford Diffraction KM-4-CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.905, Tmax = 0.964

  • 16118 measured reflections

  • 2969 independent reflections

  • 2398 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.082

  • S = 1.09

  • 2969 reflections

  • 217 parameters

  • All H-atom parameters refined

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O3 0.821 (16) 1.915 (16) 2.6926 (11) 157.7 (15)
O2—H2O⋯O1i 0.853 (17) 1.937 (17) 2.7889 (11) 176.9 (16)
Symmetry code: (i) -x+2, -y, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The high synthetic utility of boronic acids (Bien et al., 1995; Miyaura & Suzuki, 1995) boosts continuous progress in the preparation and characterization of these compounds. The title compound, C13H11BF2O3(I), is the first example of the arylboronic acid based on the aryl-benzyl ether core containing aryloxymethylene substituent. The structure of arylboronic acid with benzyloxy substituent has been published a few years ago (Serwatowski et al., 2006). Aryl-benzyl ethers found recently their new application as human immunodeficiency virus-1 (HIV-1) inhibitors (Dai et al., 2009).

The planes of two benzene rings in the molecule of (I) (Fig. 1) form the dihedral angle of 76.06 (3)° and the torsion angle C8—O3—C7—C6 characterizing the conformation of the central link of the molecule, is equal to -79.20 (1)°. The dihydroxyboron group is not coplanar with the benzene ring to which the B1 atom is attached: the C6—C1—B1—O1 torsion angle is equal to 32.39 (2)°.

The hydrogen atom bonded to O1 is involved in a relatively weak intramolecular O1—H1O···O3 bond. The hydrogen atom at the O2 atom paricipates in the intermolecular hydrogen bonding, which leads to the formation of centrosymmetric dimers (Table 1, Fig. 2).

Related literature top

For applications of boronic acids and aryl-benzyl ethers, see: Bien et al. (1995); Dai et al. (2009); Miyaura & Suzuki (1995). For the structure boronic acid, see: Serwatowski et al. (2006).

Experimental top

The title compound was received from Aldrich; crystals suitable for X-ray study were grown from toluene.

Refinement top

Hydrogen atoms were located in the difference map and refined isotropically; C—H 0.946 (15)–0.978 (15) Å; O1—H1O 0.821 (16) and O1—H2O 0.853 (17) Å.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level; H atoms are shown as small circles of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) were omitted for clarity.
{2-[(2,6-Difluorophenoxy)methyl]phenyl}boronic acid top
Crystal data top
C13H11BF2O3F(000) = 544
Mr = 264.03Dx = 1.442 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7068 reflections
a = 7.6660 (7) Åθ = 57.4–2.7°
b = 14.2299 (13) ŵ = 0.12 mm1
c = 11.3595 (13) ÅT = 100 K
β = 101.146 (9)°Prismatic, colourless
V = 1215.8 (2) Å30.77 × 0.49 × 0.31 mm
Z = 4
Data collection top
Oxford Diffraction KM-4-CCD
diffractometer
2969 independent reflections
Radiation source: fine-focus sealed tube2398 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 8.6479 pixels mm-1θmax = 28.7°, θmin = 2.7°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2005)
k = 1818
Tmin = 0.905, Tmax = 0.964l = 1414
16118 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030All H-atom parameters refined
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.2189P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2969 reflectionsΔρmax = 0.32 e Å3
217 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (3)
Crystal data top
C13H11BF2O3V = 1215.8 (2) Å3
Mr = 264.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6660 (7) ŵ = 0.12 mm1
b = 14.2299 (13) ÅT = 100 K
c = 11.3595 (13) Å0.77 × 0.49 × 0.31 mm
β = 101.146 (9)°
Data collection top
Oxford Diffraction KM-4-CCD
diffractometer
2969 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2005)
2398 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.964Rint = 0.014
16118 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.082All H-atom parameters refined
S = 1.09Δρmax = 0.32 e Å3
2969 reflectionsΔρmin = 0.20 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.91559 (8)0.19749 (4)0.55376 (5)0.02345 (16)
F20.72933 (9)0.06640 (5)0.31548 (6)0.02896 (18)
O10.93207 (10)0.03767 (6)0.12362 (7)0.02301 (19)
O20.79654 (11)0.07674 (6)0.07273 (7)0.02281 (18)
O30.88984 (10)0.10342 (5)0.33861 (6)0.01920 (17)
C10.63372 (13)0.13060 (7)0.08786 (9)0.0169 (2)
C20.46817 (14)0.12551 (7)0.01011 (10)0.0212 (2)
C30.31535 (15)0.16368 (8)0.04040 (11)0.0264 (2)
C40.32593 (15)0.20931 (8)0.14881 (12)0.0270 (3)
C50.48874 (15)0.21687 (7)0.22700 (10)0.0228 (2)
C60.64210 (13)0.17778 (7)0.19835 (9)0.0172 (2)
C70.81506 (14)0.19166 (7)0.28507 (9)0.0193 (2)
C80.81871 (13)0.06741 (7)0.43106 (9)0.0162 (2)
C90.83455 (13)0.11215 (7)0.54123 (9)0.0176 (2)
C100.77635 (15)0.07254 (8)0.63736 (10)0.0216 (2)
C110.70321 (15)0.01698 (8)0.62442 (10)0.0236 (2)
C120.68763 (14)0.06530 (8)0.51687 (10)0.0230 (2)
C130.74362 (14)0.02158 (7)0.42232 (9)0.0196 (2)
B10.79588 (15)0.08049 (8)0.04625 (10)0.0180 (2)
H1O0.921 (2)0.0424 (11)0.1939 (15)0.039 (4)*
H2O0.877 (2)0.0400 (12)0.0883 (14)0.045 (4)*
H20.4580 (17)0.0929 (9)0.0654 (12)0.024 (3)*
H30.202 (2)0.1592 (10)0.0139 (13)0.035 (4)*
H40.220 (2)0.2362 (10)0.1720 (13)0.037 (4)*
H50.4967 (18)0.2490 (10)0.3020 (12)0.028 (3)*
H7A0.7984 (16)0.2351 (9)0.3485 (11)0.019 (3)*
H7B0.9085 (16)0.2154 (9)0.2457 (11)0.019 (3)*
H100.7881 (19)0.1076 (10)0.7123 (13)0.036 (4)*
H110.6634 (19)0.0452 (10)0.6898 (13)0.032 (4)*
H120.6353 (19)0.1267 (11)0.5073 (12)0.036 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0302 (3)0.0207 (3)0.0189 (3)0.0036 (2)0.0035 (2)0.0040 (2)
F20.0401 (4)0.0230 (3)0.0228 (4)0.0024 (3)0.0038 (3)0.0084 (3)
O10.0251 (4)0.0324 (4)0.0124 (4)0.0089 (3)0.0059 (3)0.0009 (3)
O20.0280 (4)0.0264 (4)0.0147 (4)0.0068 (3)0.0059 (3)0.0001 (3)
O30.0220 (4)0.0218 (4)0.0149 (4)0.0044 (3)0.0063 (3)0.0009 (3)
C10.0195 (5)0.0137 (5)0.0180 (5)0.0000 (4)0.0049 (4)0.0029 (4)
C20.0239 (5)0.0163 (5)0.0224 (5)0.0006 (4)0.0019 (4)0.0028 (4)
C30.0194 (5)0.0209 (5)0.0371 (6)0.0005 (4)0.0010 (5)0.0076 (5)
C40.0231 (6)0.0204 (5)0.0402 (7)0.0053 (4)0.0131 (5)0.0076 (5)
C50.0295 (6)0.0165 (5)0.0253 (6)0.0040 (4)0.0129 (5)0.0031 (4)
C60.0217 (5)0.0125 (4)0.0187 (5)0.0004 (4)0.0071 (4)0.0034 (4)
C70.0263 (5)0.0167 (5)0.0155 (5)0.0008 (4)0.0056 (4)0.0005 (4)
C80.0151 (4)0.0197 (5)0.0139 (5)0.0048 (4)0.0030 (3)0.0015 (4)
C90.0175 (5)0.0170 (5)0.0173 (5)0.0023 (4)0.0006 (4)0.0006 (4)
C100.0253 (5)0.0246 (5)0.0147 (5)0.0066 (4)0.0034 (4)0.0014 (4)
C110.0234 (5)0.0263 (6)0.0217 (5)0.0060 (4)0.0059 (4)0.0092 (4)
C120.0216 (5)0.0188 (5)0.0277 (6)0.0019 (4)0.0028 (4)0.0039 (4)
C130.0203 (5)0.0194 (5)0.0180 (5)0.0041 (4)0.0010 (4)0.0034 (4)
B10.0206 (5)0.0175 (5)0.0162 (5)0.0008 (4)0.0046 (4)0.0011 (4)
Geometric parameters (Å, º) top
F1—C91.3589 (12)C4—H40.978 (15)
F2—C131.3566 (12)C5—C61.3948 (15)
O1—B11.3708 (14)C5—H50.959 (14)
O1—H1O0.821 (16)C6—C71.5041 (15)
O2—B11.3536 (14)C7—H7A0.976 (13)
O2—H2O0.853 (17)C7—H7B0.976 (12)
O3—C81.3727 (12)C8—C131.3865 (15)
O3—C71.4630 (12)C8—C91.3884 (14)
C1—C21.4010 (15)C9—C101.3776 (15)
C1—C61.4139 (14)C10—C111.3880 (16)
C1—B11.5825 (15)C10—H100.976 (15)
C2—C31.3934 (16)C11—C121.3868 (16)
C2—H20.965 (13)C11—H110.946 (15)
C3—C41.3806 (18)C12—C131.3795 (16)
C3—H30.966 (15)C12—H120.959 (15)
C4—C51.3891 (17)
B1—O1—H1O112.4 (11)O3—C7—H7B103.0 (7)
B1—O2—H2O112.0 (10)C6—C7—H7B112.2 (7)
C8—O3—C7117.18 (7)H7A—C7—H7B109.4 (10)
C2—C1—C6117.67 (9)O3—C8—C13120.47 (9)
C2—C1—B1117.17 (9)O3—C8—C9122.68 (9)
C6—C1—B1125.14 (9)C13—C8—C9116.49 (9)
C3—C2—C1121.77 (10)F1—C9—C10119.62 (9)
C3—C2—H2118.7 (8)F1—C9—C8117.57 (9)
C1—C2—H2119.5 (8)C10—C9—C8122.79 (10)
C4—C3—C2119.76 (11)C9—C10—C11118.53 (10)
C4—C3—H3119.4 (9)C9—C10—H10119.5 (9)
C2—C3—H3120.9 (9)C11—C10—H10121.9 (9)
C3—C4—C5119.83 (10)C12—C11—C10120.83 (10)
C3—C4—H4121.1 (9)C12—C11—H11119.7 (9)
C5—C4—H4119.1 (9)C10—C11—H11119.5 (8)
C4—C5—C6120.90 (10)C13—C12—C11118.39 (10)
C4—C5—H5120.0 (8)C13—C12—H12120.6 (8)
C6—C5—H5119.1 (8)C11—C12—H12120.9 (8)
C5—C6—C1120.05 (10)F2—C13—C12120.07 (9)
C5—C6—C7118.09 (9)F2—C13—C8117.00 (9)
C1—C6—C7121.78 (9)C12—C13—C8122.92 (10)
O3—C7—C6112.62 (8)O2—B1—O1118.25 (9)
O3—C7—H7A109.5 (7)O2—B1—C1118.09 (9)
C6—C7—H7A110.0 (7)O1—B1—C1123.62 (9)
C6—C1—C2—C31.23 (15)C13—C8—C9—F1176.87 (8)
B1—C1—C2—C3177.16 (10)O3—C8—C9—C10174.44 (9)
C1—C2—C3—C41.10 (16)C13—C8—C9—C101.33 (15)
C2—C3—C4—C50.02 (16)F1—C9—C10—C11176.36 (9)
C3—C4—C5—C60.90 (16)C8—C9—C10—C111.80 (16)
C4—C5—C6—C10.74 (15)C9—C10—C11—C120.50 (16)
C4—C5—C6—C7177.80 (9)C10—C11—C12—C131.17 (16)
C2—C1—C6—C50.31 (14)C11—C12—C13—F2179.55 (9)
B1—C1—C6—C5177.94 (10)C11—C12—C13—C81.67 (16)
C2—C1—C6—C7176.63 (9)O3—C8—C13—F26.00 (14)
B1—C1—C6—C75.11 (15)C9—C8—C13—F2179.27 (8)
C8—O3—C7—C679.20 (11)O3—C8—C13—C12172.82 (9)
C5—C6—C7—O3115.02 (10)C9—C8—C13—C120.46 (15)
C1—C6—C7—O367.98 (12)C2—C1—B1—O231.58 (14)
C7—O3—C8—C13121.32 (10)C6—C1—B1—O2150.16 (10)
C7—O3—C8—C965.84 (12)C2—C1—B1—O1145.87 (10)
O3—C8—C9—F13.76 (14)C6—C1—B1—O132.39 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O30.821 (16)1.915 (16)2.6926 (11)157.7 (15)
O2—H2O···O1i0.853 (17)1.937 (17)2.7889 (11)176.9 (16)
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC13H11BF2O3
Mr264.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.6660 (7), 14.2299 (13), 11.3595 (13)
β (°) 101.146 (9)
V3)1215.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.77 × 0.49 × 0.31
Data collection
DiffractometerOxford Diffraction KM-4-CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2005)
Tmin, Tmax0.905, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
16118, 2969, 2398
Rint0.014
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.09
No. of reflections2969
No. of parameters217
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.32, 0.20

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O30.821 (16)1.915 (16)2.6926 (11)157.7 (15)
O2—H2O···O1i0.853 (17)1.937 (17)2.7889 (11)176.9 (16)
Symmetry code: (i) x+2, y, z.
 

Acknowledgements

This work was supported by Warsaw University of Technology and the Polish Ministry of Science and Higher Education (grant No. N N205 055633). The X-ray data were collected in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of the University of Warsaw. We acknowledge the Aldrich Chemical Company for the donation of chemicals and equipment.

References

First citationBien, J. T., Shang, M. & Smith, B. D. (1995). J. Org. Chem. 60, 2147–2152.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDai, H. L., Liu, W. Q., Xu, H., Yang, L. M., Lv, M. & Zheng, Y. T. (2009). Chem. Pharm. Bull. 57, 84–86.  CrossRef PubMed CAS Google Scholar
First citationMiyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457–2483.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSerwatowski, J., Klis, T. & Kacprzak, K. (2006). Acta Cryst. E62, o1308–o1309.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds