organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[1-(9-Anthrylmeth­yl)-1H-pyrazol-3-yl]pyridine

aSchool of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: qindabincwnu@yahoo.com.cn

(Received 31 August 2009; accepted 28 September 2009; online 3 October 2009)

The title compound, C23H17N3, can be used in coordination chemistry. The anthracene ring makes dihedral angles of 86.08 (5) and 76.63 (6)°, respectively, with the pyridine and pyrazole rings. The dihedral angle between the pyrazole and pyrimidine rings is 11.79 (7)°. In the structure, weak inter­molecular C—H⋯N hydrogen bonds are observed.

Related literature

For the synthesis, see: Amoroso et al. (1994[Amoroso, A. J., Cargill Thompson, A. M., Jeffery, J. C., Jones, P. L., McCleverty, J. A. & Ward, M. D. (1994). J. Chem. Soc. Chem. Commun. pp. 2751-2752.]); Amir et al. (2008[Amir, M., Kumar, H. & Khan, S. A. (2008). Bioorg. Med. Chem. Lett. 18, 918-922.]); Stell (2005[Stell, P. J. (2005). Acc. Chem. Res. 38, 243-250.]); Ward et al. (2001[Ward, M. D., McCleverty, J. A. & Jeffery, J. C. (2001). Coord. Chem. Rev. 222, 251-272.]). For related structures, see: Liu et al. (2008[Liu, C.-S., Sun, G.-H. & Guo, L.-Q. (2008). Acta Cryst. E64, m69.]).

[Scheme 1]

Experimental

Crystal data
  • C23H17N3

  • Mr = 335.40

  • Monoclinic, P 21 /c

  • a = 13.736 (3) Å

  • b = 13.679 (3) Å

  • c = 8.913 (2) Å

  • β = 98.496 (3)°

  • V = 1656.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 93 K

  • 0.40 × 0.33 × 0.20 mm

Data collection
  • Rigaku SPIDER diffractometer

  • Absorption correction: none

  • 13094 measured reflections

  • 3777 independent reflections

  • 3156 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.122

  • S = 1.00

  • 3777 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N2i 0.95 2.55 3.312 (2) 138
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: RAPID-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). RAPID-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). RAPID-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]).

Supporting information


Comment top

In recent years, scientists have paid much attention to the synthetic approach and the structural control of coordination architectures with ligands based on pyrazolyl-pyridine chelating units. (Stell, 2005; Ward et al., 2001). In addition, some pyrazole-derived ligands are useful in medication. (Amir et al., 2008). We report herein the synthesis and crystal structure of the title compound (I). Bond lengths and angles in (I) (Fig. 1) are normal.

The dihedral angles formed by the anthracene ring between pyridine and the pyrazole rings are 86.08 (5)° and 76.63 (6)°, respectively. Pyrazole makes a dihedral angle of 11.79 (7)° with pyridine ring .

Weak intermolecular C—H···N hydrogen bonds between molecules are observed.

Related literature top

For the synthesis, see: Amoroso et al. (1994); Amir et al. (2008); Stell (2005); Ward et al. (2001). For related structures, see: Liu et al. (2008).

Experimental top

The title compound was prepared according to the reported procedure of Amoroso et al. (1994). Yellow single crystals suitable for X-ray diffraction were obtained by recrystallization from dichloromethane and pPetroleum ether.

Refinement top

H atoms were placed in calculated positions with C—H = 0.95–0.9900 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Structure description top

In recent years, scientists have paid much attention to the synthetic approach and the structural control of coordination architectures with ligands based on pyrazolyl-pyridine chelating units. (Stell, 2005; Ward et al., 2001). In addition, some pyrazole-derived ligands are useful in medication. (Amir et al., 2008). We report herein the synthesis and crystal structure of the title compound (I). Bond lengths and angles in (I) (Fig. 1) are normal.

The dihedral angles formed by the anthracene ring between pyridine and the pyrazole rings are 86.08 (5)° and 76.63 (6)°, respectively. Pyrazole makes a dihedral angle of 11.79 (7)° with pyridine ring .

Weak intermolecular C—H···N hydrogen bonds between molecules are observed.

For the synthesis, see: Amoroso et al. (1994); Amir et al. (2008); Stell (2005); Ward et al. (2001). For related structures, see: Liu et al. (2008).

Computing details top

Data collection: RAPID-AUTO (Rigaku/MSC, 2004); cell refinement: RAPID-AUTO (Rigaku/MSC, 2004); data reduction: RAPID-AUTO (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.
2-[1-(9-Anthrylmethyl)-1H-pyrazol-3-yl]pyridine top
Crystal data top
C23H17N3F(000) = 704
Mr = 335.40Dx = 1.345 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4717 reflections
a = 13.736 (3) Åθ = 3.3–27.5°
b = 13.679 (3) ŵ = 0.08 mm1
c = 8.913 (2) ÅT = 93 K
β = 98.496 (3)°Prism, yellow
V = 1656.2 (7) Å30.40 × 0.33 × 0.20 mm
Z = 4
Data collection top
Rigaku SPIDER
diffractometer
3156 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.034
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
ω scansh = 1717
13094 measured reflectionsk = 1715
3777 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.333P]
where P = (Fo2 + 2Fc2)/3
3777 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C23H17N3V = 1656.2 (7) Å3
Mr = 335.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.736 (3) ŵ = 0.08 mm1
b = 13.679 (3) ÅT = 93 K
c = 8.913 (2) Å0.40 × 0.33 × 0.20 mm
β = 98.496 (3)°
Data collection top
Rigaku SPIDER
diffractometer
3156 reflections with I > 2σ(I)
13094 measured reflectionsRint = 0.034
3777 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
3777 reflectionsΔρmin = 0.22 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.25794 (8)0.55924 (8)0.72942 (13)0.0216 (3)
N20.22498 (8)0.64246 (8)0.78636 (13)0.0219 (3)
N30.02717 (8)0.65643 (9)1.01184 (13)0.0264 (3)
C10.46616 (10)0.43366 (9)0.66749 (15)0.0216 (3)
C20.51916 (10)0.47480 (11)0.80358 (16)0.0280 (3)
H20.49360.53090.84690.034*
C30.60559 (11)0.43505 (11)0.87224 (17)0.0313 (4)
H30.63920.46400.96210.038*
C40.64588 (11)0.35107 (11)0.81111 (17)0.0308 (3)
H40.70640.32450.85950.037*
C50.59810 (10)0.30887 (11)0.68378 (16)0.0270 (3)
H50.62560.25260.64370.032*
C60.50709 (10)0.34731 (10)0.60844 (15)0.0229 (3)
C70.45791 (10)0.30295 (10)0.47849 (16)0.0241 (3)
H70.48480.24530.44140.029*
C80.37068 (10)0.34050 (10)0.40140 (15)0.0235 (3)
C90.32166 (11)0.29600 (11)0.26587 (17)0.0311 (3)
H90.34730.23730.23040.037*
C100.23940 (12)0.33579 (13)0.18707 (18)0.0375 (4)
H100.20840.30530.09670.045*
C110.19940 (11)0.42289 (12)0.23918 (17)0.0341 (4)
H110.14210.45100.18280.041*
C120.24260 (10)0.46640 (11)0.36920 (16)0.0282 (3)
H120.21380.52380.40340.034*
C130.33022 (10)0.42817 (10)0.45598 (15)0.0221 (3)
C140.37813 (10)0.47367 (10)0.58909 (15)0.0219 (3)
C150.33882 (10)0.56910 (10)0.63969 (17)0.0255 (3)
H15A0.39340.60500.70080.031*
H15B0.31570.60900.54880.031*
C160.20496 (10)0.48050 (10)0.76085 (16)0.0247 (3)
H160.21460.41490.73140.030*
C170.13437 (10)0.51320 (10)0.84353 (16)0.0251 (3)
H170.08590.47550.88320.030*
C180.14980 (9)0.61436 (10)0.85633 (14)0.0209 (3)
C190.09372 (9)0.68884 (10)0.92693 (15)0.0217 (3)
C200.10796 (10)0.78813 (11)0.90066 (17)0.0282 (3)
H200.15650.80870.84190.034*
C210.05025 (11)0.85594 (11)0.96156 (18)0.0322 (4)
H210.05780.92380.94390.039*
C220.01841 (10)0.82348 (11)1.04831 (17)0.0299 (3)
H220.05920.86841.09140.036*
C230.02639 (10)0.72459 (11)1.07094 (17)0.0289 (3)
H230.07300.70301.13260.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0219 (6)0.0206 (6)0.0242 (6)0.0015 (4)0.0092 (5)0.0014 (5)
N20.0204 (6)0.0214 (6)0.0252 (6)0.0009 (4)0.0069 (5)0.0031 (4)
N30.0232 (6)0.0312 (7)0.0264 (6)0.0013 (5)0.0092 (5)0.0025 (5)
C10.0219 (7)0.0223 (7)0.0229 (7)0.0025 (5)0.0104 (5)0.0026 (5)
C20.0295 (8)0.0317 (8)0.0247 (7)0.0045 (6)0.0107 (6)0.0008 (6)
C30.0284 (7)0.0422 (9)0.0239 (7)0.0092 (6)0.0056 (6)0.0022 (6)
C40.0225 (7)0.0422 (9)0.0285 (8)0.0003 (6)0.0066 (6)0.0119 (6)
C50.0240 (7)0.0290 (8)0.0299 (8)0.0032 (6)0.0106 (6)0.0086 (6)
C60.0226 (7)0.0238 (7)0.0248 (7)0.0013 (5)0.0117 (6)0.0055 (5)
C70.0255 (7)0.0208 (7)0.0285 (7)0.0009 (5)0.0122 (6)0.0005 (5)
C80.0238 (7)0.0246 (7)0.0246 (7)0.0030 (5)0.0114 (6)0.0013 (6)
C90.0298 (8)0.0344 (8)0.0314 (8)0.0049 (6)0.0121 (6)0.0075 (6)
C100.0301 (8)0.0536 (11)0.0292 (8)0.0096 (7)0.0059 (7)0.0061 (7)
C110.0218 (7)0.0521 (10)0.0289 (8)0.0026 (7)0.0052 (6)0.0086 (7)
C120.0223 (7)0.0332 (8)0.0308 (8)0.0006 (6)0.0094 (6)0.0065 (6)
C130.0207 (6)0.0237 (7)0.0241 (7)0.0012 (5)0.0105 (5)0.0034 (5)
C140.0219 (6)0.0212 (7)0.0250 (7)0.0000 (5)0.0114 (5)0.0019 (5)
C150.0254 (7)0.0234 (7)0.0312 (7)0.0010 (5)0.0153 (6)0.0006 (6)
C160.0270 (7)0.0203 (7)0.0286 (7)0.0011 (5)0.0100 (6)0.0002 (6)
C170.0238 (7)0.0253 (7)0.0279 (7)0.0007 (5)0.0094 (6)0.0015 (6)
C180.0194 (6)0.0250 (7)0.0185 (6)0.0008 (5)0.0035 (5)0.0004 (5)
C190.0179 (6)0.0266 (7)0.0205 (6)0.0010 (5)0.0021 (5)0.0033 (5)
C200.0226 (7)0.0282 (8)0.0350 (8)0.0020 (6)0.0082 (6)0.0058 (6)
C210.0279 (8)0.0271 (8)0.0429 (9)0.0007 (6)0.0092 (7)0.0080 (6)
C220.0224 (7)0.0318 (8)0.0362 (8)0.0033 (6)0.0072 (6)0.0096 (7)
C230.0233 (7)0.0368 (9)0.0281 (7)0.0014 (6)0.0090 (6)0.0061 (6)
Geometric parameters (Å, º) top
N1—N21.3513 (15)C10—C111.419 (2)
N1—C161.3522 (17)C10—H100.9500
N1—C151.4678 (17)C11—C121.359 (2)
N2—C181.3391 (17)C11—H110.9500
N3—C231.3425 (18)C12—C131.4301 (19)
N3—C191.3451 (17)C12—H120.9500
C1—C141.4144 (19)C13—C141.4132 (19)
C1—C21.4342 (19)C14—C151.5069 (19)
C1—C61.4407 (19)C15—H15A0.9900
C2—C31.366 (2)C15—H15B0.9900
C2—H20.9500C16—C171.3764 (18)
C3—C41.418 (2)C16—H160.9500
C3—H30.9500C17—C181.402 (2)
C4—C51.353 (2)C17—H170.9500
C4—H40.9500C18—C191.4733 (18)
C5—C61.4290 (19)C19—C201.397 (2)
C5—H50.9500C20—C211.382 (2)
C6—C71.391 (2)C20—H200.9500
C7—C81.389 (2)C21—C221.378 (2)
C7—H70.9500C21—H210.9500
C8—C91.429 (2)C22—C231.374 (2)
C8—C131.4365 (19)C22—H220.9500
C9—C101.353 (2)C23—H230.9500
C9—H90.9500
N2—N1—C16111.88 (11)C11—C12—H12119.1
N2—N1—C15116.73 (11)C13—C12—H12119.1
C16—N1—C15131.29 (11)C14—C13—C12122.90 (13)
C18—N2—N1104.91 (11)C14—C13—C8119.77 (12)
C23—N3—C19116.69 (13)C12—C13—C8117.32 (13)
C14—C1—C2123.78 (13)C13—C14—C1120.16 (12)
C14—C1—C6119.21 (12)C13—C14—C15119.33 (12)
C2—C1—C6117.00 (12)C1—C14—C15120.35 (12)
C3—C2—C1121.45 (14)N1—C15—C14114.65 (11)
C3—C2—H2119.3N1—C15—H15A108.6
C1—C2—H2119.3C14—C15—H15A108.6
C2—C3—C4120.87 (14)N1—C15—H15B108.6
C2—C3—H3119.6C14—C15—H15B108.6
C4—C3—H3119.6H15A—C15—H15B107.6
C5—C4—C3119.94 (14)N1—C16—C17107.18 (12)
C5—C4—H4120.0N1—C16—H16126.4
C3—C4—H4120.0C17—C16—H16126.4
C4—C5—C6121.28 (14)C16—C17—C18104.73 (12)
C4—C5—H5119.4C16—C17—H17127.6
C6—C5—H5119.4C18—C17—H17127.6
C7—C6—C5120.94 (13)N2—C18—C17111.30 (11)
C7—C6—C1119.61 (12)N2—C18—C19119.23 (12)
C5—C6—C1119.44 (13)C17—C18—C19129.41 (12)
C8—C7—C6121.87 (13)N3—C19—C20122.57 (12)
C8—C7—H7119.1N3—C19—C18117.01 (12)
C6—C7—H7119.1C20—C19—C18120.38 (12)
C7—C8—C9121.67 (13)C21—C20—C19118.95 (13)
C7—C8—C13119.34 (13)C21—C20—H20120.5
C9—C8—C13118.95 (13)C19—C20—H20120.5
C10—C9—C8121.36 (14)C22—C21—C20118.93 (14)
C10—C9—H9119.3C22—C21—H21120.5
C8—C9—H9119.3C20—C21—H21120.5
C9—C10—C11120.12 (14)C23—C22—C21118.39 (13)
C9—C10—H10119.9C23—C22—H22120.8
C11—C10—H10119.9C21—C22—H22120.8
C12—C11—C10120.38 (14)N3—C23—C22124.45 (14)
C12—C11—H11119.8N3—C23—H23117.8
C10—C11—H11119.8C22—C23—H23117.8
C11—C12—C13121.85 (14)
C16—N1—N2—C180.52 (15)C12—C13—C14—C152.84 (19)
C15—N1—N2—C18177.37 (11)C8—C13—C14—C15176.04 (11)
C14—C1—C2—C3177.87 (13)C2—C1—C14—C13179.68 (12)
C6—C1—C2—C31.33 (19)C6—C1—C14—C131.14 (19)
C1—C2—C3—C40.2 (2)C2—C1—C14—C155.00 (19)
C2—C3—C4—C50.6 (2)C6—C1—C14—C15174.18 (11)
C3—C4—C5—C60.1 (2)N2—N1—C15—C14175.47 (11)
C4—C5—C6—C7179.35 (13)C16—N1—C15—C148.4 (2)
C4—C5—C6—C11.1 (2)C13—C14—C15—N183.96 (15)
C14—C1—C6—C72.08 (19)C1—C14—C15—N1100.67 (15)
C2—C1—C6—C7178.69 (12)N2—N1—C16—C170.56 (16)
C14—C1—C6—C5177.49 (11)C15—N1—C16—C17176.82 (13)
C2—C1—C6—C51.75 (18)N1—C16—C17—C180.35 (15)
C5—C6—C7—C8178.37 (12)N1—N2—C18—C170.28 (15)
C1—C6—C7—C81.2 (2)N1—N2—C18—C19177.62 (11)
C6—C7—C8—C9178.47 (12)C16—C17—C18—N20.04 (15)
C6—C7—C8—C130.6 (2)C16—C17—C18—C19176.95 (13)
C7—C8—C9—C10176.59 (14)C23—N3—C19—C200.30 (19)
C13—C8—C9—C101.3 (2)C23—N3—C19—C18177.46 (12)
C8—C9—C10—C110.6 (2)N2—C18—C19—N3171.91 (12)
C9—C10—C11—C120.7 (2)C17—C18—C19—N311.3 (2)
C10—C11—C12—C131.5 (2)N2—C18—C19—C2010.27 (19)
C11—C12—C13—C14178.08 (13)C17—C18—C19—C20166.52 (14)
C11—C12—C13—C80.8 (2)N3—C19—C20—C211.3 (2)
C7—C8—C13—C141.57 (19)C18—C19—C20—C21176.38 (13)
C9—C8—C13—C14179.47 (12)C19—C20—C21—C221.0 (2)
C7—C8—C13—C12177.37 (12)C20—C21—C22—C230.2 (2)
C9—C8—C13—C120.53 (18)C19—N3—C23—C221.0 (2)
C12—C13—C14—C1178.22 (12)C21—C22—C23—N31.3 (2)
C8—C13—C14—C10.66 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N2i0.952.553.312 (2)138
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC23H17N3
Mr335.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)93
a, b, c (Å)13.736 (3), 13.679 (3), 8.913 (2)
β (°) 98.496 (3)
V3)1656.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.33 × 0.20
Data collection
DiffractometerRigaku SPIDER
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13094, 3777, 3156
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.122, 1.00
No. of reflections3777
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: RAPID-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), CrystalStructure (Rigaku/MSC, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N2i0.95002.55003.312 (2)138.00
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors thank the Scientific Research Fund Projects of China West Normal University (grant No. 06B003) and the Youth Fund Projects of the Sichuan Education Department (grant No. 2006B039).

References

First citationAmir, M., Kumar, H. & Khan, S. A. (2008). Bioorg. Med. Chem. Lett. 18, 918–922.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAmoroso, A. J., Cargill Thompson, A. M., Jeffery, J. C., Jones, P. L., McCleverty, J. A. & Ward, M. D. (1994). J. Chem. Soc. Chem. Commun. pp. 2751–2752.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLiu, C.-S., Sun, G.-H. & Guo, L.-Q. (2008). Acta Cryst. E64, m69.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2004). RAPID-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStell, P. J. (2005). Acc. Chem. Res. 38, 243–250.  Web of Science PubMed Google Scholar
First citationWard, M. D., McCleverty, J. A. & Jeffery, J. C. (2001). Coord. Chem. Rev. 222, 251–272.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds