organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-thien­yl)acetyl­ene

aDepartment of Chemistry, Mount Holyoke College, South Hadley, MA 01075, USA, and bExilica Limited, The Technocentre, Puma Way, Coventry CV1 2TT, UK
*Correspondence e-mail: hamilton@mtholyoke.edu

(Received 2 September 2009; accepted 11 September 2009; online 19 September 2009)

The planar [maximum deviation 0.0066 (4) Å] symmetrical mol­ecule of the title compound, C10H6S2, lies across a crystallographic inversion centre. The thio­phene rings are rotationally disordered about the acetyl­ene bond, with the two pseudo inversion-related S atoms in 0.80:0.20 occupancy sites. The C≡C bond distance is 1.195 (9) Å.

Related literature

For the preparation of the title compound, related diaryl­acetyl­enes and cobalt-containing metallocenes derived from these materials, see: Harrison et al. (1997[Harrison, R. M., Brotin, T., Noll, B. C. & Michl, J. (1997). Organometallics, 16, 3401-3412.]); Harcourt et al. (2008[Harcourt, E. M., Yonis, S. R., Lynch, D. E. & Hamilton, D. G. (2008). Organometallics, 27, 1653-1656.]). For recent synthetic organic uses, see: Yu & Rovis (2006[Yu, R. & Rovis, T. (2006). J. Am. Chem. Soc. 128, 2782-2783.]); Geyer et al. (2008[Geyer, A. M., Wiedner, E. S., Gary, J. B., Gdula, R. L., Kuhlmann, N. C., Johnson, M. J. A., Dunietz, B. D. & Kampf, J. W. (2008). J. Am. Chem. Soc. 130, 8984-8999.]). The metal center employed in an acetyl­ene cyclo­oligomerization may also remain as an integral component of the product, or products, see: Rausch & Genetti (1970[Rausch, M. D. & Genetti, R. A. (1970). J. Org. Chem.35, 3888-3897.]). For spectroscopic data, see: Mio et al. (2002[Mio, M. J., Kopel, L. C., Braun, J. B., Gadzikwa, T. L., Hull, K. L., Brisbois, R. G., Markworth, C. J. & Grieco, P. A. (2002). Org. Lett. 4, 3199-3202.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6S2

  • Mr = 190.29

  • Orthorhombic, P b c n

  • a = 10.6325 (15) Å

  • b = 10.8713 (15) Å

  • c = 7.5600 (5) Å

  • V = 873.85 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 120 K

  • 0.55 × 0.05 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.755, Tmax = 0.984

  • 3812 measured reflections

  • 849 independent reflections

  • 493 reflections with I > 2σ(I)

  • Rint = 0.129

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.173

  • S = 1.08

  • 849 reflections

  • 58 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diarylacetylenes are versatile components of metal-mediated cycloaddition reactions. Their relative ease of preparation from palladium catalyzed coupling of aryl iodides to acetylene has ensured their continued use in the development of new synthetic routes, for example, nitrogen containing heterocycles (Yu & Rovis, 2006), and new catalytic reaction methodologies such as alkyne–nitrile cross metathesis (Geyer et al., 2008). The metal center employed in an acetylene cyclooligomerization may also remain as an integral component of the product, or products, as described in the seminal work of Rausch & Genetti (1970). The title compound bis(2-thienyl)acetylene (I) is found to have inversion symmetry coincident with crystallographic symmetry (Fig. 1). However, the two 2-thiophene residues are rotationally disordered about the acetylene bond with the two pseudo-inversion related S atoms having 80/20% occupancy. The C—C triple bond distance is 1.195 (9) Å.

Related literature top

For the preparation of the title compound, related diarylacetylenes and cobalt-containing metallocenes derived from these materials, see: Harrison et al. (1997); Harcourt et al. (2008). For recent synthetic organic uses, see: Yu & Rovis (2006); Geyer et al. (2008). The metal center employed in an acetylene cyclooligomerization may also remain as an integral component of the product, or products, see: Rausch & Genetti (1970). For spectroscopic data, see: Mio et al. (2002);

Experimental top

The title compound was prepared by Sonogashira coupling of two equivalents of 2-iodothiophene to acetylene under standard conditions (Harrison et al., 1997). Full experimental details (Harcourt et al., 2008) and spectroscopic data (Mio et al., 2002) have been previously published.

Refinement top

All H atoms were included in the refinement at calculated positions, in the riding-model approximation, with C—H distances of 0.95 Å. The isotropic displacement parameters for all H atoms were set equal to 1.25Ueq of the carrier atom. The refined site occupancy factors for the disordered atoms (S1, C3, H3) and (S3, C1, H1) of the pseudo-centrosymmetrically related thiophene rings were 0.80 (1), and 0.20 (1) respectively. Structure factor file checks indicate that there is only one listed reflection that is likely to have been affected by the beamstop.

Structure description top

Diarylacetylenes are versatile components of metal-mediated cycloaddition reactions. Their relative ease of preparation from palladium catalyzed coupling of aryl iodides to acetylene has ensured their continued use in the development of new synthetic routes, for example, nitrogen containing heterocycles (Yu & Rovis, 2006), and new catalytic reaction methodologies such as alkyne–nitrile cross metathesis (Geyer et al., 2008). The metal center employed in an acetylene cyclooligomerization may also remain as an integral component of the product, or products, as described in the seminal work of Rausch & Genetti (1970). The title compound bis(2-thienyl)acetylene (I) is found to have inversion symmetry coincident with crystallographic symmetry (Fig. 1). However, the two 2-thiophene residues are rotationally disordered about the acetylene bond with the two pseudo-inversion related S atoms having 80/20% occupancy. The C—C triple bond distance is 1.195 (9) Å.

For the preparation of the title compound, related diarylacetylenes and cobalt-containing metallocenes derived from these materials, see: Harrison et al. (1997); Harcourt et al. (2008). For recent synthetic organic uses, see: Yu & Rovis (2006); Geyer et al. (2008). The metal center employed in an acetylene cyclooligomerization may also remain as an integral component of the product, or products, see: Rausch & Genetti (1970). For spectroscopic data, see: Mio et al. (2002);

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom-numbering scheme for (I) showing inversion symmetry [symmetry code: (a) -x, -y + 1, -z]. Rotationally disordered thiophene S/C atom pairs are S1, C3 (S.O.F. 0.80) and S3, C1 (S.O.F. 0.20). Displacement ellipsoids are drawn at the 50% probability level.
Bis(2-thienyl)acetylene top
Crystal data top
C10H6S2F(000) = 392
Mr = 190.29Dx = 1.446 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 1041 reflections
a = 10.6325 (15) Åθ = 1.0–27.5°
b = 10.8713 (15) ŵ = 0.54 mm1
c = 7.5600 (5) ÅT = 120 K
V = 873.85 (18) Å3Needle, colourless
Z = 40.55 × 0.05 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
849 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode493 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.129
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 2.7°
φ and ω scansh = 1311
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1312
Tmin = 0.755, Tmax = 0.984l = 98
3812 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.050P)2 + 3.1085P]
where P = (Fo2 + 2Fc2)/3
849 reflections(Δ/σ)max < 0.001
58 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C10H6S2V = 873.85 (18) Å3
Mr = 190.29Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 10.6325 (15) ŵ = 0.54 mm1
b = 10.8713 (15) ÅT = 120 K
c = 7.5600 (5) Å0.55 × 0.05 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
849 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
493 reflections with I > 2σ(I)
Tmin = 0.755, Tmax = 0.984Rint = 0.129
3812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.08Δρmax = 0.41 e Å3
849 reflectionsΔρmin = 0.41 e Å3
58 parameters
Special details top

Experimental. The minimum and maximum absorption values stated above are those calculated in SHELXL97 from the given crystal dimensions. The ratio of minimum to maximum apparent transmission was determined experimentally as 0.675726.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.17278 (13)0.28773 (15)0.17139 (19)0.0303 (6)0.80
C10.17278 (13)0.28773 (15)0.17139 (19)0.0303 (6)0.20
H10.11050.23800.22630.038*0.20
C20.1671 (4)0.4188 (5)0.0513 (6)0.0220 (12)
C30.2949 (3)0.4642 (3)0.0126 (4)0.0291 (9)0.80
H30.31420.53420.08270.036*0.80
S30.2949 (3)0.4642 (3)0.0126 (4)0.0291 (9)0.20
C40.3820 (5)0.3703 (5)0.0635 (6)0.0295 (15)
H40.47050.37490.04680.037*
C50.3285 (4)0.2786 (5)0.1572 (6)0.0271 (13)
H50.37570.21440.21050.034*
C60.0498 (4)0.4768 (5)0.0149 (6)0.0235 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0283 (8)0.0314 (11)0.0311 (8)0.0002 (8)0.0017 (6)0.0030 (7)
C10.0283 (8)0.0314 (11)0.0311 (8)0.0002 (8)0.0017 (6)0.0030 (7)
C20.022 (2)0.023 (3)0.021 (2)0.001 (2)0.0019 (19)0.000 (2)
C30.0264 (16)0.029 (2)0.0322 (16)0.0028 (17)0.0049 (13)0.0064 (15)
S30.0264 (16)0.029 (2)0.0322 (16)0.0028 (17)0.0049 (13)0.0064 (15)
C40.021 (2)0.035 (4)0.032 (3)0.002 (3)0.003 (2)0.008 (3)
C50.030 (3)0.027 (3)0.025 (2)0.012 (3)0.007 (2)0.006 (2)
C60.025 (2)0.021 (4)0.025 (2)0.002 (2)0.001 (2)0.001 (2)
Geometric parameters (Å, º) top
S1—C21.691 (5)C4—C51.349 (7)
C2—C61.424 (6)C4—H40.95
C2—C31.525 (5)C5—H50.95
C3—C41.493 (6)C6—C6i1.195 (9)
C3—H30.95
C6—C2—C3125.2 (4)C5—C4—C3116.4 (4)
C6—C2—S1120.5 (4)C5—C4—H4121.8
C3—C2—S1114.2 (3)C3—C4—H4121.8
C4—C3—C2102.1 (3)C4—C5—H5122.9
C4—C3—H3128.9C6i—C6—C2178.7 (7)
C2—C3—H3128.9
C6—C2—C3—C4179.9 (4)C2—C3—C4—C50.8 (5)
S1—C2—C3—C41.1 (4)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H6S2
Mr190.29
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)120
a, b, c (Å)10.6325 (15), 10.8713 (15), 7.5600 (5)
V3)873.85 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.55 × 0.05 × 0.03
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.755, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
3812, 849, 493
Rint0.129
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.173, 1.08
No. of reflections849
No. of parameters58
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.41

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

We thank the Donors of the American Chemical Society Petroleum Research Fund (Award 45312), the Camille and Henry Dreyfus Foundation (Henry Dreyfus Teacher Scholar Award to DGH, 2005–2010) and the EPSRC National Crystallography Service (University of Southampton, UK) for their support of this work.

References

First citationGeyer, A. M., Wiedner, E. S., Gary, J. B., Gdula, R. L., Kuhlmann, N. C., Johnson, M. J. A., Dunietz, B. D. & Kampf, J. W. (2008). J. Am. Chem. Soc. 130, 8984–8999.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHarcourt, E. M., Yonis, S. R., Lynch, D. E. & Hamilton, D. G. (2008). Organometallics, 27, 1653–1656.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarrison, R. M., Brotin, T., Noll, B. C. & Michl, J. (1997). Organometallics, 16, 3401–3412.  CSD CrossRef CAS Web of Science Google Scholar
First citationMio, M. J., Kopel, L. C., Braun, J. B., Gadzikwa, T. L., Hull, K. L., Brisbois, R. G., Markworth, C. J. & Grieco, P. A. (2002). Org. Lett. 4, 3199–3202.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRausch, M. D. & Genetti, R. A. (1970). J. Org. Chem.35, 3888–3897.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, R. & Rovis, T. (2006). J. Am. Chem. Soc. 128, 2782–2783.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds