metal-organic compounds
Bis[μ-2-(aminosulfanyl)pyridine(1−)]bis[(η5-pentamethylcyclopentadienyl)iridium(III)] diiodide
aDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan, and bDivision of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: suzuki@cc.okayama-u.ac.jp
In the title dinuclear iridium(III) complex, [Ir2(C10H15)2(C5H5N2S)2]I2, the iridium(III) atoms are bridged by 2-(aminosulfanyl)pyridine(1−) [(2-py)SNH] ligands in a μ-(2-py)SNH-κ2N(py),N(NH):κN(NH) mode. The dinuclear complex cation lies on a crystallographic inversion center, resulting in a planar Ir2N2 ring with an Ir—N(py) bond length of 2.085 (9) Å and bridging Ir—N(NH) bonds of 2.110 (9) and 2.113 (9) Å. The two (2-py)S units have mutually anti configurations with respect to the Ir2N2 ring
Related literature
For nitrogen-atom transfer, see: Du Bois et al. (1997); Birk & Bendix (2003). For photolysis of iridium(III) azido complexes, see: Kotera et al. (2008); Sekioka et al. (2005); Suzuki et al. (2003). For related organic compounds, see: Robinson & Hurley (1965); Brito et al. (2002); Miura et al. (2003). For related coordination compounds, see: Nakayama et al. (1999); Esquivias et al. (2007); Nanthakumar et al. (1999); Ishiwata et al. (2006); Arita et al. (2008). For 2-pyridylmethylamido complexes showing the μ-κ2N(py),N(NH):κN(NH) bridging mode, see: Westerhausen et al. (2002); Wong & Wong(2002).
Experimental
Crystal data
|
Refinement
|
Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell WinAFC Diffractometer Control Software; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809037167/zs2007sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809037167/zs2007Isup2.hkl
A solution of [Cp*Ir(N3)(2-Spy)] (59 mg, 0.12 mmol) in dry acetonitrile (2 cm3) was prepared under a nitrogen atmosphere and photolyzed for 15 h with a high pressure Hg lamp (Riko UVL-100HA) at a temperature below 0 °C, controlled by a Yamato Neocool model BD12. To the resulting dark red solution was added P(OMe)3 (35 µL, 0.30 mmol), the color of the mixture immediately turning to yellowish brown. After allowing the solution to stand at ambient temperature for 18 h, methyl iodide (18.5 µL, 0.30 mmol) was added, and then the mixture was allowed to stand overnight. Several yellow crystals of [(Cp*Ir)2(2-pySNH)2]I2 (I) were deposited from the mixture. Yield: 1.5 mg (2.1%). Anal. Found: C, 31.17; H, 3.54; N, 5.08%. Calcd for C30H40I2Ir2N4S2: C, 31.09; H, 3.48; N, 4.83%. IR (Nujol): ν(NH) = 3073 cm-1.
The H atoms were located geometrically and constrained to ride on their parent atoms with N–H = 0.91 Å and C–H = 0.93–0.96 Å with Uiso(H) = 1.2 Ueq(N or C). The largest peak and deepest hole in the difference Fourier map (3.47 and -3.49 eÅ-3) are located 0.82 and 0.82 Å respectively, from atom Ir1.
Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell
WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Ir2(C10H15)2(C5H5N2S)2]I2 | F(000) = 1080 |
Mr = 1158.98 | Dx = 2.235 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2yn | Cell parameters from 25 reflections |
a = 12.839 (3) Å | θ = 15.1–17.0° |
b = 12.169 (3) Å | µ = 9.66 mm−1 |
c = 11.299 (4) Å | T = 296 K |
β = 102.754 (19)° | Plate, yellow |
V = 1721.8 (8) Å3 | 0.20 × 0.10 × 0.08 mm |
Z = 2 |
Rigaku AFC7R diffractometer | 3621 reflections with I > 2σ(I) |
Radiation source: rotating anode | Rint = 0.080 |
Graphite monochromator | θmax = 30.0°, θmin = 2.7° |
ω–2θ scans | h = −17→18 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→17 |
Tmin = 0.248, Tmax = 0.512 | l = −15→6 |
5294 measured reflections | 3 standard reflections every 150 reflections |
5006 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.212 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.1625P)2] where P = (Fo2 + 2Fc2)/3 |
5006 reflections | (Δ/σ)max = 0.001 |
182 parameters | Δρmax = 3.47 e Å−3 |
0 restraints | Δρmin = −3.49 e Å−3 |
[Ir2(C10H15)2(C5H5N2S)2]I2 | V = 1721.8 (8) Å3 |
Mr = 1158.98 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.839 (3) Å | µ = 9.66 mm−1 |
b = 12.169 (3) Å | T = 296 K |
c = 11.299 (4) Å | 0.20 × 0.10 × 0.08 mm |
β = 102.754 (19)° |
Rigaku AFC7R diffractometer | 3621 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.080 |
Tmin = 0.248, Tmax = 0.512 | 3 standard reflections every 150 reflections |
5294 measured reflections | intensity decay: none |
5006 independent reflections |
R[F2 > 2σ(F2)] = 0.062 | 0 restraints |
wR(F2) = 0.212 | H-atom parameters constrained |
S = 1.02 | Δρmax = 3.47 e Å−3 |
5006 reflections | Δρmin = −3.49 e Å−3 |
182 parameters |
x | y | z | Uiso*/Ueq | ||
Ir1 | 0.44162 (3) | 0.04859 (3) | 0.10915 (3) | 0.03051 (16) | |
I1 | 0.43226 (8) | −0.33173 (7) | 0.19002 (9) | 0.0577 (3) | |
S1 | 0.6607 (2) | 0.1519 (2) | 0.0834 (3) | 0.0444 (6) | |
N1 | 0.5900 (6) | −0.0006 (7) | 0.2111 (8) | 0.0347 (17) | |
N2 | 0.5455 (7) | 0.0923 (7) | −0.0044 (8) | 0.0360 (17) | |
C2 | 0.6748 (8) | 0.0563 (8) | 0.1992 (11) | 0.037 (2) | |
C3 | 0.7773 (9) | 0.0412 (11) | 0.2784 (13) | 0.053 (3) | |
C4 | 0.7850 (9) | −0.0313 (12) | 0.3700 (13) | 0.054 (3) | |
C5 | 0.7009 (11) | −0.0948 (10) | 0.3812 (11) | 0.049 (3) | |
C6 | 0.6016 (10) | −0.0797 (10) | 0.3026 (10) | 0.046 (2) | |
H2 | 0.5119 | 0.1449 | −0.0563 | 0.043* | |
H3 | 0.8367 | 0.0801 | 0.2670 | 0.064* | |
H4 | 0.8493 | −0.0379 | 0.4267 | 0.064* | |
H5 | 0.7093 | −0.1484 | 0.4412 | 0.059* | |
H6 | 0.5435 | −0.1222 | 0.3110 | 0.055* | |
C11 | 0.3852 (11) | 0.2107 (12) | 0.1475 (14) | 0.058 (3) | |
C12 | 0.4010 (9) | 0.1434 (11) | 0.2566 (11) | 0.046 (3) | |
C13 | 0.3359 (9) | 0.0464 (9) | 0.2330 (12) | 0.044 (3) | |
C14 | 0.2687 (12) | 0.0600 (12) | 0.1115 (14) | 0.061 (4) | |
C15 | 0.3039 (13) | 0.1527 (13) | 0.0590 (12) | 0.062 (4) | |
C16 | 0.4361 (18) | 0.3130 (13) | 0.133 (2) | 0.103 (9) | |
C17 | 0.4780 (12) | 0.1724 (16) | 0.3763 (15) | 0.082 (6) | |
C18 | 0.3265 (16) | −0.0390 (11) | 0.3278 (17) | 0.067 (4) | |
C19 | 0.1763 (11) | −0.016 (2) | 0.059 (2) | 0.092 (7) | |
C20 | 0.2544 (17) | 0.2022 (18) | −0.0683 (16) | 0.102 (8) | |
H16A | 0.4104 | 0.3393 | 0.0513 | 0.123* | |
H16B | 0.5119 | 0.3024 | 0.1474 | 0.123* | |
H16C | 0.4199 | 0.3658 | 0.1890 | 0.123* | |
H17A | 0.5124 | 0.2411 | 0.3677 | 0.098* | |
H17B | 0.5309 | 0.1157 | 0.3970 | 0.098* | |
H17C | 0.4390 | 0.1787 | 0.4394 | 0.098* | |
H18A | 0.2779 | −0.0956 | 0.2912 | 0.080* | |
H18B | 0.3002 | −0.0048 | 0.3920 | 0.080* | |
H18C | 0.3954 | −0.0705 | 0.3602 | 0.080* | |
H19A | 0.1715 | −0.0727 | 0.1177 | 0.111* | |
H19B | 0.1881 | −0.0498 | −0.0135 | 0.111* | |
H19C | 0.1110 | 0.0247 | 0.0413 | 0.111* | |
H20A | 0.2943 | 0.2659 | −0.0816 | 0.122* | |
H20B | 0.1815 | 0.2226 | −0.0718 | 0.122* | |
H20C | 0.2568 | 0.1484 | −0.1298 | 0.122* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ir1 | 0.0272 (2) | 0.0357 (2) | 0.0303 (2) | 0.00425 (13) | 0.00992 (14) | 0.00336 (13) |
I1 | 0.0620 (5) | 0.0496 (5) | 0.0624 (6) | −0.0088 (4) | 0.0159 (4) | 0.0109 (4) |
S1 | 0.0439 (14) | 0.0407 (13) | 0.0502 (15) | −0.0105 (11) | 0.0143 (11) | −0.0015 (11) |
N1 | 0.031 (4) | 0.033 (4) | 0.043 (5) | 0.005 (3) | 0.015 (3) | −0.003 (3) |
N2 | 0.036 (4) | 0.032 (4) | 0.040 (4) | 0.007 (3) | 0.008 (3) | 0.006 (3) |
C2 | 0.030 (5) | 0.035 (5) | 0.049 (6) | −0.001 (3) | 0.012 (4) | 0.000 (4) |
C3 | 0.025 (5) | 0.074 (9) | 0.059 (8) | −0.002 (5) | 0.007 (5) | −0.023 (6) |
C4 | 0.027 (5) | 0.076 (9) | 0.051 (7) | 0.002 (5) | −0.007 (5) | −0.010 (6) |
C5 | 0.058 (7) | 0.044 (6) | 0.040 (6) | 0.006 (5) | 0.000 (5) | 0.001 (5) |
C6 | 0.054 (7) | 0.046 (6) | 0.039 (5) | 0.012 (5) | 0.014 (5) | 0.004 (5) |
C11 | 0.051 (7) | 0.059 (8) | 0.067 (8) | 0.016 (6) | 0.024 (6) | 0.012 (6) |
C12 | 0.034 (5) | 0.056 (6) | 0.053 (6) | 0.004 (5) | 0.020 (5) | −0.012 (5) |
C13 | 0.032 (5) | 0.048 (6) | 0.052 (7) | 0.002 (4) | 0.011 (5) | −0.011 (5) |
C14 | 0.047 (7) | 0.081 (10) | 0.055 (8) | 0.009 (6) | 0.007 (6) | −0.018 (7) |
C15 | 0.068 (9) | 0.081 (10) | 0.045 (7) | 0.015 (7) | 0.028 (6) | −0.008 (7) |
C16 | 0.14 (2) | 0.045 (8) | 0.16 (2) | 0.032 (10) | 0.095 (18) | 0.038 (10) |
C17 | 0.048 (8) | 0.128 (16) | 0.066 (9) | −0.007 (8) | 0.007 (7) | −0.059 (10) |
C18 | 0.086 (12) | 0.045 (7) | 0.083 (11) | −0.004 (7) | 0.052 (10) | 0.012 (7) |
C19 | 0.030 (6) | 0.138 (17) | 0.112 (16) | −0.018 (9) | 0.021 (8) | −0.055 (14) |
C20 | 0.104 (15) | 0.132 (17) | 0.070 (11) | 0.086 (14) | 0.022 (10) | 0.045 (11) |
Ir1—N1 | 2.085 (9) | C14—C15 | 1.40 (2) |
Ir1—N2 | 2.113 (9) | C14—C19 | 1.52 (2) |
Ir1—N2i | 2.110 (9) | C15—C20 | 1.56 (2) |
Ir1—C11 | 2.177 (14) | N2—H2 | 0.9100 |
Ir1—C12 | 2.182 (11) | C3—H3 | 0.9300 |
Ir1—C13 | 2.154 (13) | C4—H4 | 0.9300 |
Ir1—C14 | 2.231 (15) | C5—H5 | 0.9300 |
Ir1—C15 | 2.147 (15) | C6—H6 | 0.9300 |
S1—C2 | 1.730 (11) | C16—H16A | 0.9600 |
S1—N2 | 1.747 (9) | C16—H16B | 0.9600 |
N1—C2 | 1.322 (13) | C16—H16C | 0.9600 |
N1—C6 | 1.396 (15) | C17—H17A | 0.9600 |
C2—C3 | 1.431 (16) | C17—H17B | 0.9600 |
C3—C4 | 1.35 (2) | C17—H17C | 0.9600 |
C4—C5 | 1.357 (19) | C18—H18A | 0.9600 |
C5—C6 | 1.395 (17) | C18—H18B | 0.9600 |
C11—C12 | 1.457 (19) | C18—H18C | 0.9600 |
C11—C15 | 1.46 (2) | C19—H19A | 0.9600 |
C11—C16 | 1.43 (2) | C19—H19B | 0.9600 |
C12—C13 | 1.437 (16) | C19—H19C | 0.9600 |
C12—C17 | 1.531 (18) | C20—H20A | 0.9600 |
C13—C14 | 1.46 (2) | C20—H20B | 0.9600 |
C13—C18 | 1.515 (18) | C20—H20C | 0.9600 |
N1—Ir1—N2i | 84.3 (3) | C12—C13—Ir1 | 71.7 (7) |
N1—Ir1—N2 | 77.6 (3) | C14—C13—Ir1 | 73.4 (8) |
N2i—Ir1—N2 | 74.1 (4) | C18—C13—Ir1 | 128.9 (9) |
N1—Ir1—C11 | 117.0 (5) | C12—C13—C14 | 106.3 (12) |
N2—Ir1—C11 | 100.1 (4) | C12—C13—C18 | 124.4 (13) |
N2i—Ir1—C11 | 156.7 (5) | C14—C13—C18 | 128.2 (13) |
N1—Ir1—C12 | 94.2 (4) | C13—C14—Ir1 | 67.7 (7) |
N2—Ir1—C12 | 128.3 (4) | C15—C14—Ir1 | 68.2 (9) |
N2i—Ir1—C12 | 156.8 (4) | C19—C14—Ir1 | 130.6 (10) |
N1—Ir1—C13 | 105.5 (4) | C13—C14—C15 | 108.2 (13) |
N2—Ir1—C13 | 166.1 (4) | C13—C14—C19 | 122.9 (16) |
N2i—Ir1—C13 | 119.5 (4) | C15—C14—C19 | 129.0 (17) |
N1—Ir1—C14 | 143.3 (5) | C11—C15—Ir1 | 71.4 (8) |
N2—Ir1—C14 | 139.0 (5) | C14—C15—Ir1 | 74.7 (9) |
N2i—Ir1—C14 | 105.0 (4) | C20—C15—Ir1 | 128.0 (9) |
N1—Ir1—C15 | 156.1 (5) | C11—C15—C14 | 110.5 (13) |
N2—Ir1—C15 | 106.5 (4) | C11—C15—C20 | 122.0 (17) |
N2i—Ir1—C15 | 119.6 (5) | C14—C15—C20 | 126.8 (17) |
C11—Ir1—C12 | 39.1 (5) | C2—C3—H3 | 121.1 |
C11—Ir1—C13 | 66.2 (5) | C4—C3—H3 | 121.1 |
C11—Ir1—C14 | 64.3 (5) | C3—C4—H4 | 119.3 |
C11—Ir1—C15 | 39.4 (6) | C5—C4—H4 | 119.3 |
C12—Ir1—C13 | 38.7 (4) | C4—C5—H5 | 120.0 |
C12—Ir1—C14 | 63.4 (5) | C6—C5—H5 | 120.0 |
C12—Ir1—C15 | 64.4 (5) | C5—C6—H6 | 120.1 |
C13—Ir1—C14 | 38.9 (5) | N1—C6—H6 | 120.1 |
C13—Ir1—C15 | 65.1 (5) | C11—C16—H16A | 109.5 |
C14—Ir1—C15 | 37.1 (6) | C11—C16—H16B | 109.5 |
C2—S1—N2 | 94.9 (5) | C11—C16—H16C | 109.5 |
C2—N1—C6 | 118.7 (10) | H16A—C16—H16B | 109.5 |
C2—N1—Ir1 | 117.8 (7) | H16A—C16—H16C | 109.5 |
C6—N1—Ir1 | 122.8 (7) | H16B—C16—H16C | 109.5 |
Ir1i—N2—Ir1 | 105.9 (4) | C12—C17—H17A | 109.5 |
S1—N2—Ir1 | 109.2 (4) | C12—C17—H17B | 109.5 |
S1—N2—Ir1i | 119.6 (4) | C12—C17—H17C | 109.5 |
S1—N2—H2 | 107.2 | H17A—C17—H17B | 109.5 |
Ir1i—N2—H2 | 107.2 | H17A—C17—H17C | 109.5 |
Ir1—N2—H2 | 107.2 | H17B—C17—H17C | 109.5 |
N1—C2—S1 | 118.6 (8) | C13—C18—H18A | 109.5 |
C3—C2—S1 | 119.2 (9) | C13—C18—H18B | 109.5 |
N1—C2—C3 | 122.2 (11) | C13—C18—H18C | 109.5 |
C2—C3—C4 | 117.8 (11) | H18A—C18—H18B | 109.5 |
C3—C4—C5 | 121.4 (11) | H18A—C18—H18C | 109.5 |
C4—C5—C6 | 119.9 (12) | H18B—C18—H18C | 109.5 |
C5—C6—N1 | 119.7 (12) | C14—C19—H19A | 109.5 |
C12—C11—Ir1 | 70.7 (7) | C14—C19—H19B | 109.5 |
C15—C11—Ir1 | 69.2 (8) | C14—C19—H19C | 109.5 |
C16—C11—Ir1 | 125.7 (11) | H19A—C19—H19B | 109.5 |
C12—C11—C15 | 104.6 (13) | H19A—C19—H19C | 109.5 |
C12—C11—C16 | 127.3 (16) | H19B—C19—H19C | 109.5 |
C15—C11—C16 | 128.0 (17) | C15—C20—H20A | 109.5 |
C11—C12—Ir1 | 70.3 (7) | C15—C20—H20B | 109.5 |
C13—C12—Ir1 | 69.6 (7) | C15—C20—H20C | 109.5 |
C17—C12—Ir1 | 125.5 (8) | H20A—C20—H20B | 109.5 |
C11—C12—C13 | 109.8 (12) | H20A—C20—H20C | 109.5 |
C11—C12—C17 | 124.1 (14) | H20B—C20—H20C | 109.5 |
C13—C12—C17 | 126.2 (14) | ||
N2i—Ir1—N1—C2 | 106.2 (8) | C11—C12—C13—C14 | −6.9 (13) |
N2—Ir1—N1—C2 | 31.3 (8) | C17—C12—C13—C14 | 174.6 (12) |
C15—Ir1—N1—C2 | −71.6 (14) | Ir1—C12—C13—C14 | −65.8 (8) |
C13—Ir1—N1—C2 | −134.7 (8) | C11—C12—C13—C18 | −176.0 (12) |
C11—Ir1—N1—C2 | −63.8 (9) | C17—C12—C13—C18 | 5.4 (19) |
C12—Ir1—N1—C2 | −97.1 (8) | Ir1—C12—C13—C18 | 125.1 (12) |
C14—Ir1—N1—C2 | −146.2 (9) | C11—C12—C13—Ir1 | 58.9 (8) |
N2i—Ir1—N1—C6 | −83.1 (9) | C17—C12—C13—Ir1 | −119.7 (12) |
N2—Ir1—N1—C6 | −158.0 (9) | N1—Ir1—C13—C12 | 77.0 (7) |
C15—Ir1—N1—C6 | 99.1 (14) | N2i—Ir1—C13—C12 | 169.3 (6) |
C13—Ir1—N1—C6 | 36.0 (9) | N2—Ir1—C13—C12 | −24 (2) |
C11—Ir1—N1—C6 | 106.9 (9) | C15—Ir1—C13—C12 | −79.5 (8) |
C12—Ir1—N1—C6 | 73.6 (9) | C11—Ir1—C13—C12 | −36.1 (8) |
C14—Ir1—N1—C6 | 24.5 (12) | C14—Ir1—C13—C12 | −114.0 (11) |
C2—S1—N2—Ir1i | −78.5 (6) | N1—Ir1—C13—C14 | −169.0 (7) |
C2—S1—N2—Ir1 | 43.6 (5) | N2i—Ir1—C13—C14 | −76.8 (8) |
N1—Ir1—N2—S1 | −42.5 (4) | N2—Ir1—C13—C14 | 89.8 (17) |
N2i—Ir1—N2—S1 | −130.0 (6) | C15—Ir1—C13—C14 | 34.5 (8) |
C15—Ir1—N2—S1 | 113.2 (6) | C11—Ir1—C13—C14 | 77.9 (9) |
C13—Ir1—N2—S1 | 62.1 (17) | C12—Ir1—C13—C14 | 114.0 (11) |
C11—Ir1—N2—S1 | 73.2 (6) | N1—Ir1—C13—C18 | −42.9 (14) |
C12—Ir1—N2—S1 | 43.1 (7) | N2i—Ir1—C13—C18 | 49.4 (15) |
C14—Ir1—N2—S1 | 135.3 (6) | N2—Ir1—C13—C18 | −144.1 (15) |
N1—Ir1—N2—Ir1i | 87.6 (4) | C15—Ir1—C13—C18 | 160.6 (15) |
N2i—Ir1—N2—Ir1i | 0.0 | C11—Ir1—C13—C18 | −156.0 (15) |
C15—Ir1—N2—Ir1i | −116.8 (5) | C12—Ir1—C13—C18 | −119.9 (16) |
C13—Ir1—N2—Ir1i | −167.8 (15) | C14—Ir1—C13—C18 | 126.1 (16) |
C11—Ir1—N2—Ir1i | −156.8 (5) | C12—C13—C14—C15 | 8.5 (14) |
C12—Ir1—N2—Ir1i | 173.1 (4) | C18—C13—C14—C15 | 177.1 (13) |
C14—Ir1—N2—Ir1i | −94.7 (7) | Ir1—C13—C14—C15 | −56.1 (10) |
C6—N1—C2—C3 | −1.4 (16) | C12—C13—C14—C19 | −170.4 (13) |
Ir1—N1—C2—C3 | 169.7 (8) | C18—C13—C14—C19 | −2 (2) |
C6—N1—C2—S1 | 178.4 (8) | Ir1—C13—C14—C19 | 125.0 (13) |
Ir1—N1—C2—S1 | −10.5 (11) | C12—C13—C14—Ir1 | 64.7 (8) |
N2—S1—C2—N1 | −21.7 (9) | C18—C13—C14—Ir1 | −126.8 (13) |
N2—S1—C2—C3 | 158.2 (9) | N1—Ir1—C14—C15 | 139.6 (8) |
N1—C2—C3—C4 | −2.2 (18) | N2i—Ir1—C14—C15 | −119.5 (8) |
S1—C2—C3—C4 | 177.9 (9) | N2—Ir1—C14—C15 | −36.7 (11) |
C2—C3—C4—C5 | 5 (2) | C13—Ir1—C14—C15 | 121.8 (11) |
C3—C4—C5—C6 | −5 (2) | C11—Ir1—C14—C15 | 38.3 (8) |
C4—C5—C6—N1 | 1.3 (19) | C12—Ir1—C14—C15 | 82.1 (9) |
C2—N1—C6—C5 | 1.9 (16) | N1—Ir1—C14—C13 | 17.9 (11) |
Ir1—N1—C6—C5 | −168.7 (8) | N2i—Ir1—C14—C13 | 118.7 (7) |
N1—Ir1—C11—C16 | 62.4 (18) | N2—Ir1—C14—C13 | −158.4 (6) |
N2i—Ir1—C11—C16 | −92 (2) | C15—Ir1—C14—C13 | −121.8 (11) |
N2—Ir1—C11—C16 | −18.7 (18) | C11—Ir1—C14—C13 | −83.4 (8) |
C15—Ir1—C11—C16 | −123 (2) | C12—Ir1—C14—C13 | −39.7 (7) |
C13—Ir1—C11—C16 | 158.4 (18) | N1—Ir1—C14—C19 | −97.1 (19) |
C12—Ir1—C11—C16 | 123 (2) | N2i—Ir1—C14—C19 | 3.8 (19) |
C14—Ir1—C11—C16 | −158.7 (19) | N2—Ir1—C14—C19 | 86.6 (19) |
N1—Ir1—C11—C12 | −60.2 (8) | C15—Ir1—C14—C19 | 123 (2) |
N2i—Ir1—C11—C12 | 145.6 (9) | C13—Ir1—C14—C19 | −115 (2) |
N2—Ir1—C11—C12 | −141.3 (7) | C11—Ir1—C14—C19 | 162 (2) |
C15—Ir1—C11—C12 | 114.8 (11) | C12—Ir1—C14—C19 | −155 (2) |
C13—Ir1—C11—C12 | 35.8 (7) | C13—C14—C15—C11 | −7.1 (15) |
C14—Ir1—C11—C12 | 78.7 (8) | C19—C14—C15—C11 | 171.7 (14) |
N1—Ir1—C11—C15 | −175.0 (7) | Ir1—C14—C15—C11 | −63.0 (10) |
N2i—Ir1—C11—C15 | 30.7 (15) | C13—C14—C15—C20 | −177.7 (13) |
N2—Ir1—C11—C15 | 103.8 (8) | C19—C14—C15—C20 | 1 (2) |
C13—Ir1—C11—C15 | −79.1 (9) | Ir1—C14—C15—C20 | 126.4 (14) |
C12—Ir1—C11—C15 | −114.8 (11) | C13—C14—C15—Ir1 | 55.9 (9) |
C14—Ir1—C11—C15 | −36.1 (8) | C19—C14—C15—Ir1 | −125.3 (15) |
C16—C11—C12—C13 | −179.2 (14) | C16—C11—C15—C14 | −175.3 (15) |
C15—C11—C12—C13 | 2.7 (13) | C12—C11—C15—C14 | 2.8 (15) |
Ir1—C11—C12—C13 | −58.5 (8) | Ir1—C11—C15—C14 | 65.0 (10) |
C16—C11—C12—C17 | −1 (2) | C16—C11—C15—C20 | −4 (2) |
C15—C11—C12—C17 | −178.7 (11) | C12—C11—C15—C20 | 174.0 (12) |
Ir1—C11—C12—C17 | 120.1 (11) | Ir1—C11—C15—C20 | −123.8 (13) |
C16—C11—C12—Ir1 | −120.7 (15) | C16—C11—C15—Ir1 | 119.7 (16) |
C15—C11—C12—Ir1 | 61.2 (9) | C12—C11—C15—Ir1 | −62.2 (8) |
N1—Ir1—C12—C13 | −109.7 (7) | N1—Ir1—C15—C14 | −107.4 (13) |
N2i—Ir1—C12—C13 | −24.3 (14) | N2i—Ir1—C15—C14 | 75.1 (9) |
N2—Ir1—C12—C13 | 172.8 (6) | N2—Ir1—C15—C14 | 155.9 (8) |
C15—Ir1—C12—C13 | 81.4 (8) | C13—Ir1—C15—C14 | −36.0 (8) |
C11—Ir1—C12—C13 | 121.1 (11) | C11—Ir1—C15—C14 | −118.3 (12) |
C14—Ir1—C12—C13 | 39.9 (8) | C12—Ir1—C15—C14 | −79.0 (9) |
N1—Ir1—C12—C11 | 129.2 (8) | N1—Ir1—C15—C11 | 10.9 (16) |
N2i—Ir1—C12—C11 | −145.4 (10) | N2i—Ir1—C15—C11 | −166.5 (7) |
N2—Ir1—C12—C11 | 51.7 (9) | N2—Ir1—C15—C11 | −85.8 (8) |
C15—Ir1—C12—C11 | −39.7 (9) | C13—Ir1—C15—C11 | 82.3 (8) |
C13—Ir1—C12—C11 | −121.1 (11) | C12—Ir1—C15—C11 | 39.3 (8) |
C14—Ir1—C12—C11 | −81.2 (9) | C14—Ir1—C15—C11 | 118.3 (12) |
N1—Ir1—C12—C17 | 10.8 (14) | N1—Ir1—C15—C20 | 127.5 (16) |
N2i—Ir1—C12—C17 | 96.2 (15) | N2i—Ir1—C15—C20 | −50.0 (19) |
N2—Ir1—C12—C17 | −66.7 (15) | N2—Ir1—C15—C20 | 30.8 (19) |
C15—Ir1—C12—C17 | −158.1 (15) | C13—Ir1—C15—C20 | −161 (2) |
C13—Ir1—C12—C17 | 120.5 (16) | C11—Ir1—C15—C20 | 117 (2) |
C11—Ir1—C12—C17 | −118.4 (16) | C12—Ir1—C15—C20 | 156 (2) |
C14—Ir1—C12—C17 | 160.4 (15) | C14—Ir1—C15—C20 | −125 (2) |
Symmetry code: (i) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···I1i | 0.91 | 2.91 | 3.64 (1) | 139 |
Symmetry code: (i) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Ir2(C10H15)2(C5H5N2S)2]I2 |
Mr | 1158.98 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 12.839 (3), 12.169 (3), 11.299 (4) |
β (°) | 102.754 (19) |
V (Å3) | 1721.8 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 9.66 |
Crystal size (mm) | 0.20 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Rigaku AFC7R diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.248, 0.512 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5294, 5006, 3621 |
Rint | 0.080 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.062, 0.212, 1.02 |
No. of reflections | 5006 |
No. of parameters | 182 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 3.47, −3.49 |
Computer programs: WinAFC Diffractometer Control Software (Rigaku, 1999), CrystalStructure (Rigaku/MSC, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
Ir1—N1 | 2.085 (9) | Ir1—N2i | 2.110 (9) |
Ir1—N2 | 2.113 (9) | ||
N1—Ir1—N2i | 84.3 (3) | N2i—Ir1—N2 | 74.1 (4) |
N1—Ir1—N2 | 77.6 (3) | Ir1i—N2—Ir1 | 105.9 (4) |
Symmetry code: (i) −x+1, −y, −z. |
Acknowledgements
This work was supported by a Grant-in-Aid for Scientific Research (No. 20550064) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Arita, H., Ishiwata, K., Kuwata, S. & Ikariya, T. (2008). Organometallics 27, 493–496. Web of Science CrossRef CAS Google Scholar
Birk, T. & Bendix, J. (2003). Inorg. Chem. 42, 7608–7615. Web of Science CSD CrossRef PubMed CAS Google Scholar
Brito, I., Leon, Y., Arias, M., Vargas, D., Carmona, F., Ramirez, E., Restovic, A. & Cardenas, A. (2002). Bol. Soc. Chil. Quim. 47, 159–162. CAS Google Scholar
Du Bois, J., Tomooka, C. S., Hong, J. & Carreira, E. M. (1997). Acc. Chem. Res. 30, 364–372. CSD CrossRef CAS Web of Science Google Scholar
Esquivias, J., Arrayas, R. G. & Carretero, J. C. (2007). Angew. Chem. Int. Ed. 46, 9257–9260. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Ishiwata, K., Kuwata, S. & Ikariya, T. (2006). Organometallics 25, 5847–5849. Web of Science CSD CrossRef CAS Google Scholar
Kotera, M., Sekioka, Y. & Suzuki, T. (2008). Inorg. Chim. Acta 361, 1479–1484. Web of Science CSD CrossRef CAS Google Scholar
Miura, Y., Oyama, Y. & Teki, Y. (2003). J. Org. Chem. 68, 1225–1234. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nakayama, H., Prout, K., Hill, H. A. O. & Datta, D. (1999). Chem. Commun. pp. 695–696. Web of Science CrossRef Google Scholar
Nanthakumar, A., Miura, J., Diltz, S. & Leo, C.-K. (1999). Inorg. Chem. 38, 3010–3013. Web of Science CSD CrossRef PubMed CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Robinson, M. A. & Hurley, T. J. (1965). Inorg. Chem. 4, 1716–1721. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sekioka, Y., Kaizaki, S., Mayer, J. M. & Suzuki, T. (2005). Inorg. Chem. 44, 8173–8175. Web of Science CSD CrossRef PubMed CAS Google Scholar
Suzuki, T., DiPasquale, A. G. & Mayer, J. M. (2003). J. Am. Chem. Soc. 125, 10514–10515. Web of Science CSD CrossRef PubMed CAS Google Scholar
Westerhausen, M., Bollwein, T., Mayer, P., Piotrowski, H. & Pfitzner, A. (2002). Z. Anorg. Allg. Chem. 628, 1425–1432. Web of Science CSD CrossRef CAS Google Scholar
Wong, J. S.-Y. & Wong, W.-T. (2002). New J. Chem. 26, 94–104. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nitrogen-atom transfer is one of the promising synthetic methodologies for nitrogen-containing organic/inorganic compounds (Du Bois et al., 1997; Birk & Bendix, 2003). To this end we are trying to prepare high-valent iridium nitrido (or nitrenido) complexes and are investigating their reactivities at the N atom site (Suzuki et al., 2003; Sekioka et al., 2005; Kotera et al., 2008). In our previous paper (Sekioka et al., 2005) it was reported that photolysis of an acetonitrile solution of [Cp*Ir(2-Spy)(N3)] (2-Spy = 2-pyridinethiolate) resulted in insertion of an N atom derived from the azido ligand into the Ir–N(py) bond to afford [Cp*Ir(1-N-2-Spy)]. The reaction solution containing this complex was mixed with P(OMe)3 and MeI in this order and several yellow crystals of compound (I) were deposited from the mixture, although the yield was very low (ca 2%). The single-crystal X-ray analysis revealed that (I) is an iodide salt of a dinuclear iridium(III) complex bridged by 2-pyridylthioamide(1–), [(Cp*Ir)2{µ-(2-py)SNH}2]I2, as shown in Fig. 1. The H atom of the bridging amide ligand (–NH) could not be located in the difference Fourier map. However, the observation of a ν(NH) band at 3073 cm-1 in the IR spectrum and the good agreement of elemental analysis with the calculated values for the diiodide salt, it is suggested that the bridging N atom is protonated to form the amide(1-) ligand. The mechanism for formation of (2-py)SNH- is unknown at present but it could be a by-product of photolysis of the [Cp*Ir(2-Spy)(N3)] complex, or a N atom (or a NH-group) transfer product from the reaction of the [Cp*Ir(1-N-2-Spy)] complex with P(OMe)3 and MeI.
In compound (I), the N–S and S–C bond lengths of the bridging 2-pyridylthioamido(1–) ligand are 1.747 (9) and 1.73 (1) Å, respectively. 2-Pyridylthioamine [alternatively, 2-pyridinesulfenamide: (2-py)SNH2] was prepared by oxidation of 2-pyridinethiolate by chloramine, and its cobalt(II) and iron(II) complexes as well as their Schiff base derivatives {(2-py)SN=CR1R2} were also synthesized more than 40 years ago (Robinson & Hurley, 1965). However, none of the compounds containing (2-py)SNH2 have been so far characterized by X-ray analysis. The only example of the X-ray structural determination of a 2-pyridinesulfenamide is the N-piperidine derivative, (5-NO2-2-py)SNC5H10 (Brito et al., 2002) in which the N–S and S–C bond lengths are 1.699 and 1.761 Å, respectively. The crystal structures of the related aminyl radicals, (2-py)SN(C6H2Ph2R), have also been reported (Miura et al., 2003) in which the N–S and S–C bond lengths are 1.599 (4)–1.626 (8) and 1.770 (6)–1.781 (10) Å, respectively. Thus, in (I) the N–S bond is relatively longer, while the S–C bond is slightly shorter than those in similar organic compounds.
In the related transition-metal complex containing the 2-pyridylthioamide(1–) derivative, a cobalt(III) complex with tridentate (2-pyS)2N- ligands, [Co{(2-pyS)2N}2]ClO4, has been structurally determined (Nakayama et al., 1999). In this complex the N–S and S–C bond lengths are 1.711 (3)–1.718 (3) and 1.742 (4)–1.747 (4) Å, respectively. Furthermore, a few crystal structures of metal complexes with 2-pyridinesulfonamide {(2-py)SO2NH2} derivatives have been reported (Esquivias et al., 2007; Nanthakumar et al., 1999), but compound (I) is the first example containing coordinated (2-py)SNH- ligand has been characterized by X-ray methods. The Ir–N(py) bond length in compound (I) is 2.085 (9) Å, and the bridging Ir–N(NH) bond lengths are 2.110 (9) and 2.113 (9) Å. As seen in Fig. 1, the (2-py)SNH- ligand adopts a µ-κ2N(py),N(NH):κN(NH) bridging mode. This coordination mode is rare, to our knowledge having precedent in only two 2-pyridylmethylamido (2-pyCHRNH-) complexes (Westerhausen et al., 2002; Wong et al., 2002). For the dinuclear iridium(III) complexes bridged by two amide-N donors, Ishikawa, Arita and coworkers reported the sulfonamido-bridged complexes (Ishiwata et al. 2006; Arita et al., 2008). In their p-MeC6H3SO2NH-bridged dinuclear complex, [(Cp*Ir)2(µ-MeC6H3SO2NH)2], the two Cp* ligands are in mutually syn orientations with respect to the Ir2N2 ring, but in (I) the two Cp* ligands adopt an anti configuration .