metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[N′-(3-cyano­benzyl­­idene)isonicotino­hydrazide-κN]silver(I) tri­fluoro­methane­sulfonate

aCollege of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: niu_cy2000@yahoo.com.cn

(Received 24 August 2009; accepted 29 September 2009; online 3 October 2009)

In the title compound, [Ag(C14H10N4O)2]CF3SO3, two N atoms from two independent pyridyl rings of two N′-3-cyano­benzyl­ideneisonicotinohydrazide ligands coordinate to the unique AgI ion, forming a nearly linear coordination geometry. Adjacent silver complexes are primarily linked together by Ag⋯N inter­actions, with Ag⋯N separations of 2.877 (2) and 3.314 (2) Å. On the other hand, one CF3SO3 anion inter­acts with hydrazone groups of two neighbouring ligands via N—H⋯O hydrogen bonds. These weak inter­molecular inter­actions contribute to the formation of supra­molecular chains. In addition, there are Ag⋯O inter­actions [2.787 (2) Å] between Ag and O atoms from adjacent chains.

Related literature

For the coordination of silver ions and properties of silver coordination compounds, see: Dong et al. (2004[Dong, Y.-B., Zhao, X., Huang, R.-Q., Smith, M. D. & Zur Loye, H.-C. (2004). Inorg. Chem. 43, 5603-5612.]); Niu et al. (2008[Niu, C.-Y., Zheng, X.-F., Bai, L.-L., Wu, X.-L. & Kou, C.-H. (2008). Acta Cryst. C64, m305-m307.], 2009[Niu, C.-Y., Wu, B.-L., Zheng, X.-F., Wan, X.-S., Zhang, H.-Y., Niu, Y.-Y. & Meng, L.-Y. (2009). CrystEngComm, 11, 1373-1382.]); Sumby & Hardie (2005[Sumby, C. J. & Hardie, M. J. (2005). Angew. Chem. Int. Ed. 44, 6395-6399.]); Abu-Youssef et al. (2007[Abu-Youssef, M. A. M., Dey, R., Gohar, Y., Massoud, A. A., Öhrström, L. & Langer, V. (2007). Inorg. Chem. 46, 5893-5903.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C14H10N4O)2]CF3SO3

  • Mr = 757.46

  • Triclinic, [P \overline 1]

  • a = 7.5481 (17) Å

  • b = 14.164 (3) Å

  • c = 14.175 (3) Å

  • α = 87.895 (4)°

  • β = 89.918 (4)°

  • γ = 81.355 (4)°

  • V = 1497.2 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 173 K

  • 0.32 × 0.22 × 0.17 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.780, Tmax = 0.874

  • 8251 measured reflections

  • 5461 independent reflections

  • 3857 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.175

  • S = 1.03

  • 5461 reflections

  • 433 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag1—N5 2.160 (4)
Ag1—N1 2.169 (4)
N5—Ag1—N1 172.56 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H29⋯O5i 0.86 (6) 2.27 (6) 3.125 (9) 173 (5)
N6—H28⋯O3ii 0.90 (5) 2.12 (6) 2.982 (7) 161 (5)
Symmetry codes: (i) x, y, z-1; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97 and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR. Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the title compound, (I), the silver(I) ion is coordinated by two nitrogen atoms from two independent pyridyl rings of two different ligands, forming a slightly distorted linear coordination geometry (Fig. 1). Related bond distances and angle around the metal center are shown in Table 1.

There are N—H···O hydrogen bonds between hydrazone groups from 3-cyanobenzylidene isonicotinohydrazide and counteranions CF3SO3- (Table 2). Besides, there are weak Ag···N interactions between two neighbouring silver complexes with separations of 2.877 (2) and 3.314 (2) Å. Hydrogen bonds and Ag···N interactions link parallel silver monomers together to construct interesting supramolecular one-dimensional chains. Furthermore, two adjacent supramolecular one-dimensional chains are linked together via Ag···O interactions, with the separation of 2.787 (2) Å (Fig. 2). All these intermolecular interactions have the contribution to the three-dimensional structure of the title compound.

It is noteworthy that the coordination geometry of the silver metal center can be affected by many factors, such as coordination natures of organic ligands, temperature, counteranions, etc. (Dong et al., 2004; Niu et al., 2009; Sumby & Hardie, 2005; Abu-Youssef et al., 2007). We have reported a Ag(I) polymeric structure recently (Niu et al., 2008), which includes a ligand isomeric to the one used in this paper (3-cyanobenzylidene isonicotinohydrazide). It showed that the position of the CN functional group seems to have a great influence on the structures of the resulting compounds (monomeric versus polymeric).

Related literature top

For the coordination of silver ions and properties of silver coordination compounds, see: Dong et al. (2004); Niu et al. (2008, 2009); Sumby & Hardie (2005); Abu-Youssef et al. (2007).

Experimental top

A solution of AgCF3SO3 (0.026 g, 0.1 mmol) in CH3OH (10 ml) was carefully layered on a CH3OH/CHCl3 solution (5 ml/10 ml) of 3-cyanobenzylidene isonicotinohydrazide (0.025 g, 0.1 mmol) in a straight glass tube. About ten days later, colourless single crystals suitable for X-ray analysis were obtained.

Refinement top

C-bound H atoms were placed in calculated positions and refined using a riding model [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The N-bound H atoms were first introduced in calculated positions and refined freely with Uiso(H) = 1.2Ueq(carrier N). The final difference Fourier map had a highest peak at 0.76 Å from atom H24 and a deepest hole at 0.64 Å from atom S3, but was otherwise featureless.

Structure description top

In the title compound, (I), the silver(I) ion is coordinated by two nitrogen atoms from two independent pyridyl rings of two different ligands, forming a slightly distorted linear coordination geometry (Fig. 1). Related bond distances and angle around the metal center are shown in Table 1.

There are N—H···O hydrogen bonds between hydrazone groups from 3-cyanobenzylidene isonicotinohydrazide and counteranions CF3SO3- (Table 2). Besides, there are weak Ag···N interactions between two neighbouring silver complexes with separations of 2.877 (2) and 3.314 (2) Å. Hydrogen bonds and Ag···N interactions link parallel silver monomers together to construct interesting supramolecular one-dimensional chains. Furthermore, two adjacent supramolecular one-dimensional chains are linked together via Ag···O interactions, with the separation of 2.787 (2) Å (Fig. 2). All these intermolecular interactions have the contribution to the three-dimensional structure of the title compound.

It is noteworthy that the coordination geometry of the silver metal center can be affected by many factors, such as coordination natures of organic ligands, temperature, counteranions, etc. (Dong et al., 2004; Niu et al., 2009; Sumby & Hardie, 2005; Abu-Youssef et al., 2007). We have reported a Ag(I) polymeric structure recently (Niu et al., 2008), which includes a ligand isomeric to the one used in this paper (3-cyanobenzylidene isonicotinohydrazide). It showed that the position of the CN functional group seems to have a great influence on the structures of the resulting compounds (monomeric versus polymeric).

For the coordination of silver ions and properties of silver coordination compounds, see: Dong et al. (2004); Niu et al. (2008, 2009); Sumby & Hardie (2005); Abu-Youssef et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the AgI coordination environment in the monomeric structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram showing three intermolecular interactions: hydrogen bonds are indicated by blue dashed lines, Ag···N interactions by red dashed lines, and Ag···O interactions by green dashed lines.
Bis[N'-(3-cyanobenzylidene)isonicotinohydrazide-κN]silver(I) trifluoromethanesulfonate top
Crystal data top
[Ag(C14H10N4O)2]CF3SO3Z = 2
Mr = 757.46F(000) = 760
Triclinic, P1Dx = 1.680 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5481 (17) ÅCell parameters from 2331 reflections
b = 14.164 (3) Åθ = 2.0–25.5°
c = 14.175 (3) ŵ = 0.82 mm1
α = 87.895 (4)°T = 173 K
β = 89.918 (4)°Needle, yellow
γ = 81.355 (4)°0.32 × 0.22 × 0.17 mm
V = 1497.2 (6) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5461 independent reflections
Radiation source: fine-focus sealed tube3857 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 89
Tmin = 0.780, Tmax = 0.874k = 1517
8251 measured reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0934P)2 + 1.7184P]
where P = (Fo2 + 2Fc2)/3
5461 reflections(Δ/σ)max < 0.001
433 parametersΔρmax = 1.04 e Å3
0 restraintsΔρmin = 0.87 e Å3
0 constraints
Crystal data top
[Ag(C14H10N4O)2]CF3SO3γ = 81.355 (4)°
Mr = 757.46V = 1497.2 (6) Å3
Triclinic, P1Z = 2
a = 7.5481 (17) ÅMo Kα radiation
b = 14.164 (3) ŵ = 0.82 mm1
c = 14.175 (3) ÅT = 173 K
α = 87.895 (4)°0.32 × 0.22 × 0.17 mm
β = 89.918 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5461 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3857 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.874Rint = 0.023
8251 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.04 e Å3
5461 reflectionsΔρmin = 0.87 e Å3
433 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.93777 (7)0.21340 (3)0.17729 (3)0.0685 (2)
N10.8202 (6)0.1314 (3)0.0743 (3)0.0514 (11)
N20.5612 (6)0.0094 (4)0.2091 (3)0.0513 (11)
N30.5110 (6)0.0664 (3)0.2783 (3)0.0521 (11)
N40.0251 (8)0.0449 (4)0.7023 (4)0.0721 (14)
N51.0223 (6)0.3075 (3)0.2790 (3)0.0537 (11)
N61.2968 (6)0.4563 (4)0.5530 (3)0.0513 (11)
N71.3579 (6)0.5147 (3)0.6166 (3)0.0505 (10)
N81.8445 (9)0.4103 (5)1.0418 (4)0.0814 (16)
O10.7156 (6)0.1358 (3)0.1262 (3)0.0635 (11)
O21.2202 (6)0.5775 (3)0.4444 (3)0.0660 (11)
O30.2036 (7)0.2847 (3)0.6588 (3)0.0823 (14)
O40.1417 (11)0.1451 (4)0.7472 (4)0.120 (2)
O50.4103 (8)0.2082 (5)0.7702 (4)0.124 (2)
S30.2325 (3)0.22699 (11)0.74187 (11)0.0677 (5)
F10.0500 (8)0.3171 (5)0.8159 (4)0.135 (2)
F20.1803 (8)0.3828 (3)0.8371 (3)0.1131 (17)
F30.1446 (7)0.2578 (3)0.9181 (3)0.0987 (14)
C10.8156 (7)0.0385 (4)0.0907 (4)0.0512 (13)
H10.85080.01150.15130.061*
C20.7630 (7)0.0201 (4)0.0248 (4)0.0498 (12)
H20.76140.08590.03980.060*
C30.7118 (6)0.0181 (4)0.0644 (3)0.0425 (11)
C40.7153 (9)0.1136 (4)0.0820 (4)0.0589 (15)
H40.68110.14240.14220.071*
C50.7688 (9)0.1674 (4)0.0114 (4)0.0617 (15)
H50.76930.23360.02430.074*
C60.6637 (7)0.0506 (4)0.1360 (4)0.0471 (12)
C70.4229 (7)0.0216 (4)0.3474 (4)0.0524 (13)
H70.40100.04630.34880.063*
C80.3555 (7)0.0722 (4)0.4237 (3)0.0473 (12)
C90.3767 (9)0.1707 (4)0.4261 (4)0.0662 (16)
H90.44020.20800.37650.079*
C100.3077 (11)0.2158 (5)0.4991 (5)0.082 (2)
H100.32470.28360.49970.098*
C110.2132 (10)0.1621 (5)0.5717 (5)0.0746 (19)
H110.16310.19290.62140.089*
C120.1925 (8)0.0643 (4)0.5713 (4)0.0559 (14)
C130.2621 (7)0.0184 (4)0.4967 (3)0.0484 (12)
H130.24540.04940.49620.058*
C140.0978 (8)0.0051 (5)0.6452 (4)0.0572 (14)
C151.0095 (7)0.4007 (4)0.2630 (4)0.0520 (13)
H150.95260.42750.20640.062*
C161.0737 (7)0.4608 (4)0.3233 (4)0.0495 (12)
H161.06170.52730.30790.059*
C171.1562 (7)0.4243 (4)0.4069 (3)0.0442 (11)
C181.1695 (10)0.3279 (4)0.4243 (4)0.0723 (19)
H181.22290.29980.48130.087*
C191.1061 (11)0.2720 (4)0.3597 (5)0.078 (2)
H191.12160.20480.37210.093*
C201.2263 (7)0.4947 (4)0.4696 (4)0.0477 (12)
C211.4326 (7)0.4693 (4)0.6902 (4)0.0510 (13)
H211.44250.40160.69540.061*
C221.5024 (7)0.5212 (4)0.7661 (4)0.0490 (12)
C231.4820 (8)0.6210 (4)0.7655 (4)0.0575 (14)
H231.41700.65760.71580.069*
C241.5556 (9)0.6667 (4)0.8366 (4)0.0648 (16)
H241.54030.73450.83640.078*
C251.6511 (8)0.6137 (4)0.9077 (4)0.0615 (15)
H251.70580.64510.95530.074*
C261.6686 (7)0.5153 (4)0.9106 (4)0.0535 (13)
C271.5949 (7)0.4690 (4)0.8391 (4)0.0504 (12)
H271.60820.40120.84060.060*
C281.7683 (8)0.4570 (4)0.9849 (4)0.0581 (14)
C290.1274 (11)0.2994 (4)0.8338 (5)0.0696 (17)
H281.287 (7)0.397 (4)0.575 (4)0.047 (15)*
H290.529 (8)0.051 (4)0.217 (4)0.055 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0727 (4)0.0744 (4)0.0628 (3)0.0187 (2)0.0167 (2)0.0289 (2)
N10.053 (3)0.052 (3)0.052 (3)0.012 (2)0.017 (2)0.010 (2)
N20.056 (3)0.053 (3)0.044 (2)0.004 (2)0.014 (2)0.015 (2)
N30.054 (3)0.058 (3)0.045 (2)0.010 (2)0.011 (2)0.017 (2)
N40.074 (4)0.091 (4)0.055 (3)0.024 (3)0.020 (3)0.005 (3)
N50.064 (3)0.052 (3)0.046 (2)0.010 (2)0.015 (2)0.009 (2)
N60.062 (3)0.053 (3)0.041 (2)0.014 (2)0.018 (2)0.006 (2)
N70.051 (3)0.060 (3)0.042 (2)0.013 (2)0.0110 (19)0.009 (2)
N80.093 (4)0.094 (4)0.059 (3)0.016 (3)0.029 (3)0.005 (3)
O10.079 (3)0.049 (2)0.064 (2)0.013 (2)0.029 (2)0.0073 (18)
O20.090 (3)0.051 (2)0.059 (2)0.014 (2)0.028 (2)0.0045 (19)
O30.120 (4)0.075 (3)0.053 (3)0.018 (3)0.009 (2)0.007 (2)
O40.200 (7)0.061 (3)0.108 (4)0.045 (4)0.000 (4)0.006 (3)
O50.091 (4)0.168 (6)0.099 (4)0.032 (4)0.022 (3)0.007 (4)
S30.0903 (12)0.0504 (8)0.0573 (9)0.0049 (8)0.0142 (8)0.0033 (7)
F10.096 (4)0.161 (5)0.134 (5)0.022 (4)0.016 (3)0.014 (4)
F20.199 (6)0.058 (2)0.087 (3)0.033 (3)0.010 (3)0.016 (2)
F30.163 (4)0.074 (2)0.055 (2)0.009 (3)0.002 (2)0.0057 (19)
C10.053 (3)0.061 (3)0.040 (3)0.013 (3)0.015 (2)0.000 (2)
C20.056 (3)0.044 (3)0.050 (3)0.012 (2)0.014 (2)0.004 (2)
C30.039 (3)0.050 (3)0.040 (3)0.012 (2)0.011 (2)0.002 (2)
C40.082 (4)0.049 (3)0.046 (3)0.013 (3)0.027 (3)0.004 (2)
C50.082 (4)0.046 (3)0.058 (3)0.014 (3)0.028 (3)0.002 (3)
C60.045 (3)0.052 (3)0.045 (3)0.009 (2)0.014 (2)0.004 (2)
C70.054 (3)0.058 (3)0.044 (3)0.004 (3)0.013 (2)0.010 (2)
C80.047 (3)0.056 (3)0.040 (3)0.009 (2)0.010 (2)0.006 (2)
C90.079 (4)0.055 (3)0.066 (4)0.015 (3)0.029 (3)0.000 (3)
C100.102 (5)0.058 (4)0.088 (5)0.016 (4)0.037 (4)0.009 (3)
C110.089 (5)0.073 (4)0.066 (4)0.023 (4)0.033 (3)0.013 (3)
C120.058 (3)0.069 (4)0.045 (3)0.021 (3)0.012 (2)0.008 (3)
C130.053 (3)0.054 (3)0.040 (3)0.011 (2)0.009 (2)0.008 (2)
C140.057 (3)0.074 (4)0.044 (3)0.023 (3)0.013 (3)0.004 (3)
C150.054 (3)0.063 (3)0.038 (3)0.004 (3)0.020 (2)0.009 (2)
C160.056 (3)0.047 (3)0.045 (3)0.005 (2)0.015 (2)0.001 (2)
C170.049 (3)0.054 (3)0.029 (2)0.006 (2)0.006 (2)0.004 (2)
C180.115 (6)0.051 (3)0.050 (3)0.013 (3)0.037 (3)0.006 (3)
C190.131 (6)0.043 (3)0.061 (4)0.017 (3)0.044 (4)0.001 (3)
C200.047 (3)0.047 (3)0.048 (3)0.004 (2)0.010 (2)0.008 (2)
C210.058 (3)0.058 (3)0.041 (3)0.018 (3)0.010 (2)0.005 (2)
C220.048 (3)0.057 (3)0.043 (3)0.013 (2)0.015 (2)0.003 (2)
C230.057 (3)0.059 (3)0.057 (3)0.010 (3)0.010 (3)0.001 (3)
C240.077 (4)0.053 (3)0.067 (4)0.015 (3)0.009 (3)0.012 (3)
C250.062 (4)0.070 (4)0.057 (3)0.019 (3)0.015 (3)0.019 (3)
C260.051 (3)0.067 (4)0.044 (3)0.012 (3)0.010 (2)0.011 (3)
C270.056 (3)0.053 (3)0.043 (3)0.012 (2)0.009 (2)0.006 (2)
C280.059 (4)0.073 (4)0.044 (3)0.012 (3)0.013 (3)0.009 (3)
C290.098 (5)0.047 (3)0.060 (4)0.000 (3)0.015 (3)0.008 (3)
Geometric parameters (Å, º) top
Ag1—N52.160 (4)C7—H70.9500
Ag1—N12.169 (4)C8—C91.381 (8)
N1—C11.333 (7)C8—C131.390 (7)
N1—C51.335 (7)C9—C101.379 (8)
N2—C61.354 (7)C9—H90.9500
N2—N31.381 (6)C10—C111.389 (9)
N2—H290.86 (6)C10—H100.9500
N3—C71.278 (7)C11—C121.370 (9)
N4—C141.140 (7)C11—H110.9500
N5—C151.320 (7)C12—C131.404 (7)
N5—C191.351 (8)C12—C141.439 (8)
N6—C201.359 (7)C13—H130.9500
N6—N71.371 (6)C15—C161.366 (7)
N6—H280.90 (5)C15—H150.9500
N7—C211.291 (7)C16—C171.386 (7)
N8—C281.126 (8)C16—H160.9500
O1—C61.215 (6)C17—C181.368 (8)
O2—C201.207 (6)C17—C201.513 (7)
O3—S31.407 (4)C18—C191.365 (8)
O4—S31.432 (6)C18—H180.9500
O5—S31.385 (6)C19—H190.9500
S3—C291.798 (7)C21—C221.467 (7)
F1—C291.347 (9)C21—H210.9500
F2—C291.305 (8)C22—C271.377 (7)
F3—C291.310 (7)C22—C231.399 (8)
C1—C21.371 (7)C23—C241.379 (8)
C1—H10.9500C23—H230.9500
C2—C31.389 (7)C24—C251.371 (9)
C2—H20.9500C24—H240.9500
C3—C41.371 (7)C25—C261.380 (8)
C3—C61.514 (7)C25—H250.9500
C4—C51.377 (7)C26—C271.389 (7)
C4—H40.9500C26—C281.452 (8)
C5—H50.9500C27—H270.9500
C7—C81.453 (7)
N5—Ag1—N1172.56 (17)C11—C12—C13120.4 (5)
C1—N1—C5116.7 (4)C11—C12—C14122.0 (5)
C1—N1—Ag1120.4 (3)C13—C12—C14117.6 (5)
C5—N1—Ag1122.4 (4)C8—C13—C12119.9 (5)
C6—N2—N3119.1 (5)C8—C13—H13120.0
C6—N2—H29124 (4)C12—C13—H13120.0
N3—N2—H29116 (4)N4—C14—C12177.3 (6)
C7—N3—N2115.2 (5)N5—C15—C16123.6 (5)
C15—N5—C19116.4 (5)N5—C15—H15118.2
C15—N5—Ag1122.6 (3)C16—C15—H15118.2
C19—N5—Ag1120.7 (4)C15—C16—C17119.8 (5)
C20—N6—N7119.2 (5)C15—C16—H16120.1
C20—N6—H28124 (4)C17—C16—H16120.1
N7—N6—H28116 (4)C18—C17—C16117.0 (5)
C21—N7—N6113.5 (4)C18—C17—C20126.1 (5)
O5—S3—O3113.8 (4)C16—C17—C20116.9 (4)
O5—S3—O4114.0 (4)C19—C18—C17120.0 (5)
O3—S3—O4115.9 (3)C19—C18—H18120.0
O5—S3—C29103.2 (4)C17—C18—H18120.0
O3—S3—C29105.1 (3)N5—C19—C18123.1 (5)
O4—S3—C29102.8 (4)N5—C19—H19118.4
N1—C1—C2123.6 (5)C18—C19—H19118.4
N1—C1—H1118.2O2—C20—N6124.5 (5)
C2—C1—H1118.2O2—C20—C17120.9 (5)
C1—C2—C3118.9 (5)N6—C20—C17114.5 (4)
C1—C2—H2120.5N7—C21—C22120.6 (5)
C3—C2—H2120.5N7—C21—H21119.7
C4—C3—C2118.1 (5)C22—C21—H21119.7
C4—C3—C6125.1 (4)C27—C22—C23119.4 (5)
C2—C3—C6116.8 (4)C27—C22—C21118.2 (5)
C3—C4—C5119.1 (5)C23—C22—C21122.4 (5)
C3—C4—H4120.5C24—C23—C22120.3 (6)
C5—C4—H4120.5C24—C23—H23119.8
N1—C5—C4123.6 (5)C22—C23—H23119.8
N1—C5—H5118.2C25—C24—C23119.7 (6)
C4—C5—H5118.2C25—C24—H24120.2
O1—C6—N2124.3 (5)C23—C24—H24120.2
O1—C6—C3120.7 (4)C24—C25—C26120.7 (5)
N2—C6—C3114.9 (4)C24—C25—H25119.7
N3—C7—C8121.4 (5)C26—C25—H25119.7
N3—C7—H7119.3C25—C26—C27119.8 (5)
C8—C7—H7119.3C25—C26—C28122.2 (5)
C9—C8—C13118.7 (5)C27—C26—C28118.0 (5)
C9—C8—C7123.2 (5)C22—C27—C26120.1 (5)
C13—C8—C7118.0 (5)C22—C27—H27120.0
C10—C9—C8121.4 (6)C26—C27—H27120.0
C10—C9—H9119.3N8—C28—C26178.7 (6)
C8—C9—H9119.3F2—C29—F3108.7 (6)
C9—C10—C11119.9 (6)F2—C29—F1106.0 (6)
C9—C10—H10120.0F3—C29—F1106.0 (6)
C11—C10—H10120.0F2—C29—S3113.5 (5)
C12—C11—C10119.6 (5)F3—C29—S3113.9 (4)
C12—C11—H11120.2F1—C29—S3108.1 (5)
C10—C11—H11120.2
C6—N2—N3—C7176.3 (5)C15—C16—C17—C20179.1 (5)
C20—N6—N7—C21175.6 (5)C16—C17—C18—C191.3 (10)
C5—N1—C1—C20.4 (8)C20—C17—C18—C19177.5 (6)
Ag1—N1—C1—C2172.1 (4)C15—N5—C19—C182.4 (11)
N1—C1—C2—C30.3 (8)Ag1—N5—C19—C18176.9 (6)
C1—C2—C3—C40.5 (8)C17—C18—C19—N52.7 (12)
C1—C2—C3—C6177.1 (5)N7—N6—C20—O23.5 (8)
C2—C3—C4—C50.1 (9)N7—N6—C20—C17177.5 (4)
C6—C3—C4—C5177.3 (5)C18—C17—C20—O2174.2 (6)
C1—N1—C5—C40.9 (9)C16—C17—C20—O24.5 (8)
Ag1—N1—C5—C4171.4 (5)C18—C17—C20—N64.8 (8)
C3—C4—C5—N10.7 (10)C16—C17—C20—N6176.4 (5)
N3—N2—C6—O10.2 (8)N6—N7—C21—C22178.9 (5)
N3—N2—C6—C3179.8 (4)N7—C21—C22—C27174.4 (5)
C4—C3—C6—O1156.7 (6)N7—C21—C22—C234.1 (8)
C2—C3—C6—O120.7 (8)C27—C22—C23—C240.8 (9)
C4—C3—C6—N223.3 (8)C21—C22—C23—C24177.6 (5)
C2—C3—C6—N2159.3 (5)C22—C23—C24—C250.8 (9)
N2—N3—C7—C8177.8 (5)C23—C24—C25—C262.4 (10)
N3—C7—C8—C91.9 (9)C24—C25—C26—C272.5 (9)
N3—C7—C8—C13179.5 (5)C24—C25—C26—C28179.8 (6)
C13—C8—C9—C100.1 (10)C23—C22—C27—C260.8 (8)
C7—C8—C9—C10178.7 (6)C21—C22—C27—C26177.7 (5)
C8—C9—C10—C110.6 (12)C25—C26—C27—C220.9 (8)
C9—C10—C11—C121.4 (12)C28—C26—C27—C22178.6 (5)
C10—C11—C12—C131.7 (10)O5—S3—C29—F266.4 (6)
C10—C11—C12—C14179.2 (7)O3—S3—C29—F253.2 (6)
C9—C8—C13—C120.4 (8)O4—S3—C29—F2174.8 (5)
C7—C8—C13—C12179.1 (5)O5—S3—C29—F358.8 (7)
C11—C12—C13—C81.2 (9)O3—S3—C29—F3178.3 (5)
C14—C12—C13—C8179.6 (5)O4—S3—C29—F360.0 (7)
C19—N5—C15—C160.8 (9)O5—S3—C29—F1176.3 (5)
Ag1—N5—C15—C16175.2 (4)O3—S3—C29—F164.1 (6)
N5—C15—C16—C170.5 (9)O4—S3—C29—F157.6 (6)
C15—C16—C17—C180.3 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H29···O5i0.86 (6)2.27 (6)3.125 (9)173 (5)
N6—H28···O3ii0.90 (5)2.12 (6)2.982 (7)161 (5)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ag(C14H10N4O)2]CF3SO3
Mr757.46
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.5481 (17), 14.164 (3), 14.175 (3)
α, β, γ (°)87.895 (4), 89.918 (4), 81.355 (4)
V3)1497.2 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.32 × 0.22 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.780, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
8251, 5461, 3857
Rint0.023
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.175, 1.03
No. of reflections5461
No. of parameters433
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.04, 0.87

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005).

Selected geometric parameters (Å, º) top
Ag1—N52.160 (4)Ag1—N12.169 (4)
N5—Ag1—N1172.56 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H29···O5i0.86 (6)2.27 (6)3.125 (9)173 (5)
N6—H28···O3ii0.90 (5)2.12 (6)2.982 (7)161 (5)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z.
 

Acknowledgements

We are grateful to Mrs Li (Wuhan University) for her assistance with the X-ray crystallographic analysis.

References

First citationAbu-Youssef, M. A. M., Dey, R., Gohar, Y., Massoud, A. A., Öhrström, L. & Langer, V. (2007). Inorg. Chem. 46, 5893–5903.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR. Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, Y.-B., Zhao, X., Huang, R.-Q., Smith, M. D. & Zur Loye, H.-C. (2004). Inorg. Chem. 43, 5603–5612.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNiu, C.-Y., Wu, B.-L., Zheng, X.-F., Wan, X.-S., Zhang, H.-Y., Niu, Y.-Y. & Meng, L.-Y. (2009). CrystEngComm, 11, 1373–1382.  Web of Science CSD CrossRef CAS Google Scholar
First citationNiu, C.-Y., Zheng, X.-F., Bai, L.-L., Wu, X.-L. & Kou, C.-H. (2008). Acta Cryst. C64, m305–m307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSumby, C. J. & Hardie, M. J. (2005). Angew. Chem. Int. Ed. 44, 6395–6399.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds