organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Di­cyclo­hexyl-2-(5,7-di­chloro-8-quinol­yl­oxy)acetamide

aDepartment of Biology and Chemistry, Changzhi University, Changzhi, Shanxi 046011, People's Republic of China
*Correspondence e-mail: jlwangczu@126.com

(Received 17 August 2009; accepted 29 September 2009; online 7 October 2009)

The mol­ecular and crystal structures of the title compound, C23H28Cl2N2O2, are very close to those of the bromine-substituted analogue N,N-dicyclo­hexyl-2-(5,7-dibromo-8-quinol­yloxy)acetamide. The two cyclo­hexyl groups adopt normal chair conformation. The amide N and C atoms have a planar configuration. The crystal packing is stabilized by inter­molecular C—H⋯O hydrogen bonds and aromatic ππ stacking inter­actions [centroid–centroid separation = 3.5715 (4) Å for symmetry-related pyridine rings]. In addition, the crystal structure exhibits Cl⋯Cl halogen contacts of 3.4675 (3) Å.

Related literature

For background to the applications of 8-hydroxy­quinoline and its derivatives, see: Bratzel et al. (1972[Bratzel, M. P., Aaron, J. J., Winefordner, J. D., Schulman, S. G. & Gershon, H. (1972). Anal. Chem. 44, 1240-1245.]); Hanna et al. (2002[Hanna, W. G. & Moawad, M. M. (2002). J. Coord. Chem. 55, 43-60.]); Pierre et al. (2003[Pierre, J.-L., Baret, P. & Serratrice, G. (2003). Curr. Med. Chem. 10, 1077-1084.]); Tang et al. (1987[Tang, C. W. & VanSlyke, S. A. (1987). Appl. Phys. Lett. 51, 913-915.]); Zeng et al. (2006[Zeng, H.-P., OuYang, X.-H., Wang, T.-T., Yuan, G.-Z., Zhang, G.-H. & Zhang, X.-M. (2006). Cryst. Growth Des. 6, 1697-1702.]). For structures of 8-hydroxy­quinolinate amide compounds, see: Bi et al. (2007[Bi, S., Wu, X.-H., Tang, X.-F. & Wen, Y.-H. (2007). Acta Cryst. E63, o4521.]); Tang et al. (2007[Tang, X.-F. & Wen, Y.-H. (2007). Acta Cryst. E63, o4598.]); Liu et al. (2007[Liu, J.-F., Tang, X.-F. & Wen, Y.-H. (2007). Acta Cryst. E63, o4458.]).

[Scheme 1]

Experimental

Crystal data
  • C23H28Cl2N2O2

  • Mr = 435.37

  • Triclinic, [P \overline 1]

  • a = 9.8476 (11) Å

  • b = 10.7542 (12) Å

  • c = 11.1376 (12) Å

  • α = 72.392 (2)°

  • β = 86.880 (2)°

  • γ = 80.208 (2)°

  • V = 1107.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick,1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.934, Tmax = 0.946

  • 5942 measured reflections

  • 4088 independent reflections

  • 3400 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.112

  • S = 1.02

  • 4088 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O2i 0.93 2.50 3.414 (3) 169
C10—H10B⋯O2ii 0.97 2.38 3.323 (2) 164
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

8-Hydroxyquinoline and its derivatives have been used widely in analytical chemistry (Bratzel et al., 1972), coordination chemistry (Hanna et al., 2002), pharmaceutical chemistry (Pierre et al., 2003), materials chemistry (Tang et al., 1987) and many other topics. The synthesis and the development of novel 8-hydroxyquinoline derivatives have been a significant research subject (Zeng et al., 2006). Recently, the structures of 8-hydroxyquinolinate amide-type compounds, namely, N,N-diphenyl-2-(5,7-dibromoquinolin-8-yloxy)acetamide (Bi et al., 2007), N,N-diphenyl-2-(5,7-dichloroquinolin-8-yloxy)acetamide (Tang et al., 2007), and N,N-dicyclohexyl-2-(5,7-dibromoquinolin-8-yloxy)acetamide (Liu et al., 2007) have been reported. Here, we report the synthesis and crystal structure of the title compound, (I, Fig. 1), a new amide-based 5,7-dichloro-8-hydroxyquinoline derivative.

All bond lengths and angles in (I) are within normal ranges and comparable with those in the related above-cited compounds. Compound (I) has the same crystal form as the bromine analogue. The quinoline fragment is essentially planar, with a dihedral angle of 0.35 (9)° between the benzene (C1···C4/C8/C9) ring and pyridine (N1/C4···C8) ring. The two cyclohexyl groups adopt the normal chair conformation. The amide N and C atoms have a planar configuration. The crystal packing exhibits intermolecular C6—H6···O2 and C10—H10···O2 hydrogen bonds (Table 1 and Fig. 2), and π···π interactions [shortest centroid-centroid separation = 3.5715 (4) Å] between the pyridine rings of the neighbouring molecules. In addition, the crystal structure exhibits Cl···Cl halogen contacts of 3.4675 (3) Å.

Related literature top

For background to the applications of 8-hydroxyquinoline and its derivatives, see: Bratzel et al. (1972); Hanna et al. (2002); Pierre et al. (2003); Tang et al. (1987); Zeng et al. (2006). For structures of 8-hydroxyquinolinate amide compounds, see: Bi et al. (2007); Tang et al. (2007); Liu et al. (2007).

Experimental top

To a solution of 5,7-dichloro-8-hydroxyquinoline (4.18 g, 20 mmol) in acetone (60 ml) were added 2-chloro-N,N-dicyclohexylacetamide (5.16 g, 20 mmol), K2CO3 (3.04 g, 22 mmol) and KI (0.5 g), and the resulting mixture was refluxed for 5 h. After cooling to room temperature, the mixture was washed three times with water and filtered. The filter cake was collected and purified by recrystallization with a mixture of ethanol/water. Colourless single crystals of (I) suitable for X-ray diffraction study were obtained by slow evaporation of an ethanol solution over a period of 15 d.

Refinement top

All H atoms were located in a difference Fourier map and constrained to ride on their parent atoms, with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 Ueq(C).

Structure description top

8-Hydroxyquinoline and its derivatives have been used widely in analytical chemistry (Bratzel et al., 1972), coordination chemistry (Hanna et al., 2002), pharmaceutical chemistry (Pierre et al., 2003), materials chemistry (Tang et al., 1987) and many other topics. The synthesis and the development of novel 8-hydroxyquinoline derivatives have been a significant research subject (Zeng et al., 2006). Recently, the structures of 8-hydroxyquinolinate amide-type compounds, namely, N,N-diphenyl-2-(5,7-dibromoquinolin-8-yloxy)acetamide (Bi et al., 2007), N,N-diphenyl-2-(5,7-dichloroquinolin-8-yloxy)acetamide (Tang et al., 2007), and N,N-dicyclohexyl-2-(5,7-dibromoquinolin-8-yloxy)acetamide (Liu et al., 2007) have been reported. Here, we report the synthesis and crystal structure of the title compound, (I, Fig. 1), a new amide-based 5,7-dichloro-8-hydroxyquinoline derivative.

All bond lengths and angles in (I) are within normal ranges and comparable with those in the related above-cited compounds. Compound (I) has the same crystal form as the bromine analogue. The quinoline fragment is essentially planar, with a dihedral angle of 0.35 (9)° between the benzene (C1···C4/C8/C9) ring and pyridine (N1/C4···C8) ring. The two cyclohexyl groups adopt the normal chair conformation. The amide N and C atoms have a planar configuration. The crystal packing exhibits intermolecular C6—H6···O2 and C10—H10···O2 hydrogen bonds (Table 1 and Fig. 2), and π···π interactions [shortest centroid-centroid separation = 3.5715 (4) Å] between the pyridine rings of the neighbouring molecules. In addition, the crystal structure exhibits Cl···Cl halogen contacts of 3.4675 (3) Å.

For background to the applications of 8-hydroxyquinoline and its derivatives, see: Bratzel et al. (1972); Hanna et al. (2002); Pierre et al. (2003); Tang et al. (1987); Zeng et al. (2006). For structures of 8-hydroxyquinolinate amide compounds, see: Bi et al. (2007); Tang et al. (2007); Liu et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of (I), viewed down the a axis, showing the intermolecular hydrogen bonds (dashed lines).
N,N-Dicyclohexyl-2-(5,7-dichloro-8-quinolyloxy)acetamide top
Crystal data top
C23H28Cl2N2O2Z = 2
Mr = 435.37F(000) = 460
Triclinic, P1Dx = 1.305 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8476 (11) ÅCell parameters from 2570 reflections
b = 10.7542 (12) Åθ = 2.7–25.7°
c = 11.1376 (12) ŵ = 0.32 mm1
α = 72.392 (2)°T = 293 K
β = 86.880 (2)°Rhombus, colourless
γ = 80.208 (2)°0.22 × 0.20 × 0.18 mm
V = 1107.9 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4088 independent reflections
Radiation source: fine-focus sealed tube3400 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 25.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
h = 1111
Tmin = 0.934, Tmax = 0.946k = 1310
5942 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.3083P]
where P = (Fo2 + 2Fc2)/3
4088 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.24 e Å3
0 constraints
Crystal data top
C23H28Cl2N2O2γ = 80.208 (2)°
Mr = 435.37V = 1107.9 (2) Å3
Triclinic, P1Z = 2
a = 9.8476 (11) ÅMo Kα radiation
b = 10.7542 (12) ŵ = 0.32 mm1
c = 11.1376 (12) ÅT = 293 K
α = 72.392 (2)°0.22 × 0.20 × 0.18 mm
β = 86.880 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4088 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
3400 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.946Rint = 0.018
5942 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.02Δρmax = 0.33 e Å3
4088 reflectionsΔρmin = 0.24 e Å3
262 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.10108 (5)0.94426 (5)0.29221 (5)0.03764 (15)
Cl20.02741 (8)1.39471 (7)0.41588 (7)0.0698 (2)
O10.22307 (12)1.10728 (12)0.06239 (11)0.0293 (3)
O20.16900 (12)0.91089 (12)0.08811 (12)0.0314 (3)
N10.21941 (17)1.37466 (16)0.00224 (16)0.0359 (4)
N20.32140 (14)1.04756 (14)0.18351 (13)0.0243 (3)
C10.10394 (18)1.11220 (19)0.25299 (17)0.0299 (4)
C20.04676 (19)1.1801 (2)0.33885 (19)0.0373 (5)
H2A0.01001.13480.41500.045*
C30.0459 (2)1.3124 (2)0.3093 (2)0.0400 (5)
C40.10273 (19)1.3853 (2)0.19466 (19)0.0349 (5)
C50.1058 (2)1.5229 (2)0.1581 (2)0.0444 (5)
H5A0.06841.57300.21050.053*
C60.1636 (2)1.5813 (2)0.0463 (2)0.0473 (6)
H6A0.16661.67150.02100.057*
C70.2187 (2)1.5027 (2)0.0303 (2)0.0439 (5)
H7A0.25771.54420.10670.053*
C80.16118 (18)1.31440 (19)0.11007 (18)0.0301 (4)
C90.16069 (17)1.17641 (18)0.14113 (17)0.0277 (4)
C100.13960 (17)1.11664 (18)0.04396 (17)0.0263 (4)
H10A0.12991.20520.10250.032*
H10B0.04851.09710.01580.032*
C110.21283 (17)1.01619 (17)0.10754 (16)0.0249 (4)
C120.38451 (17)0.96001 (17)0.25850 (16)0.0246 (4)
H12A0.45701.00350.30950.030*
C130.45558 (18)0.82518 (18)0.17828 (17)0.0284 (4)
H13A0.38820.77850.12420.034*
H13B0.52410.83700.12510.034*
C140.5251 (2)0.7433 (2)0.26245 (19)0.0364 (5)
H14A0.59990.78490.30890.044*
H14B0.56380.65580.21020.044*
C150.4236 (2)0.73116 (19)0.35466 (19)0.0360 (5)
H15A0.35400.68140.30840.043*
H15B0.47180.68290.40930.043*
C160.3540 (2)0.8660 (2)0.43435 (18)0.0351 (4)
H16A0.28670.85480.48910.042*
H16B0.42230.91260.48690.042*
C170.28254 (19)0.94781 (19)0.35147 (17)0.0322 (4)
H17A0.20760.90600.30540.039*
H17B0.24391.03520.40400.039*
C180.37854 (17)1.17059 (17)0.19956 (16)0.0246 (4)
H18A0.33051.21360.13970.029*
C190.35073 (19)1.26735 (18)0.33206 (17)0.0303 (4)
H19A0.39361.22640.39420.036*
H19B0.25231.28840.34750.036*
C200.4082 (2)1.39395 (19)0.34509 (19)0.0364 (5)
H20A0.35791.43970.28930.044*
H20B0.39481.45160.43080.044*
C210.5614 (2)1.36517 (19)0.31312 (19)0.0364 (5)
H21A0.61301.32740.37390.044*
H21B0.59341.44700.31810.044*
C220.5870 (2)1.26914 (19)0.18086 (18)0.0336 (4)
H22A0.68511.24890.16380.040*
H22B0.54221.31020.11950.040*
C230.53174 (18)1.14179 (18)0.16782 (17)0.0290 (4)
H23A0.54561.08400.08220.035*
H23B0.58221.09670.22400.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0375 (3)0.0326 (3)0.0393 (3)0.0063 (2)0.0005 (2)0.0051 (2)
Cl20.0808 (5)0.0768 (5)0.0705 (4)0.0121 (4)0.0222 (4)0.0538 (4)
O10.0266 (6)0.0312 (7)0.0302 (7)0.0007 (5)0.0003 (5)0.0123 (5)
O20.0284 (7)0.0265 (7)0.0431 (8)0.0122 (5)0.0090 (6)0.0135 (6)
N10.0348 (9)0.0320 (9)0.0406 (9)0.0091 (7)0.0001 (7)0.0084 (7)
N20.0248 (7)0.0204 (8)0.0297 (8)0.0077 (6)0.0051 (6)0.0090 (6)
C10.0253 (9)0.0323 (10)0.0330 (10)0.0056 (7)0.0024 (7)0.0103 (8)
C20.0320 (10)0.0505 (13)0.0334 (10)0.0103 (9)0.0040 (8)0.0170 (9)
C30.0349 (10)0.0507 (14)0.0439 (12)0.0047 (9)0.0025 (9)0.0299 (10)
C40.0282 (10)0.0358 (11)0.0457 (12)0.0021 (8)0.0051 (8)0.0205 (9)
C50.0383 (11)0.0362 (12)0.0661 (15)0.0001 (9)0.0099 (10)0.0275 (11)
C60.0449 (12)0.0289 (11)0.0694 (16)0.0073 (9)0.0133 (11)0.0136 (11)
C70.0446 (12)0.0353 (12)0.0507 (13)0.0144 (9)0.0026 (10)0.0065 (10)
C80.0226 (9)0.0312 (10)0.0376 (10)0.0035 (7)0.0044 (8)0.0115 (8)
C90.0209 (8)0.0324 (10)0.0314 (9)0.0018 (7)0.0020 (7)0.0128 (8)
C100.0218 (8)0.0265 (10)0.0315 (9)0.0054 (7)0.0019 (7)0.0094 (7)
C110.0213 (8)0.0244 (10)0.0287 (9)0.0050 (7)0.0012 (7)0.0066 (7)
C120.0242 (9)0.0239 (9)0.0290 (9)0.0092 (7)0.0057 (7)0.0108 (7)
C130.0286 (9)0.0278 (10)0.0301 (9)0.0047 (7)0.0024 (7)0.0103 (8)
C140.0357 (10)0.0316 (11)0.0418 (11)0.0012 (8)0.0016 (9)0.0139 (9)
C150.0465 (11)0.0297 (11)0.0371 (11)0.0106 (9)0.0046 (9)0.0163 (9)
C160.0421 (11)0.0367 (11)0.0306 (10)0.0092 (9)0.0026 (8)0.0140 (8)
C170.0322 (10)0.0329 (11)0.0321 (10)0.0030 (8)0.0050 (8)0.0109 (8)
C180.0250 (9)0.0209 (9)0.0291 (9)0.0074 (7)0.0046 (7)0.0082 (7)
C190.0298 (9)0.0258 (10)0.0340 (10)0.0071 (7)0.0012 (8)0.0053 (8)
C200.0455 (12)0.0231 (10)0.0362 (11)0.0087 (8)0.0017 (9)0.0009 (8)
C210.0440 (11)0.0293 (11)0.0392 (11)0.0203 (9)0.0064 (9)0.0086 (8)
C220.0355 (10)0.0313 (11)0.0376 (11)0.0150 (8)0.0001 (8)0.0104 (8)
C230.0294 (9)0.0252 (10)0.0315 (9)0.0093 (7)0.0017 (8)0.0045 (8)
Geometric parameters (Å, º) top
Cl1—C11.730 (2)C13—H13A0.9700
Cl2—C31.743 (2)C13—H13B0.9700
O1—C91.371 (2)C14—C151.519 (3)
O1—C101.447 (2)C14—H14A0.9700
O2—C111.234 (2)C14—H14B0.9700
N1—C71.315 (3)C15—C161.520 (3)
N1—C81.368 (2)C15—H15A0.9700
N2—C111.351 (2)C15—H15B0.9700
N2—C121.480 (2)C16—C171.527 (3)
N2—C181.483 (2)C16—H16A0.9700
C1—C91.370 (3)C16—H16B0.9700
C1—C21.410 (3)C17—H17A0.9700
C2—C31.358 (3)C17—H17B0.9700
C2—H2A0.9300C18—C231.526 (2)
C3—C41.422 (3)C18—C191.534 (2)
C4—C51.416 (3)C18—H18A0.9800
C4—C81.424 (3)C19—C201.526 (3)
C5—C61.357 (3)C19—H19A0.9700
C5—H5A0.9300C19—H19B0.9700
C6—C71.402 (3)C20—C211.527 (3)
C6—H6A0.9300C20—H20A0.9700
C7—H7A0.9300C20—H20B0.9700
C8—C91.419 (3)C21—C221.527 (3)
C10—C111.527 (2)C21—H21A0.9700
C10—H10A0.9700C21—H21B0.9700
C10—H10B0.9700C22—C231.522 (2)
C12—C131.526 (2)C22—H22A0.9700
C12—C171.529 (2)C22—H22B0.9700
C12—H12A0.9800C23—H23A0.9700
C13—C141.532 (3)C23—H23B0.9700
C9—O1—C10114.18 (13)C13—C14—H14B109.3
C7—N1—C8117.15 (18)H14A—C14—H14B108.0
C11—N2—C12119.90 (14)C14—C15—C16111.50 (16)
C11—N2—C18122.60 (14)C14—C15—H15A109.3
C12—N2—C18117.46 (13)C16—C15—H15A109.3
C9—C1—C2121.40 (18)C14—C15—H15B109.3
C9—C1—Cl1120.29 (15)C16—C15—H15B109.3
C2—C1—Cl1118.31 (15)H15A—C15—H15B108.0
C3—C2—C1119.38 (18)C15—C16—C17110.99 (15)
C3—C2—H2A120.3C15—C16—H16A109.4
C1—C2—H2A120.3C17—C16—H16A109.4
C2—C3—C4122.17 (18)C15—C16—H16B109.4
C2—C3—Cl2118.59 (16)C17—C16—H16B109.4
C4—C3—Cl2119.24 (16)H16A—C16—H16B108.0
C5—C4—C3125.15 (19)C16—C17—C12110.61 (15)
C5—C4—C8117.42 (19)C16—C17—H17A109.5
C3—C4—C8117.43 (18)C12—C17—H17A109.5
C6—C5—C4119.7 (2)C16—C17—H17B109.5
C6—C5—H5A120.2C12—C17—H17B109.5
C4—C5—H5A120.2H17A—C17—H17B108.1
C5—C6—C7118.6 (2)N2—C18—C23111.79 (14)
C5—C6—H6A120.7N2—C18—C19111.53 (14)
C7—C6—H6A120.7C23—C18—C19111.35 (14)
N1—C7—C6125.0 (2)N2—C18—H18A107.3
N1—C7—H7A117.5C23—C18—H18A107.3
C6—C7—H7A117.5C19—C18—H18A107.3
N1—C8—C9117.69 (17)C20—C19—C18110.40 (15)
N1—C8—C4122.22 (18)C20—C19—H19A109.6
C9—C8—C4120.09 (17)C18—C19—H19A109.6
C1—C9—O1120.48 (17)C20—C19—H19B109.6
C1—C9—C8119.52 (17)C18—C19—H19B109.6
O1—C9—C8119.92 (16)H19A—C19—H19B108.1
O1—C10—C11107.15 (13)C19—C20—C21111.63 (16)
O1—C10—H10A110.3C19—C20—H20A109.3
C11—C10—H10A110.3C21—C20—H20A109.3
O1—C10—H10B110.3C19—C20—H20B109.3
C11—C10—H10B110.3C21—C20—H20B109.3
H10A—C10—H10B108.5H20A—C20—H20B108.0
O2—C11—N2123.20 (16)C22—C21—C20110.66 (16)
O2—C11—C10118.40 (15)C22—C21—H21A109.5
N2—C11—C10118.39 (15)C20—C21—H21A109.5
N2—C12—C13113.45 (14)C22—C21—H21B109.5
N2—C12—C17112.06 (14)C20—C21—H21B109.5
C13—C12—C17112.03 (15)H21A—C21—H21B108.1
N2—C12—H12A106.2C23—C22—C21110.94 (16)
C13—C12—H12A106.2C23—C22—H22A109.5
C17—C12—H12A106.2C21—C22—H22A109.5
C12—C13—C14110.40 (15)C23—C22—H22B109.5
C12—C13—H13A109.6C21—C22—H22B109.5
C14—C13—H13A109.6H22A—C22—H22B108.0
C12—C13—H13B109.6C22—C23—C18110.84 (15)
C14—C13—H13B109.6C22—C23—H23A109.5
H13A—C13—H13B108.1C18—C23—H23A109.5
C15—C14—C13111.47 (16)C22—C23—H23B109.5
C15—C14—H14A109.3C18—C23—H23B109.5
C13—C14—H14A109.3H23A—C23—H23B108.1
C15—C14—H14B109.3
C9—C1—C2—C31.0 (3)C12—N2—C11—O26.4 (2)
Cl1—C1—C2—C3179.00 (15)C18—N2—C11—O2175.96 (16)
C1—C2—C3—C40.9 (3)C12—N2—C11—C10172.74 (14)
C1—C2—C3—Cl2179.13 (15)C18—N2—C11—C104.9 (2)
C2—C3—C4—C5179.75 (19)O1—C10—C11—O2102.13 (17)
Cl2—C3—C4—C50.2 (3)O1—C10—C11—N278.66 (18)
C2—C3—C4—C80.2 (3)C11—N2—C12—C1366.8 (2)
Cl2—C3—C4—C8179.80 (14)C18—N2—C12—C13115.52 (16)
C3—C4—C5—C6179.7 (2)C11—N2—C12—C1761.3 (2)
C8—C4—C5—C60.3 (3)C18—N2—C12—C17116.39 (16)
C4—C5—C6—C70.1 (3)N2—C12—C13—C14176.85 (14)
C8—N1—C7—C60.3 (3)C17—C12—C13—C1455.0 (2)
C5—C6—C7—N10.2 (3)C12—C13—C14—C1554.8 (2)
C7—N1—C8—C9179.69 (17)C13—C14—C15—C1656.0 (2)
C7—N1—C8—C40.5 (3)C14—C15—C16—C1756.3 (2)
C5—C4—C8—N10.4 (3)C15—C16—C17—C1255.7 (2)
C3—C4—C8—N1179.53 (17)N2—C12—C17—C16175.45 (14)
C5—C4—C8—C9179.73 (17)C13—C12—C17—C1655.7 (2)
C3—C4—C8—C90.3 (3)C11—N2—C18—C23123.66 (17)
C2—C1—C9—O1176.09 (16)C12—N2—C18—C2358.69 (19)
Cl1—C1—C9—O13.9 (2)C11—N2—C18—C19110.94 (18)
C2—C1—C9—C80.5 (3)C12—N2—C18—C1966.71 (19)
Cl1—C1—C9—C8179.51 (13)N2—C18—C19—C20178.92 (14)
C10—O1—C9—C1101.90 (19)C23—C18—C19—C2055.4 (2)
C10—O1—C9—C881.49 (19)C18—C19—C20—C2155.5 (2)
N1—C8—C9—C1179.70 (16)C19—C20—C21—C2256.2 (2)
C4—C8—C9—C10.1 (3)C20—C21—C22—C2356.5 (2)
N1—C8—C9—O13.1 (2)C21—C22—C23—C1856.7 (2)
C4—C8—C9—O1176.79 (15)N2—C18—C23—C22178.16 (14)
C9—O1—C10—C11170.23 (14)C19—C18—C23—C2256.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O2i0.932.503.414 (3)169
C10—H10B···O2ii0.972.383.323 (2)164
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC23H28Cl2N2O2
Mr435.37
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.8476 (11), 10.7542 (12), 11.1376 (12)
α, β, γ (°)72.392 (2), 86.880 (2), 80.208 (2)
V3)1107.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick,1996)
Tmin, Tmax0.934, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
5942, 4088, 3400
Rint0.018
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.112, 1.02
No. of reflections4088
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.24

Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O2i0.932.503.414 (3)169.1
C10—H10B···O2ii0.972.383.323 (2)163.8
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z.
 

References

First citationBi, S., Wu, X.-H., Tang, X.-F. & Wen, Y.-H. (2007). Acta Cryst. E63, o4521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBratzel, M. P., Aaron, J. J., Winefordner, J. D., Schulman, S. G. & Gershon, H. (1972). Anal. Chem. 44, 1240–1245.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHanna, W. G. & Moawad, M. M. (2002). J. Coord. Chem. 55, 43–60.  Web of Science CrossRef CAS Google Scholar
First citationLiu, J.-F., Tang, X.-F. & Wen, Y.-H. (2007). Acta Cryst. E63, o4458.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPierre, J.-L., Baret, P. & Serratrice, G. (2003). Curr. Med. Chem. 10, 1077–1084.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, C. W. & VanSlyke, S. A. (1987). Appl. Phys. Lett. 51, 913–915.  CrossRef CAS Web of Science Google Scholar
First citationTang, X.-F. & Wen, Y.-H. (2007). Acta Cryst. E63, o4598.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, H.-P., OuYang, X.-H., Wang, T.-T., Yuan, G.-Z., Zhang, G.-H. & Zhang, X.-M. (2006). Cryst. Growth Des. 6, 1697–1702.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds