organic compounds
3-(6-Methyl-2-pyridyl)-2-phenyl-3,4-dihydro-1,3,2-benzoxazaphosphinine 2-oxide
aDepartment of Physics, S.V. University, Tirupati 517 502, India, bDepartment of Chemistry, S.V. University, Tirupati 517 502, India, and cDepartment of Physics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: profkrishnaiah.m@gmail.com
In the title compound, C19H17N2O2P, the six-membered 1,3,2-oxazaphosphinine ring adopts a boat conformation with the phosphoryl O atom in an equatorial position. The dihedral angle between the 6-methyl-2-pyridyl and phenyl groups is 75.5 (1)°. These substituents are trans to each other, and are oriented at angles of 57.2 (1) and 74.8 (1)°, respectively, to the benzene ring. The is stabilized by intra- and intermolecular hydrogen bonds. The phosphoryl O atom participates in intermolecular C—H⋯O interactions with the neighbouring molecules, forming centrosymmetric R22(14) dimers.
Related literature
For the biological activity of organophosphorus compounds, see: Hoagland (1988); Smith (1983); Molodykh et al. (1990). For P—O and P=O bond lengths in related structures, see: Brzozowski et al. (1990); Angelov et al. (2002); Kant et al. (2009). For P—N bond lengths in related structures, see: Radha Krishna et al. (2007); Yang et al. (1988); Subramanian et al. (1989); Selladurai & Subramanian (1990); Selladurai et al. (1991).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrysAlis Pro (Oxford Diffraction, 2007); cell CrysAlis Pro (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004) and PARST95 (Nardelli, 1995).
Supporting information
https://doi.org/10.1107/S1600536809040367/bh2245sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809040367/bh2245Isup2.hkl
A solution of phenylphosphonic dichloride (0.002 mol) in 25 ml of dry THF was added dropwise over a period of 20 min. to a stirred solution of 2-{[(6-methyl-2-pyridyl)amino]methyl}phenol (0.002 mol) and triethylamine (0.004 mol) in 30 ml of dry THF. After completion of the addition, the temperature of the reaction mixture was slowly raised to room temperature and stirred for 30 min. The reaction mixture was then heated to 318–323 K and maintained at that temperature for 3 h. under stirring. Completion of the reaction was monitored by TLC analysis. Triethylamine hydrochloride was filtered from the reaction mixture and the solvent was removed under reduced pressure. The crude product was purified by
on silica gel (100–200 mesh, ethyl acetate:hexane) to afford pure product. Transparent, colorless plate-shaped single crystals are obtained by slow evaporation of a 2-proponal solution.All C-bonded H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic, 0.97 Å, Uiso(H) = 1.2Ueq(C) for CH2 group and 0.96 Å, Uiso(H) = 1.5Ueq(C) for CH3 group.
As organophosphorus compounds are ubiquitous, they have found multifaceted applications in nature. They can be used as insecticides and herbicides (Hoagland et al., 1988), fungicides (Smith et al., 1983), plant growth regulators and present also antifungal activity (Molodykh et al., 1990). The significant activity of all these compounds was accredited to the presence of six membered heterocyclic rings. In view of these activities, the title compound, (I), has been studied, as a part of our ongoing investigation to find out the influence of different substituents on the conformation of the heterocyclic ring.
In the molecular structure (Fig. 1), the oxazaphosphinine ring exhibits a boat conformation where atoms C6/C7/C12/O4 are almost coplanar and atoms P1 and N2 displaced in the same direction by 0.936 (1) and 0.936 (1) Å, respectively. The single and double bond lengths of P and O atoms are in good agreement with the similar structures reported previously (Brzozowski et al., 1990; Angelov et al., 2002; Kant et al., 2009). The P—N bond length, 1.6702 (14) Å, and the P—N—C bond angle, 120.30 (13)°, are comparable with the related structure of [1,3,2]-oxazaphosphorine-6-sulfide (Radha Krishna et al., 2007), but the bond distance shows relatively higher value when compared with the similar benzoxazaphosphorine structures (Yang et al., 1988; Subramanian et al., 1989; Selladurai & Subramanian, 1990; Selladurai et al., 1991). The N3—C13 and N3—C14 bond lengths fall between the expected single bond and double bond distances, showing the partial double bond character at N3.
In the
the phosphoryl O atom participates in intermolecular C—H···O interactions with the neighboring molecules, to form centrosymmetric R22(14) dimers, along [011] (Fig. 2).For the biological activity of organophosphorus compounds, see: Hoagland (1988); Smith (1983); Molodykh et al. (1990). For P—O and P═O bond lengths in related structures, see: Brzozowski et al. (1990); Angelov et al. (2002); Kant et al. (2009). For P—N bond lengths in related structures, see: Radha Krishna et al. (2007); Yang et al. (1988); Subramanian et al. (1989); Selladurai & Subramanian (1990); Selladurai et al. (1991).
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004) and PARST95 (Nardelli, 1995).Fig. 1. View of the molecule showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level. | |
Fig. 2. Packing of the molecules in the unit cell. |
C19H17N2O2P | Z = 2 |
Mr = 336.32 | F(000) = 352 |
Triclinic, P1 | Dx = 1.315 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2238 (8) Å | Cell parameters from 5006 reflections |
b = 8.6573 (8) Å | θ = 3.3–30.1° |
c = 13.7265 (14) Å | µ = 0.18 mm−1 |
α = 95.216 (8)° | T = 293 K |
β = 94.397 (9)° | Plate, colourless |
γ = 94.330 (9)° | 0.28 × 0.18 × 0.08 mm |
V = 849.42 (15) Å3 |
Oxford Diffraction Xcalibur diffractometer | 3069 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.030 |
Graphite monochromator | θmax = 30.1°, θmin = 3.3° |
ω–2θ scans | h = −10→10 |
12457 measured reflections | k = −12→12 |
5006 independent reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.173 | H-atom parameters constrained |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0909P)2] where P = (Fo2 + 2Fc2)/3 |
5006 reflections | (Δ/σ)max < 0.001 |
217 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
0 constraints |
C19H17N2O2P | γ = 94.330 (9)° |
Mr = 336.32 | V = 849.42 (15) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.2238 (8) Å | Mo Kα radiation |
b = 8.6573 (8) Å | µ = 0.18 mm−1 |
c = 13.7265 (14) Å | T = 293 K |
α = 95.216 (8)° | 0.28 × 0.18 × 0.08 mm |
β = 94.397 (9)° |
Oxford Diffraction Xcalibur diffractometer | 3069 reflections with I > 2σ(I) |
12457 measured reflections | Rint = 0.030 |
5006 independent reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.173 | H-atom parameters constrained |
S = 1.14 | Δρmax = 0.36 e Å−3 |
5006 reflections | Δρmin = −0.33 e Å−3 |
217 parameters |
Refinement. Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric.Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d Plane 1 m1 = 0.38775(0.00078) m2 = 0.69013(0.00101) m3 = -0.61104(0.00092) D = -0.04785(0.00813) Atom d s d/s (d/s)**2 C6 * 0.0033 0.0020 1.652 2.729 C7 * -0.0061 0.0019 - 3.190 10.179 C12 * 0.0060 0.0019 3.207 10.286 O4 * -0.0017 0.0014 - 1.201 1.443 P1 0.9362 0.0005 1909.984 3648038.000 N2 0.9357 0.0015 617.499 381304.969 ============ Sum((d/s)**2) for starred atoms 24.637 Chi-squared at 95% for 1 degrees of freedom: 3.84 The group of atoms deviates significantly from planarity Plane 2 m1 = 0.36501(0.00090) m2 = 0.72088(0.00066) m3 = -0.58915(0.00074) D = 0.19711(0.00721) Atom d s d/s (d/s)**2 C7 * -0.0010 0.0019 - 0.547 0.300 C8 * -0.0022 0.0022 - 1.022 1.044 C9 * 0.0076 0.0024 3.196 10.214 C10 * -0.0077 0.0023 - 3.346 11.194 C11 * 0.0029 0.0021 1.390 1.931 C12 * 0.0007 0.0019 0.353 0.125 ============ Sum((d/s)**2) for starred atoms 24.808 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity Plane 3 m1 = -0.45957(0.00079) m2 = 0.86478(0.00046) m3 = -0.20235(0.00092) D = 2.02662(0.00192) Atom d s d/s (d/s)**2 C13 * 0.0050 0.0018 2.731 7.457 N3 * -0.0045 0.0018 - 2.513 6.313 C14 * 0.0033 0.0025 1.334 1.780 C16 * 0.0013 0.0026 0.508 0.258 C17 * -0.0009 0.0027 - 0.328 0.108 C18 * -0.0040 0.0024 - 1.686 2.842 ============ Sum((d/s)**2) for starred atoms 18.758 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity Plane 4 m1 = -0.44454(0.00100) m2 = -0.15288(0.00101) m3 = -0.88262(0.00050) D = -4.64491(0.00165) Atom d s d/s (d/s)**2 C19 * 0.0128 0.0022 5.712 32.623 C20 * -0.0095 0.0029 - 3.274 10.717 C21 * -0.0074 0.0031 - 2.395 5.738 C22 * 0.0121 0.0031 3.908 15.276 C23 * 0.0012 0.0025 0.480 0.231 C24 * -0.0084 0.0020 - 4.200 17.636 ============ Sum((d/s)**2) for starred atoms 82.221 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 2.52 (0.07) 177.48 (0.07) 1 3 57.16 (0.06) 122.84 (0.06) 1 4 74.84 (0.08) 105.16 (0.08) 2 3 54.91 (0.06) 125.09 (0.06) 2 4 75.67 (0.07) 104.33 (0.07) 3 4 75.48 (0.08) 104.52 (0.08) |
x | y | z | Uiso*/Ueq | ||
P1 | 0.37783 (6) | 0.42101 (5) | 0.26648 (4) | 0.03578 (17) | |
O4 | 0.34114 (19) | 0.46439 (16) | 0.37866 (10) | 0.0459 (4) | |
N2 | 0.16623 (19) | 0.42897 (18) | 0.20981 (11) | 0.0360 (4) | |
O5 | 0.52630 (17) | 0.51923 (15) | 0.23013 (11) | 0.0491 (4) | |
C24 | 0.4304 (3) | 0.2230 (2) | 0.26798 (15) | 0.0399 (4) | |
C7 | 0.0443 (2) | 0.5645 (2) | 0.35210 (14) | 0.0380 (4) | |
C6 | 0.0029 (2) | 0.4431 (2) | 0.26737 (15) | 0.0413 (4) | |
H6A | −0.0316 | 0.3438 | 0.2913 | 0.050* | |
H6B | −0.1017 | 0.4703 | 0.2255 | 0.050* | |
N3 | −0.0324 (2) | 0.2849 (2) | 0.08712 (13) | 0.0476 (4) | |
C12 | 0.2155 (3) | 0.5737 (2) | 0.40604 (14) | 0.0374 (4) | |
C13 | 0.1314 (2) | 0.3663 (2) | 0.10995 (14) | 0.0367 (4) | |
C11 | 0.2642 (3) | 0.6790 (2) | 0.48673 (15) | 0.0475 (5) | |
H11 | 0.3809 | 0.6826 | 0.5210 | 0.057* | |
C8 | −0.0832 (3) | 0.6682 (3) | 0.38261 (16) | 0.0485 (5) | |
H8 | −0.1999 | 0.6649 | 0.3484 | 0.058* | |
C9 | −0.0374 (4) | 0.7763 (3) | 0.46352 (17) | 0.0574 (6) | |
H9 | −0.1226 | 0.8463 | 0.4824 | 0.069* | |
C10 | 0.1326 (4) | 0.7804 (3) | 0.51557 (16) | 0.0560 (6) | |
H10 | 0.1607 | 0.8513 | 0.5707 | 0.067* | |
C19 | 0.5868 (3) | 0.1738 (2) | 0.22629 (17) | 0.0509 (5) | |
H19 | 0.6631 | 0.2428 | 0.1959 | 0.061* | |
C14 | −0.0738 (3) | 0.2269 (3) | −0.00667 (18) | 0.0579 (6) | |
C18 | 0.2619 (3) | 0.3908 (3) | 0.04171 (16) | 0.0532 (5) | |
H18 | 0.3761 | 0.4468 | 0.0603 | 0.064* | |
C23 | 0.3141 (4) | 0.1170 (3) | 0.30964 (18) | 0.0623 (7) | |
H23 | 0.2076 | 0.1487 | 0.3370 | 0.075* | |
C20 | 0.6295 (4) | 0.0186 (3) | 0.2303 (2) | 0.0683 (8) | |
H20 | 0.7366 | −0.0145 | 0.2044 | 0.082* | |
C16 | 0.0481 (3) | 0.2471 (3) | −0.07839 (17) | 0.0590 (6) | |
H16 | 0.0157 | 0.2050 | −0.1427 | 0.071* | |
C21 | 0.5141 (5) | −0.0834 (3) | 0.2720 (2) | 0.0788 (9) | |
H21 | 0.5424 | −0.1861 | 0.2743 | 0.095* | |
C17 | 0.2164 (4) | 0.3297 (3) | −0.05363 (18) | 0.0643 (6) | |
H17 | 0.2996 | 0.3444 | −0.1011 | 0.077* | |
C22 | 0.3571 (5) | −0.0350 (3) | 0.3103 (2) | 0.0821 (9) | |
H22 | 0.2778 | −0.1060 | 0.3373 | 0.099* | |
C15 | −0.2625 (4) | 0.1350 (5) | −0.0295 (2) | 0.1035 (13) | |
H15A | −0.3264 | 0.1337 | 0.0292 | 0.155* | |
H15B | −0.2449 | 0.0302 | −0.0542 | 0.155* | |
H15C | −0.3352 | 0.1830 | −0.0780 | 0.155* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0327 (3) | 0.0325 (3) | 0.0410 (3) | 0.00243 (18) | −0.00086 (19) | 0.00089 (19) |
O4 | 0.0493 (8) | 0.0471 (8) | 0.0395 (8) | 0.0155 (6) | −0.0083 (6) | −0.0055 (6) |
N2 | 0.0304 (7) | 0.0421 (8) | 0.0352 (9) | 0.0048 (6) | 0.0018 (6) | 0.0017 (6) |
O5 | 0.0364 (7) | 0.0426 (8) | 0.0666 (10) | −0.0066 (6) | 0.0011 (6) | 0.0077 (7) |
C24 | 0.0403 (9) | 0.0348 (9) | 0.0436 (11) | 0.0058 (8) | −0.0026 (8) | 0.0014 (8) |
C7 | 0.0374 (9) | 0.0386 (10) | 0.0375 (10) | 0.0015 (7) | 0.0071 (8) | −0.0011 (8) |
C6 | 0.0314 (9) | 0.0468 (11) | 0.0443 (11) | 0.0041 (8) | 0.0008 (8) | −0.0013 (8) |
N3 | 0.0411 (9) | 0.0550 (10) | 0.0431 (10) | 0.0014 (8) | −0.0024 (7) | −0.0079 (8) |
C12 | 0.0463 (10) | 0.0331 (9) | 0.0334 (10) | 0.0046 (8) | 0.0040 (8) | 0.0050 (7) |
C13 | 0.0382 (9) | 0.0363 (9) | 0.0359 (10) | 0.0084 (7) | 0.0000 (8) | 0.0026 (7) |
C11 | 0.0627 (13) | 0.0414 (10) | 0.0362 (11) | 0.0036 (9) | −0.0041 (9) | −0.0004 (8) |
C8 | 0.0484 (11) | 0.0517 (12) | 0.0457 (12) | 0.0094 (9) | 0.0072 (9) | −0.0001 (9) |
C9 | 0.0735 (15) | 0.0510 (12) | 0.0512 (14) | 0.0206 (11) | 0.0170 (12) | 0.0010 (10) |
C10 | 0.0829 (16) | 0.0445 (12) | 0.0380 (12) | 0.0049 (11) | 0.0030 (11) | −0.0075 (9) |
C19 | 0.0358 (10) | 0.0487 (12) | 0.0645 (15) | 0.0038 (9) | −0.0003 (9) | −0.0105 (10) |
C14 | 0.0526 (12) | 0.0661 (15) | 0.0498 (14) | 0.0071 (11) | −0.0090 (10) | −0.0133 (11) |
C18 | 0.0495 (12) | 0.0642 (14) | 0.0446 (13) | −0.0043 (10) | 0.0045 (10) | 0.0051 (10) |
C23 | 0.0888 (18) | 0.0445 (12) | 0.0616 (16) | 0.0143 (11) | 0.0293 (13) | 0.0215 (10) |
C20 | 0.0558 (14) | 0.0600 (15) | 0.083 (2) | 0.0210 (12) | −0.0106 (13) | −0.0255 (14) |
C16 | 0.0659 (14) | 0.0711 (16) | 0.0373 (12) | 0.0153 (12) | −0.0047 (10) | −0.0099 (11) |
C21 | 0.115 (2) | 0.0425 (13) | 0.076 (2) | 0.0263 (15) | −0.0259 (17) | 0.0016 (13) |
C17 | 0.0723 (16) | 0.0806 (17) | 0.0402 (13) | 0.0067 (13) | 0.0116 (11) | 0.0021 (12) |
C22 | 0.130 (3) | 0.0433 (13) | 0.079 (2) | 0.0139 (16) | 0.0199 (19) | 0.0209 (13) |
C15 | 0.0665 (17) | 0.157 (3) | 0.070 (2) | −0.0246 (19) | −0.0090 (15) | −0.045 (2) |
P1—O5 | 1.4641 (14) | C9—C10 | 1.369 (3) |
P1—O4 | 1.5984 (15) | C9—H9 | 0.9300 |
P1—N2 | 1.6702 (14) | C10—H10 | 0.9300 |
P1—C24 | 1.7850 (19) | C19—C20 | 1.406 (3) |
O4—C12 | 1.407 (2) | C19—H19 | 0.9300 |
N2—C13 | 1.424 (2) | C14—C16 | 1.384 (4) |
N2—C6 | 1.476 (2) | C14—C15 | 1.522 (3) |
C24—C19 | 1.383 (3) | C18—C17 | 1.372 (3) |
C24—C23 | 1.388 (3) | C18—H18 | 0.9300 |
C7—C12 | 1.385 (3) | C23—C22 | 1.376 (3) |
C7—C8 | 1.395 (3) | C23—H23 | 0.9300 |
C7—C6 | 1.491 (3) | C20—C21 | 1.362 (4) |
C6—H6A | 0.9700 | C20—H20 | 0.9300 |
C6—H6B | 0.9700 | C16—C17 | 1.366 (3) |
N3—C13 | 1.331 (2) | C16—H16 | 0.9300 |
N3—C14 | 1.342 (3) | C21—C22 | 1.364 (4) |
C12—C11 | 1.374 (3) | C21—H21 | 0.9300 |
C13—C18 | 1.397 (3) | C17—H17 | 0.9300 |
C11—C10 | 1.397 (3) | C22—H22 | 0.9300 |
C11—H11 | 0.9300 | C15—H15A | 0.9600 |
C8—C9 | 1.388 (3) | C15—H15B | 0.9600 |
C8—H8 | 0.9300 | C15—H15C | 0.9600 |
O5—P1—O4 | 114.90 (8) | C8—C9—H9 | 119.9 |
O5—P1—N2 | 114.95 (8) | C9—C10—C11 | 120.7 (2) |
O4—P1—N2 | 101.68 (7) | C9—C10—H10 | 119.7 |
O5—P1—C24 | 112.80 (9) | C11—C10—H10 | 119.7 |
O4—P1—C24 | 101.38 (8) | C24—C19—C20 | 119.4 (2) |
N2—P1—C24 | 109.81 (8) | C24—C19—H19 | 120.3 |
C12—O4—P1 | 121.93 (12) | C20—C19—H19 | 120.3 |
C13—N2—C6 | 116.96 (14) | N3—C14—C16 | 122.4 (2) |
C13—N2—P1 | 118.81 (12) | N3—C14—C15 | 115.9 (2) |
C6—N2—P1 | 120.30 (13) | C16—C14—C15 | 121.7 (2) |
C19—C24—C23 | 119.55 (19) | C17—C18—C13 | 117.9 (2) |
C19—C24—P1 | 119.92 (16) | C17—C18—H18 | 121.0 |
C23—C24—P1 | 120.53 (16) | C13—C18—H18 | 121.0 |
C12—C7—C8 | 117.29 (17) | C22—C23—C24 | 119.7 (2) |
C12—C7—C6 | 119.26 (16) | C22—C23—H23 | 120.2 |
C8—C7—C6 | 123.43 (17) | C24—C23—H23 | 120.2 |
N2—C6—C7 | 110.86 (15) | C21—C20—C19 | 120.2 (2) |
N2—C6—H6A | 109.5 | C21—C20—H20 | 119.9 |
C7—C6—H6A | 109.5 | C19—C20—H20 | 119.9 |
N2—C6—H6B | 109.5 | C17—C16—C14 | 119.3 (2) |
C7—C6—H6B | 109.5 | C17—C16—H16 | 120.4 |
H6A—C6—H6B | 108.1 | C14—C16—H16 | 120.4 |
C13—N3—C14 | 117.66 (19) | C20—C21—C22 | 120.0 (2) |
C11—C12—C7 | 123.37 (18) | C20—C21—H21 | 120.0 |
C11—C12—O4 | 119.00 (17) | C22—C21—H21 | 120.0 |
C7—C12—O4 | 117.56 (16) | C16—C17—C18 | 119.5 (2) |
N3—C13—C18 | 123.22 (18) | C16—C17—H17 | 120.2 |
N3—C13—N2 | 115.42 (16) | C18—C17—H17 | 120.2 |
C18—C13—N2 | 121.35 (17) | C21—C22—C23 | 121.2 (3) |
C12—C11—C10 | 117.8 (2) | C21—C22—H22 | 119.4 |
C12—C11—H11 | 121.1 | C23—C22—H22 | 119.4 |
C10—C11—H11 | 121.1 | C14—C15—H15A | 109.5 |
C9—C8—C7 | 120.6 (2) | C14—C15—H15B | 109.5 |
C9—C8—H8 | 119.7 | H15A—C15—H15B | 109.5 |
C7—C8—H8 | 119.7 | C14—C15—H15C | 109.5 |
C10—C9—C8 | 120.3 (2) | H15A—C15—H15C | 109.5 |
C10—C9—H9 | 119.9 | H15B—C15—H15C | 109.5 |
O5—P1—O4—C12 | 88.83 (15) | C6—N2—C13—N3 | −19.5 (2) |
N2—P1—O4—C12 | −35.98 (15) | P1—N2—C13—N3 | 138.32 (15) |
C24—P1—O4—C12 | −149.22 (14) | C6—N2—C13—C18 | 160.12 (19) |
O5—P1—N2—C13 | 67.98 (16) | P1—N2—C13—C18 | −42.1 (2) |
O4—P1—N2—C13 | −167.24 (13) | C7—C12—C11—C10 | 0.5 (3) |
C24—P1—N2—C13 | −60.47 (16) | O4—C12—C11—C10 | −176.41 (18) |
O5—P1—N2—C6 | −134.97 (14) | C12—C7—C8—C9 | 0.4 (3) |
O4—P1—N2—C6 | −10.20 (16) | C6—C7—C8—C9 | 178.5 (2) |
C24—P1—N2—C6 | 96.57 (15) | C7—C8—C9—C10 | −1.3 (4) |
O5—P1—C24—C19 | −7.5 (2) | C8—C9—C10—C11 | 1.7 (4) |
O4—P1—C24—C19 | −130.88 (17) | C12—C11—C10—C9 | −1.3 (3) |
N2—P1—C24—C19 | 122.15 (17) | C23—C24—C19—C20 | −2.5 (3) |
O5—P1—C24—C23 | 173.33 (17) | P1—C24—C19—C20 | 178.29 (17) |
O4—P1—C24—C23 | 49.93 (19) | C13—N3—C14—C16 | 0.9 (3) |
N2—P1—C24—C23 | −57.0 (2) | C13—N3—C14—C15 | −179.9 (2) |
C13—N2—C6—C7 | −156.56 (16) | N3—C13—C18—C17 | 1.1 (3) |
P1—N2—C6—C7 | 46.0 (2) | N2—C13—C18—C17 | −178.50 (19) |
C12—C7—C6—N2 | −41.6 (3) | C19—C24—C23—C22 | 0.9 (4) |
C8—C7—C6—N2 | 140.36 (19) | P1—C24—C23—C22 | −179.9 (2) |
C8—C7—C12—C11 | −0.1 (3) | C24—C19—C20—C21 | 2.2 (4) |
C6—C7—C12—C11 | −178.27 (19) | N3—C14—C16—C17 | −0.4 (4) |
C8—C7—C12—O4 | 176.88 (18) | C15—C14—C16—C17 | −179.5 (3) |
C6—C7—C12—O4 | −1.3 (3) | C19—C20—C21—C22 | −0.2 (4) |
P1—O4—C12—C11 | −138.17 (16) | C14—C16—C17—C18 | 0.1 (4) |
P1—O4—C12—C7 | 44.7 (2) | C13—C18—C17—C16 | −0.4 (4) |
C14—N3—C13—C18 | −1.3 (3) | C20—C21—C22—C23 | −1.4 (4) |
C14—N3—C13—N2 | 178.29 (17) | C24—C23—C22—C21 | 1.0 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17···O5i | 0.93 | 2.57 | 3.455 (3) | 159 |
C21—H21···O5ii | 0.93 | 2.56 | 3.445 (3) | 159 |
C18—H18···O5 | 0.93 | 2.50 | 3.158 (3) | 128 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C19H17N2O2P |
Mr | 336.32 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.2238 (8), 8.6573 (8), 13.7265 (14) |
α, β, γ (°) | 95.216 (8), 94.397 (9), 94.330 (9) |
V (Å3) | 849.42 (15) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.18 |
Crystal size (mm) | 0.28 × 0.18 × 0.08 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12457, 5006, 3069 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.706 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.173, 1.14 |
No. of reflections | 5006 |
No. of parameters | 217 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.33 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ZORTEP (Zsolnai, 1997), enCIFer (Allen et al., 2004) and PARST95 (Nardelli, 1995).
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17···O5i | 0.93 | 2.57 | 3.455 (3) | 159 |
C21—H21···O5ii | 0.93 | 2.56 | 3.445 (3) | 159 |
C18—H18···O5 | 0.93 | 2.50 | 3.158 (3) | 128 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, y−1, z. |
Acknowledgements
MK thanks the University Grants Commission, New Delhi, for sanctioning the major project for this work.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Angelov, C. M., Mazzuca, D. A., Heever, J. P., McDonald, R., McEwen, A. J. B. & Mercer, J. R. (2002). Acta Cryst. E58, o399–o401. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brzozowski, A. M., Stępień, A., Dauter, Z. & Misiura, K. (1990). Acta Cryst. C46, 618–621. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Hoagland, R. E. (1988). ACS Symp. Ser. 380, 182–210. CrossRef CAS Google Scholar
Kant, R., Kohli, S., Sarmal, L., Krishnaiah, M. & Babu, V. H. H. S. (2009). Acta Cryst. E65, o2003. Web of Science CSD CrossRef IUCr Journals Google Scholar
Molodykh, Zh. V., Aleksandrova, I. A., Belyalov, R. U., Gazizov, T. Kh. & Reznik, V. S. (1990). Khim. Farm. Zh. 24, 136–139. CAS Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England. Google Scholar
Radha Krishna, J., Krishnaiah, M., Syam Prasad, G., Suresh Reddy, C. & Puranik, V. G. (2007). Acta Cryst. E63, o2407–o2409. Web of Science CSD CrossRef IUCr Journals Google Scholar
Selladurai, S. & Subramanian, K. (1990). Acta Cryst. C46, 2221–2223. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Selladurai, S., Subramanian, K. & Palanichamy, M. (1991). Acta Cryst. C47, 1056–1058. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, J. D. (1983). The Role of Phosphonates in Living Systems, edited by R. L. Hilberland, p. 131. Boca Raton: CRC Press. Google Scholar
Subramanian, K., Selladurai, S. & Ponnuswamy, M. N. (1989). Acta Cryst. C45, 1387–1389. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Yang, J. C., Shah, D. O., Rao, N. U. M., Freeman, W. A., Soenovsky, G. & Gorenstsein, D. G. (1988). Tetrahedron, 44, 6305–6314. CSD CrossRef CAS Web of Science Google Scholar
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As organophosphorus compounds are ubiquitous, they have found multifaceted applications in nature. They can be used as insecticides and herbicides (Hoagland et al., 1988), fungicides (Smith et al., 1983), plant growth regulators and present also antifungal activity (Molodykh et al., 1990). The significant activity of all these compounds was accredited to the presence of six membered heterocyclic rings. In view of these activities, the title compound, (I), has been studied, as a part of our ongoing investigation to find out the influence of different substituents on the conformation of the heterocyclic ring.
In the molecular structure (Fig. 1), the oxazaphosphinine ring exhibits a boat conformation where atoms C6/C7/C12/O4 are almost coplanar and atoms P1 and N2 displaced in the same direction by 0.936 (1) and 0.936 (1) Å, respectively. The single and double bond lengths of P and O atoms are in good agreement with the similar structures reported previously (Brzozowski et al., 1990; Angelov et al., 2002; Kant et al., 2009). The P—N bond length, 1.6702 (14) Å, and the P—N—C bond angle, 120.30 (13)°, are comparable with the related structure of [1,3,2]-oxazaphosphorine-6-sulfide (Radha Krishna et al., 2007), but the bond distance shows relatively higher value when compared with the similar benzoxazaphosphorine structures (Yang et al., 1988; Subramanian et al., 1989; Selladurai & Subramanian, 1990; Selladurai et al., 1991). The N3—C13 and N3—C14 bond lengths fall between the expected single bond and double bond distances, showing the partial double bond character at N3.
In the crystal structure, the phosphoryl O atom participates in intermolecular C—H···O interactions with the neighboring molecules, to form centrosymmetric R22(14) dimers, along [011] (Fig. 2).