metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1229-m1230

Bis[μ-2-(aminosulfanyl)pyridine(1−)]bis­­[(η5-penta­methyl­cyclo­penta­dien­yl)iridium(III)] diiodide

aDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan, and bDivision of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: suzuki@cc.okayama-u.ac.jp

(Received 27 August 2009; accepted 14 September 2009; online 19 September 2009)

In the title dinuclear iridium(III) complex, [Ir2(C10H15)2(C5H5N2S)2]I2, the iridium(III) atoms are bridged by 2-(aminosulfanyl)pyridine(1−) [(2-py)SNH] ligands in a μ-(2-py)SNH-κ2N(py),N(NH):κN(NH) mode. The dinuclear complex cation lies on a crystallographic inversion center, resulting in a planar Ir2N2 ring with an Ir—N(py) bond length of 2.085 (9) Å and bridging Ir—N(NH) bonds of 2.110 (9) and 2.113 (9) Å. The two (2-py)S units have mutually anti configurations with respect to the Ir2N2 ring

Related literature

For nitro­gen-atom transfer, see: Du Bois et al. (1997[Du Bois, J., Tomooka, C. S., Hong, J. & Carreira, E. M. (1997). Acc. Chem. Res. 30, 364-372.]); Birk & Bendix (2003[Birk, T. & Bendix, J. (2003). Inorg. Chem. 42, 7608-7615.]). For photolysis of iridium(III) azido complexes, see: Kotera et al. (2008[Kotera, M., Sekioka, Y. & Suzuki, T. (2008). Inorg. Chim. Acta 361, 1479-1484.]); Sekioka et al. (2005[Sekioka, Y., Kaizaki, S., Mayer, J. M. & Suzuki, T. (2005). Inorg. Chem. 44, 8173-8175.]); Suzuki et al. (2003[Suzuki, T., DiPasquale, A. G. & Mayer, J. M. (2003). J. Am. Chem. Soc. 125, 10514-10515.]). For related organic compounds, see: Robinson & Hurley (1965[Robinson, M. A. & Hurley, T. J. (1965). Inorg. Chem. 4, 1716-1721.]); Brito et al. (2002[Brito, I., Leon, Y., Arias, M., Vargas, D., Carmona, F., Ramirez, E., Restovic, A. & Cardenas, A. (2002). Bol. Soc. Chil. Quim. 47, 159-162.]); Miura et al. (2003[Miura, Y., Oyama, Y. & Teki, Y. (2003). J. Org. Chem. 68, 1225-1234.]). For related coordination compounds, see: Nakayama et al. (1999[Nakayama, H., Prout, K., Hill, H. A. O. & Datta, D. (1999). Chem. Commun. pp. 695-696.]); Esquivias et al. (2007[Esquivias, J., Arrayas, R. G. & Carretero, J. C. (2007). Angew. Chem. Int. Ed. 46, 9257-9260.]); Nanthakumar et al. (1999[Nanthakumar, A., Miura, J., Diltz, S. & Leo, C.-K. (1999). Inorg. Chem. 38, 3010-3013.]); Ishiwata et al. (2006[Ishiwata, K., Kuwata, S. & Ikariya, T. (2006). Organometallics 25, 5847-5849.]); Arita et al. (2008[Arita, H., Ishiwata, K., Kuwata, S. & Ikariya, T. (2008). Organometallics 27, 493-496.]). For 2-pyridylmethyl­amido complexes showing the μ-κ2N(py),N(NH):κN(NH) bridging mode, see: Westerhausen et al. (2002[Westerhausen, M., Bollwein, T., Mayer, P., Piotrowski, H. & Pfitzner, A. (2002). Z. Anorg. Allg. Chem. 628, 1425-1432.]); Wong & Wong(2002[Wong, J. S.-Y. & Wong, W.-T. (2002). New J. Chem. 26, 94-104.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir2(C10H15)2(C5H5N2S)2]I2

  • Mr = 1158.98

  • Monoclinic, P 21 /n

  • a = 12.839 (3) Å

  • b = 12.169 (3) Å

  • c = 11.299 (4) Å

  • β = 102.754 (19)°

  • V = 1721.8 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 9.66 mm−1

  • T = 296 K

  • 0.20 × 0.10 × 0.08 mm

Data collection
  • Rigaku AFC7R diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.248, Tmax = 0.512

  • 5294 measured reflections

  • 5006 independent reflections

  • 3621 reflections with I > 2σ(I)

  • Rint = 0.080

  • 3 standard reflections every 150 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.212

  • S = 1.02

  • 5006 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 3.47 e Å−3

  • Δρmin = −3.49 e Å−3

Table 1
Selected bond angles (°)

N1—Ir1—N2i 84.3 (3)
N1—Ir1—N2 77.6 (3)
N2i—Ir1—N2 74.1 (4)
Ir1i—N2—Ir1 105.9 (4)
Symmetry code: (i) -x+1, -y, -z.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC Diffractometer Control Software; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nitrogen-atom transfer is one of the promising synthetic methodologies for nitrogen-containing organic/inorganic compounds (Du Bois et al., 1997; Birk & Bendix, 2003). To this end we are trying to prepare high-valent iridium nitrido (or nitrenido) complexes and are investigating their reactivities at the N atom site (Suzuki et al., 2003; Sekioka et al., 2005; Kotera et al., 2008). In our previous paper (Sekioka et al., 2005) it was reported that photolysis of an acetonitrile solution of [Cp*Ir(2-Spy)(N3)] (2-Spy = 2-pyridinethiolate) resulted in insertion of an N atom derived from the azido ligand into the Ir–N(py) bond to afford [Cp*Ir(1-N-2-Spy)]. The reaction solution containing this complex was mixed with P(OMe)3 and MeI in this order and several yellow crystals of compound (I) were deposited from the mixture, although the yield was very low (ca 2%). The single-crystal X-ray analysis revealed that (I) is an iodide salt of a dinuclear iridium(III) complex bridged by 2-pyridylthioamide(1–), [(Cp*Ir)2{µ-(2-py)SNH}2]I2, as shown in Fig. 1. The H atom of the bridging amide ligand (–NH) could not be located in the difference Fourier map. However, the observation of a ν(NH) band at 3073 cm-1 in the IR spectrum and the good agreement of elemental analysis with the calculated values for the diiodide salt, it is suggested that the bridging N atom is protonated to form the amide(1-) ligand. The mechanism for formation of (2-py)SNH- is unknown at present but it could be a by-product of photolysis of the [Cp*Ir(2-Spy)(N3)] complex, or a N atom (or a NH-group) transfer product from the reaction of the [Cp*Ir(1-N-2-Spy)] complex with P(OMe)3 and MeI.

In compound (I), the N–S and S–C bond lengths of the bridging 2-pyridylthioamido(1–) ligand are 1.747 (9) and 1.73 (1) Å, respectively. 2-Pyridylthioamine [alternatively, 2-pyridinesulfenamide: (2-py)SNH2] was prepared by oxidation of 2-pyridinethiolate by chloramine, and its cobalt(II) and iron(II) complexes as well as their Schiff base derivatives {(2-py)SN=CR1R2} were also synthesized more than 40 years ago (Robinson & Hurley, 1965). However, none of the compounds containing (2-py)SNH2 have been so far characterized by X-ray analysis. The only example of the X-ray structural determination of a 2-pyridinesulfenamide is the N-piperidine derivative, (5-NO2-2-py)SNC5H10 (Brito et al., 2002) in which the N–S and S–C bond lengths are 1.699 and 1.761 Å, respectively. The crystal structures of the related aminyl radicals, (2-py)SN(C6H2Ph2R), have also been reported (Miura et al., 2003) in which the N–S and S–C bond lengths are 1.599 (4)–1.626 (8) and 1.770 (6)–1.781 (10) Å, respectively. Thus, in (I) the N–S bond is relatively longer, while the S–C bond is slightly shorter than those in similar organic compounds.

In the related transition-metal complex containing the 2-pyridylthioamide(1–) derivative, a cobalt(III) complex with tridentate (2-pyS)2N- ligands, [Co{(2-pyS)2N}2]ClO4, has been structurally determined (Nakayama et al., 1999). In this complex the N–S and S–C bond lengths are 1.711 (3)–1.718 (3) and 1.742 (4)–1.747 (4) Å, respectively. Furthermore, a few crystal structures of metal complexes with 2-pyridinesulfonamide {(2-py)SO2NH2} derivatives have been reported (Esquivias et al., 2007; Nanthakumar et al., 1999), but compound (I) is the first example containing coordinated (2-py)SNH- ligand has been characterized by X-ray methods. The Ir–N(py) bond length in compound (I) is 2.085 (9) Å, and the bridging Ir–N(NH) bond lengths are 2.110 (9) and 2.113 (9) Å. As seen in Fig. 1, the (2-py)SNH- ligand adopts a µ-κ2N(py),N(NH):κN(NH) bridging mode. This coordination mode is rare, to our knowledge having precedent in only two 2-pyridylmethylamido (2-pyCHRNH-) complexes (Westerhausen et al., 2002; Wong et al., 2002). For the dinuclear iridium(III) complexes bridged by two amide-N donors, Ishikawa, Arita and coworkers reported the sulfonamido-bridged complexes (Ishiwata et al. 2006; Arita et al., 2008). In their p-MeC6H3SO2NH-bridged dinuclear complex, [(Cp*Ir)2(µ-MeC6H3SO2NH)2], the two Cp* ligands are in mutually syn orientations with respect to the Ir2N2 ring, but in (I) the two Cp* ligands adopt an anti configuration .

Related literature top

For nitrogen-atom transfer, see: Du Bois et al. (1997); Birk & Bendix (2003). For photolysis of iridium(III) azido complexes, see: Kotera et al. (2008); Sekioka et al. (2005); Suzuki et al. (2003). For related organic compounds, see: Robinson & Hurley (1965); Brito et al. (2002); Miura et al. (2003). For related coordination compounds, see: Nakayama et al. (1999); Esquivias et al. (2007); Nanthakumar et al. (1999); Ishiwata et al. (2006); Arita et al. (2008). For the µ-κ2N(py),N(NH):κN(NH) bridging mode in 2-pyridylmethylamido complexes, see: Westerhausen et al. (2002); Wong et al. (2002). scheme needs to show hapta-links to Ir atoms from pentamethylcyclopentadienyl groups

Experimental top

A solution of [Cp*Ir(N3)(2-Spy)] (59 mg, 0.12 mmol) in dry acetonitrile (2 cm3) was prepared under a nitrogen atmosphere and photolyzed for 15 h with a high pressure Hg lamp (Riko UVL-100HA) at a temperature below 0 °C, controlled by a Yamato Neocool model BD12. To the resulting dark red solution was added P(OMe)3 (35 µL, 0.30 mmol), the color of the mixture immediately turning to yellowish brown. After allowing the solution to stand at ambient temperature for 18 h, methyl iodide (18.5 µL, 0.30 mmol) was added, and then the mixture was allowed to stand overnight. Several yellow crystals of [(Cp*Ir)2(2-pySNH)2]I2 (I) were deposited from the mixture. Yield: 1.5 mg (2.1%). Anal. Found: C, 31.17; H, 3.54; N, 5.08%. Calcd for C30H40I2Ir2N4S2: C, 31.09; H, 3.48; N, 4.83%. IR (Nujol): ν(NH) = 3073 cm-1.

Refinement top

The H atoms were located geometrically and constrained to ride on their parent atoms with N–H = 0.91 Å and C–H = 0.93–0.96 Å with Uiso(H) = 1.2 Ueq(N or C). The largest peak and deepest hole in the difference Fourier map (3.47 and -3.49 eÅ-3) are located 0.82 and 0.82 Å respectively, from atom Ir1.

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) view of the cationic part of the compound (I), showing the atom numbering scheme. H atoms are omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level. The asterisk (*) corresponds to symmetry code (-x + 1, -y, -z).
Bis[µ-2-(aminosulfanyl)pyridine(1-)]bis[(η5- pentamethylcyclopentadienyl)iridium(III)] diiodide top
Crystal data top
[Ir2(C10H15)2(C5H5N2S)2]I2F(000) = 1080
Mr = 1158.98Dx = 2.235 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 12.839 (3) Åθ = 15.1–17.0°
b = 12.169 (3) ŵ = 9.66 mm1
c = 11.299 (4) ÅT = 296 K
β = 102.754 (19)°Plate, yellow
V = 1721.8 (8) Å30.20 × 0.10 × 0.08 mm
Z = 2
Data collection top
Rigaku AFC7R
diffractometer
3621 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.080
Graphite monochromatorθmax = 30.0°, θmin = 2.7°
ω–2θ scansh = 1718
Absorption correction: ψ scan
(North et al., 1968)
k = 017
Tmin = 0.248, Tmax = 0.512l = 156
5294 measured reflections3 standard reflections every 150 reflections
5006 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.212H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1625P)2]
where P = (Fo2 + 2Fc2)/3
5006 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 3.47 e Å3
0 restraintsΔρmin = 3.49 e Å3
Crystal data top
[Ir2(C10H15)2(C5H5N2S)2]I2V = 1721.8 (8) Å3
Mr = 1158.98Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.839 (3) ŵ = 9.66 mm1
b = 12.169 (3) ÅT = 296 K
c = 11.299 (4) Å0.20 × 0.10 × 0.08 mm
β = 102.754 (19)°
Data collection top
Rigaku AFC7R
diffractometer
3621 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.080
Tmin = 0.248, Tmax = 0.5123 standard reflections every 150 reflections
5294 measured reflections intensity decay: none
5006 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.212H-atom parameters constrained
S = 1.02Δρmax = 3.47 e Å3
5006 reflectionsΔρmin = 3.49 e Å3
182 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.44162 (3)0.04859 (3)0.10915 (3)0.03051 (16)
I10.43226 (8)0.33173 (7)0.19002 (9)0.0577 (3)
S10.6607 (2)0.1519 (2)0.0834 (3)0.0444 (6)
N10.5900 (6)0.0006 (7)0.2111 (8)0.0347 (17)
N20.5455 (7)0.0923 (7)0.0044 (8)0.0360 (17)
C20.6748 (8)0.0563 (8)0.1992 (11)0.037 (2)
C30.7773 (9)0.0412 (11)0.2784 (13)0.053 (3)
C40.7850 (9)0.0313 (12)0.3700 (13)0.054 (3)
C50.7009 (11)0.0948 (10)0.3812 (11)0.049 (3)
C60.6016 (10)0.0797 (10)0.3026 (10)0.046 (2)
H20.51190.14490.05630.043*
H30.83670.08010.26700.064*
H40.84930.03790.42670.064*
H50.70930.14840.44120.059*
H60.54350.12220.31100.055*
C110.3852 (11)0.2107 (12)0.1475 (14)0.058 (3)
C120.4010 (9)0.1434 (11)0.2566 (11)0.046 (3)
C130.3359 (9)0.0464 (9)0.2330 (12)0.044 (3)
C140.2687 (12)0.0600 (12)0.1115 (14)0.061 (4)
C150.3039 (13)0.1527 (13)0.0590 (12)0.062 (4)
C160.4361 (18)0.3130 (13)0.133 (2)0.103 (9)
C170.4780 (12)0.1724 (16)0.3763 (15)0.082 (6)
C180.3265 (16)0.0390 (11)0.3278 (17)0.067 (4)
C190.1763 (11)0.016 (2)0.059 (2)0.092 (7)
C200.2544 (17)0.2022 (18)0.0683 (16)0.102 (8)
H16A0.41040.33930.05130.123*
H16B0.51190.30240.14740.123*
H16C0.41990.36580.18900.123*
H17A0.51240.24110.36770.098*
H17B0.53090.11570.39700.098*
H17C0.43900.17870.43940.098*
H18A0.27790.09560.29120.080*
H18B0.30020.00480.39200.080*
H18C0.39540.07050.36020.080*
H19A0.17150.07270.11770.111*
H19B0.18810.04980.01350.111*
H19C0.11100.02470.04130.111*
H20A0.29430.26590.08160.122*
H20B0.18150.22260.07180.122*
H20C0.25680.14840.12980.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.0272 (2)0.0357 (2)0.0303 (2)0.00425 (13)0.00992 (14)0.00336 (13)
I10.0620 (5)0.0496 (5)0.0624 (6)0.0088 (4)0.0159 (4)0.0109 (4)
S10.0439 (14)0.0407 (13)0.0502 (15)0.0105 (11)0.0143 (11)0.0015 (11)
N10.031 (4)0.033 (4)0.043 (5)0.005 (3)0.015 (3)0.003 (3)
N20.036 (4)0.032 (4)0.040 (4)0.007 (3)0.008 (3)0.006 (3)
C20.030 (5)0.035 (5)0.049 (6)0.001 (3)0.012 (4)0.000 (4)
C30.025 (5)0.074 (9)0.059 (8)0.002 (5)0.007 (5)0.023 (6)
C40.027 (5)0.076 (9)0.051 (7)0.002 (5)0.007 (5)0.010 (6)
C50.058 (7)0.044 (6)0.040 (6)0.006 (5)0.000 (5)0.001 (5)
C60.054 (7)0.046 (6)0.039 (5)0.012 (5)0.014 (5)0.004 (5)
C110.051 (7)0.059 (8)0.067 (8)0.016 (6)0.024 (6)0.012 (6)
C120.034 (5)0.056 (6)0.053 (6)0.004 (5)0.020 (5)0.012 (5)
C130.032 (5)0.048 (6)0.052 (7)0.002 (4)0.011 (5)0.011 (5)
C140.047 (7)0.081 (10)0.055 (8)0.009 (6)0.007 (6)0.018 (7)
C150.068 (9)0.081 (10)0.045 (7)0.015 (7)0.028 (6)0.008 (7)
C160.14 (2)0.045 (8)0.16 (2)0.032 (10)0.095 (18)0.038 (10)
C170.048 (8)0.128 (16)0.066 (9)0.007 (8)0.007 (7)0.059 (10)
C180.086 (12)0.045 (7)0.083 (11)0.004 (7)0.052 (10)0.012 (7)
C190.030 (6)0.138 (17)0.112 (16)0.018 (9)0.021 (8)0.055 (14)
C200.104 (15)0.132 (17)0.070 (11)0.086 (14)0.022 (10)0.045 (11)
Geometric parameters (Å, º) top
Ir1—N12.085 (9)C14—C151.40 (2)
Ir1—N22.113 (9)C14—C191.52 (2)
Ir1—N2i2.110 (9)C15—C201.56 (2)
Ir1—C112.177 (14)N2—H20.9100
Ir1—C122.182 (11)C3—H30.9300
Ir1—C132.154 (13)C4—H40.9300
Ir1—C142.231 (15)C5—H50.9300
Ir1—C152.147 (15)C6—H60.9300
S1—C21.730 (11)C16—H16A0.9600
S1—N21.747 (9)C16—H16B0.9600
N1—C21.322 (13)C16—H16C0.9600
N1—C61.396 (15)C17—H17A0.9600
C2—C31.431 (16)C17—H17B0.9600
C3—C41.35 (2)C17—H17C0.9600
C4—C51.357 (19)C18—H18A0.9600
C5—C61.395 (17)C18—H18B0.9600
C11—C121.457 (19)C18—H18C0.9600
C11—C151.46 (2)C19—H19A0.9600
C11—C161.43 (2)C19—H19B0.9600
C12—C131.437 (16)C19—H19C0.9600
C12—C171.531 (18)C20—H20A0.9600
C13—C141.46 (2)C20—H20B0.9600
C13—C181.515 (18)C20—H20C0.9600
N1—Ir1—N2i84.3 (3)C12—C13—Ir171.7 (7)
N1—Ir1—N277.6 (3)C14—C13—Ir173.4 (8)
N2i—Ir1—N274.1 (4)C18—C13—Ir1128.9 (9)
N1—Ir1—C11117.0 (5)C12—C13—C14106.3 (12)
N2—Ir1—C11100.1 (4)C12—C13—C18124.4 (13)
N2i—Ir1—C11156.7 (5)C14—C13—C18128.2 (13)
N1—Ir1—C1294.2 (4)C13—C14—Ir167.7 (7)
N2—Ir1—C12128.3 (4)C15—C14—Ir168.2 (9)
N2i—Ir1—C12156.8 (4)C19—C14—Ir1130.6 (10)
N1—Ir1—C13105.5 (4)C13—C14—C15108.2 (13)
N2—Ir1—C13166.1 (4)C13—C14—C19122.9 (16)
N2i—Ir1—C13119.5 (4)C15—C14—C19129.0 (17)
N1—Ir1—C14143.3 (5)C11—C15—Ir171.4 (8)
N2—Ir1—C14139.0 (5)C14—C15—Ir174.7 (9)
N2i—Ir1—C14105.0 (4)C20—C15—Ir1128.0 (9)
N1—Ir1—C15156.1 (5)C11—C15—C14110.5 (13)
N2—Ir1—C15106.5 (4)C11—C15—C20122.0 (17)
N2i—Ir1—C15119.6 (5)C14—C15—C20126.8 (17)
C11—Ir1—C1239.1 (5)C2—C3—H3121.1
C11—Ir1—C1366.2 (5)C4—C3—H3121.1
C11—Ir1—C1464.3 (5)C3—C4—H4119.3
C11—Ir1—C1539.4 (6)C5—C4—H4119.3
C12—Ir1—C1338.7 (4)C4—C5—H5120.0
C12—Ir1—C1463.4 (5)C6—C5—H5120.0
C12—Ir1—C1564.4 (5)C5—C6—H6120.1
C13—Ir1—C1438.9 (5)N1—C6—H6120.1
C13—Ir1—C1565.1 (5)C11—C16—H16A109.5
C14—Ir1—C1537.1 (6)C11—C16—H16B109.5
C2—S1—N294.9 (5)C11—C16—H16C109.5
C2—N1—C6118.7 (10)H16A—C16—H16B109.5
C2—N1—Ir1117.8 (7)H16A—C16—H16C109.5
C6—N1—Ir1122.8 (7)H16B—C16—H16C109.5
Ir1i—N2—Ir1105.9 (4)C12—C17—H17A109.5
S1—N2—Ir1109.2 (4)C12—C17—H17B109.5
S1—N2—Ir1i119.6 (4)C12—C17—H17C109.5
S1—N2—H2107.2H17A—C17—H17B109.5
Ir1i—N2—H2107.2H17A—C17—H17C109.5
Ir1—N2—H2107.2H17B—C17—H17C109.5
N1—C2—S1118.6 (8)C13—C18—H18A109.5
C3—C2—S1119.2 (9)C13—C18—H18B109.5
N1—C2—C3122.2 (11)C13—C18—H18C109.5
C2—C3—C4117.8 (11)H18A—C18—H18B109.5
C3—C4—C5121.4 (11)H18A—C18—H18C109.5
C4—C5—C6119.9 (12)H18B—C18—H18C109.5
C5—C6—N1119.7 (12)C14—C19—H19A109.5
C12—C11—Ir170.7 (7)C14—C19—H19B109.5
C15—C11—Ir169.2 (8)C14—C19—H19C109.5
C16—C11—Ir1125.7 (11)H19A—C19—H19B109.5
C12—C11—C15104.6 (13)H19A—C19—H19C109.5
C12—C11—C16127.3 (16)H19B—C19—H19C109.5
C15—C11—C16128.0 (17)C15—C20—H20A109.5
C11—C12—Ir170.3 (7)C15—C20—H20B109.5
C13—C12—Ir169.6 (7)C15—C20—H20C109.5
C17—C12—Ir1125.5 (8)H20A—C20—H20B109.5
C11—C12—C13109.8 (12)H20A—C20—H20C109.5
C11—C12—C17124.1 (14)H20B—C20—H20C109.5
C13—C12—C17126.2 (14)
N2i—Ir1—N1—C2106.2 (8)C11—C12—C13—C146.9 (13)
N2—Ir1—N1—C231.3 (8)C17—C12—C13—C14174.6 (12)
C15—Ir1—N1—C271.6 (14)Ir1—C12—C13—C1465.8 (8)
C13—Ir1—N1—C2134.7 (8)C11—C12—C13—C18176.0 (12)
C11—Ir1—N1—C263.8 (9)C17—C12—C13—C185.4 (19)
C12—Ir1—N1—C297.1 (8)Ir1—C12—C13—C18125.1 (12)
C14—Ir1—N1—C2146.2 (9)C11—C12—C13—Ir158.9 (8)
N2i—Ir1—N1—C683.1 (9)C17—C12—C13—Ir1119.7 (12)
N2—Ir1—N1—C6158.0 (9)N1—Ir1—C13—C1277.0 (7)
C15—Ir1—N1—C699.1 (14)N2i—Ir1—C13—C12169.3 (6)
C13—Ir1—N1—C636.0 (9)N2—Ir1—C13—C1224 (2)
C11—Ir1—N1—C6106.9 (9)C15—Ir1—C13—C1279.5 (8)
C12—Ir1—N1—C673.6 (9)C11—Ir1—C13—C1236.1 (8)
C14—Ir1—N1—C624.5 (12)C14—Ir1—C13—C12114.0 (11)
C2—S1—N2—Ir1i78.5 (6)N1—Ir1—C13—C14169.0 (7)
C2—S1—N2—Ir143.6 (5)N2i—Ir1—C13—C1476.8 (8)
N1—Ir1—N2—S142.5 (4)N2—Ir1—C13—C1489.8 (17)
N2i—Ir1—N2—S1130.0 (6)C15—Ir1—C13—C1434.5 (8)
C15—Ir1—N2—S1113.2 (6)C11—Ir1—C13—C1477.9 (9)
C13—Ir1—N2—S162.1 (17)C12—Ir1—C13—C14114.0 (11)
C11—Ir1—N2—S173.2 (6)N1—Ir1—C13—C1842.9 (14)
C12—Ir1—N2—S143.1 (7)N2i—Ir1—C13—C1849.4 (15)
C14—Ir1—N2—S1135.3 (6)N2—Ir1—C13—C18144.1 (15)
N1—Ir1—N2—Ir1i87.6 (4)C15—Ir1—C13—C18160.6 (15)
N2i—Ir1—N2—Ir1i0.0C11—Ir1—C13—C18156.0 (15)
C15—Ir1—N2—Ir1i116.8 (5)C12—Ir1—C13—C18119.9 (16)
C13—Ir1—N2—Ir1i167.8 (15)C14—Ir1—C13—C18126.1 (16)
C11—Ir1—N2—Ir1i156.8 (5)C12—C13—C14—C158.5 (14)
C12—Ir1—N2—Ir1i173.1 (4)C18—C13—C14—C15177.1 (13)
C14—Ir1—N2—Ir1i94.7 (7)Ir1—C13—C14—C1556.1 (10)
C6—N1—C2—C31.4 (16)C12—C13—C14—C19170.4 (13)
Ir1—N1—C2—C3169.7 (8)C18—C13—C14—C192 (2)
C6—N1—C2—S1178.4 (8)Ir1—C13—C14—C19125.0 (13)
Ir1—N1—C2—S110.5 (11)C12—C13—C14—Ir164.7 (8)
N2—S1—C2—N121.7 (9)C18—C13—C14—Ir1126.8 (13)
N2—S1—C2—C3158.2 (9)N1—Ir1—C14—C15139.6 (8)
N1—C2—C3—C42.2 (18)N2i—Ir1—C14—C15119.5 (8)
S1—C2—C3—C4177.9 (9)N2—Ir1—C14—C1536.7 (11)
C2—C3—C4—C55 (2)C13—Ir1—C14—C15121.8 (11)
C3—C4—C5—C65 (2)C11—Ir1—C14—C1538.3 (8)
C4—C5—C6—N11.3 (19)C12—Ir1—C14—C1582.1 (9)
C2—N1—C6—C51.9 (16)N1—Ir1—C14—C1317.9 (11)
Ir1—N1—C6—C5168.7 (8)N2i—Ir1—C14—C13118.7 (7)
N1—Ir1—C11—C1662.4 (18)N2—Ir1—C14—C13158.4 (6)
N2i—Ir1—C11—C1692 (2)C15—Ir1—C14—C13121.8 (11)
N2—Ir1—C11—C1618.7 (18)C11—Ir1—C14—C1383.4 (8)
C15—Ir1—C11—C16123 (2)C12—Ir1—C14—C1339.7 (7)
C13—Ir1—C11—C16158.4 (18)N1—Ir1—C14—C1997.1 (19)
C12—Ir1—C11—C16123 (2)N2i—Ir1—C14—C193.8 (19)
C14—Ir1—C11—C16158.7 (19)N2—Ir1—C14—C1986.6 (19)
N1—Ir1—C11—C1260.2 (8)C15—Ir1—C14—C19123 (2)
N2i—Ir1—C11—C12145.6 (9)C13—Ir1—C14—C19115 (2)
N2—Ir1—C11—C12141.3 (7)C11—Ir1—C14—C19162 (2)
C15—Ir1—C11—C12114.8 (11)C12—Ir1—C14—C19155 (2)
C13—Ir1—C11—C1235.8 (7)C13—C14—C15—C117.1 (15)
C14—Ir1—C11—C1278.7 (8)C19—C14—C15—C11171.7 (14)
N1—Ir1—C11—C15175.0 (7)Ir1—C14—C15—C1163.0 (10)
N2i—Ir1—C11—C1530.7 (15)C13—C14—C15—C20177.7 (13)
N2—Ir1—C11—C15103.8 (8)C19—C14—C15—C201 (2)
C13—Ir1—C11—C1579.1 (9)Ir1—C14—C15—C20126.4 (14)
C12—Ir1—C11—C15114.8 (11)C13—C14—C15—Ir155.9 (9)
C14—Ir1—C11—C1536.1 (8)C19—C14—C15—Ir1125.3 (15)
C16—C11—C12—C13179.2 (14)C16—C11—C15—C14175.3 (15)
C15—C11—C12—C132.7 (13)C12—C11—C15—C142.8 (15)
Ir1—C11—C12—C1358.5 (8)Ir1—C11—C15—C1465.0 (10)
C16—C11—C12—C171 (2)C16—C11—C15—C204 (2)
C15—C11—C12—C17178.7 (11)C12—C11—C15—C20174.0 (12)
Ir1—C11—C12—C17120.1 (11)Ir1—C11—C15—C20123.8 (13)
C16—C11—C12—Ir1120.7 (15)C16—C11—C15—Ir1119.7 (16)
C15—C11—C12—Ir161.2 (9)C12—C11—C15—Ir162.2 (8)
N1—Ir1—C12—C13109.7 (7)N1—Ir1—C15—C14107.4 (13)
N2i—Ir1—C12—C1324.3 (14)N2i—Ir1—C15—C1475.1 (9)
N2—Ir1—C12—C13172.8 (6)N2—Ir1—C15—C14155.9 (8)
C15—Ir1—C12—C1381.4 (8)C13—Ir1—C15—C1436.0 (8)
C11—Ir1—C12—C13121.1 (11)C11—Ir1—C15—C14118.3 (12)
C14—Ir1—C12—C1339.9 (8)C12—Ir1—C15—C1479.0 (9)
N1—Ir1—C12—C11129.2 (8)N1—Ir1—C15—C1110.9 (16)
N2i—Ir1—C12—C11145.4 (10)N2i—Ir1—C15—C11166.5 (7)
N2—Ir1—C12—C1151.7 (9)N2—Ir1—C15—C1185.8 (8)
C15—Ir1—C12—C1139.7 (9)C13—Ir1—C15—C1182.3 (8)
C13—Ir1—C12—C11121.1 (11)C12—Ir1—C15—C1139.3 (8)
C14—Ir1—C12—C1181.2 (9)C14—Ir1—C15—C11118.3 (12)
N1—Ir1—C12—C1710.8 (14)N1—Ir1—C15—C20127.5 (16)
N2i—Ir1—C12—C1796.2 (15)N2i—Ir1—C15—C2050.0 (19)
N2—Ir1—C12—C1766.7 (15)N2—Ir1—C15—C2030.8 (19)
C15—Ir1—C12—C17158.1 (15)C13—Ir1—C15—C20161 (2)
C13—Ir1—C12—C17120.5 (16)C11—Ir1—C15—C20117 (2)
C11—Ir1—C12—C17118.4 (16)C12—Ir1—C15—C20156 (2)
C14—Ir1—C12—C17160.4 (15)C14—Ir1—C15—C20125 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···I1i0.912.913.64 (1)139
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ir2(C10H15)2(C5H5N2S)2]I2
Mr1158.98
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)12.839 (3), 12.169 (3), 11.299 (4)
β (°) 102.754 (19)
V3)1721.8 (8)
Z2
Radiation typeMo Kα
µ (mm1)9.66
Crystal size (mm)0.20 × 0.10 × 0.08
Data collection
DiffractometerRigaku AFC7R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.248, 0.512
No. of measured, independent and
observed [I > 2σ(I)] reflections
5294, 5006, 3621
Rint0.080
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.212, 1.02
No. of reflections5006
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.47, 3.49

Computer programs: WinAFC Diffractometer Control Software (Rigaku, 1999), CrystalStructure (Rigaku/MSC, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Ir1—N12.085 (9)Ir1—N2i2.110 (9)
Ir1—N22.113 (9)
N1—Ir1—N2i84.3 (3)N2i—Ir1—N274.1 (4)
N1—Ir1—N277.6 (3)Ir1i—N2—Ir1105.9 (4)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (No. 20550064) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationArita, H., Ishiwata, K., Kuwata, S. & Ikariya, T. (2008). Organometallics 27, 493–496.  Web of Science CrossRef CAS Google Scholar
First citationBirk, T. & Bendix, J. (2003). Inorg. Chem. 42, 7608–7615.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrito, I., Leon, Y., Arias, M., Vargas, D., Carmona, F., Ramirez, E., Restovic, A. & Cardenas, A. (2002). Bol. Soc. Chil. Quim. 47, 159–162.  CAS Google Scholar
First citationDu Bois, J., Tomooka, C. S., Hong, J. & Carreira, E. M. (1997). Acc. Chem. Res. 30, 364–372.  CSD CrossRef CAS Web of Science Google Scholar
First citationEsquivias, J., Arrayas, R. G. & Carretero, J. C. (2007). Angew. Chem. Int. Ed. 46, 9257–9260.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIshiwata, K., Kuwata, S. & Ikariya, T. (2006). Organometallics 25, 5847–5849.  Web of Science CSD CrossRef CAS Google Scholar
First citationKotera, M., Sekioka, Y. & Suzuki, T. (2008). Inorg. Chim. Acta 361, 1479–1484.  Web of Science CSD CrossRef CAS Google Scholar
First citationMiura, Y., Oyama, Y. & Teki, Y. (2003). J. Org. Chem. 68, 1225–1234.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNakayama, H., Prout, K., Hill, H. A. O. & Datta, D. (1999). Chem. Commun. pp. 695–696.  Web of Science CrossRef Google Scholar
First citationNanthakumar, A., Miura, J., Diltz, S. & Leo, C.-K. (1999). Inorg. Chem. 38, 3010–3013.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRobinson, M. A. & Hurley, T. J. (1965). Inorg. Chem. 4, 1716–1721.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSekioka, Y., Kaizaki, S., Mayer, J. M. & Suzuki, T. (2005). Inorg. Chem. 44, 8173–8175.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSuzuki, T., DiPasquale, A. G. & Mayer, J. M. (2003). J. Am. Chem. Soc. 125, 10514–10515.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWesterhausen, M., Bollwein, T., Mayer, P., Piotrowski, H. & Pfitzner, A. (2002). Z. Anorg. Allg. Chem. 628, 1425–1432.  Web of Science CSD CrossRef CAS Google Scholar
First citationWong, J. S.-Y. & Wong, W.-T. (2002). New J. Chem. 26, 94–104.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1229-m1230
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds