organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(4-Eth­oxy­phen­yl)imino­meth­yl]-5-meth­oxy­phenol

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, bSinop University, Gerze Sinop Vocational School, Sinop, Turkey, and cDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: sgul@omu.edu.tr

(Received 8 September 2009; accepted 2 October 2009; online 10 October 2009)

The title compound, C16H17NO3, a Schiff base, is stabilized in the solid state in the phenol–imine tautomeric form, with the H atom located on the hydr­oxy O atom rather than on the N atom. This H atom is involved in a strong intra­molecular O—H⋯N hydrogen bond. The mol­ecule is almost planar, the angle between the benzene rings being 4.43 (13)°. C—H⋯π inter­actions are also present.

Related literature

For the industrial and biological properties of Schiff bases, see: Karia et al. (1999[Karia, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991-995.]); Taggi et al. (2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]). For Schiff base tautomerism, see: Şahin et al. (2005[Şahin, O., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2859-o2861.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17NO3

  • Mr = 271.31

  • Monoclinic, P 21 /c

  • a = 7.4609 (7) Å

  • b = 8.3777 (5) Å

  • c = 23.016 (2) Å

  • β = 98.896 (8)°

  • V = 1421.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.49 × 0.28 × 0.07 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.983, Tmax = 0.994

  • 8971 measured reflections

  • 2788 independent reflections

  • 971 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.075

  • S = 0.80

  • 2788 reflections

  • 181 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.06 e Å−3

  • Δρmin = −0.09 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.83 2.563 (3) 148
C1—H1ACg2i 0.96 3.32 4.000 (3) 129
C3—H3⋯Cg2i 0.93 3.30 4.155 (3) 155
C8—H8⋯Cg2ii 0.93 3.39 4.269 (3) 159
C10—H10⋯Cg1i 0.93 3.00 3.849 (3) 153
C16—H16BCg1ii 0.97 3.04 3.822 (3) 139
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]. Cg1 and Cg2 are the centroids of the [please define] and [please define] rings, respectively.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases are used as substrates in the preparation of a number of industrial and biologically active compounds via ring closure, cycloaddition and replacement reactions (Karia et al., 1999). Moreover, Schiff bases are also known to have biological activities such as antimicrobial, antifungal, antitumor and as herbicides. On the industrial scale, they have a wide range of applications such as dyes and pigments (Taggi et al., 2002). In general, Schiff bases display two possible tautomeric forms, the phenol-imine (Hadjoudis et al., 1987) and keto-amine (Şahin et al., 2005) forms. Depending on the tautomers two types of intramolecular hydrogen bonds are observed in Schiff bases: O—H···N in phenol-imine and N—H···O in keto-amine tautomers. Our X-ray investigation of the title compound indicates that the phenol-imine tautomer is favoured over the keto-amine tautomer (Fig. 1).

Selected bond lengths of the title compound are given in Table 1. The N1—C8 bond length of 1.285 (3) Å is typical of a double bond. The dihedral angle between the C2···C7 and C9···C14 benzene rings is 4.43 (13)° and the compound is thus almost planar. The C5—C8—N1—C9 torsion angle is 179.3 (2)°. The compound shows a strong intramolecular hydrogen bond (O1—H1···N1) which forms a S(6) motif. The compound also contains five intermolecular C—H···π interactions. The combination of three C—H···π interactions generates chain of edge-fused R21(7)R22(15) rings running parallel to the [010] direction (Fig. 2). The details of C—H···π interactions are given in Table 2.

Related literature top

For the industrial and biological properties of Schiff bases, see: Karia et al. (1999); Taggi et al. (2002). For Schiff base tautomerism, see: Şahin et al. (2005); Hadjoudis et al. (1987).

Experimental top

The title compound was prepared by refluxing a mixture of a solution containing 2-hydroxy-4-methoxy-benzaldehyde (0.0237 g, 0.156 mmol) in 20 ml ethanol and a solution containing 4-ethoxyaniline (0.0214 g, 0.156 mmol) in 20 ml ethanol. The reaction mixture was stirred for 1 h under reflux. Crystals suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield % 71; m.p. 381–383 K).

Refinement top

Phenolic H atom (H1) was first detected in a difference map, but eventually fixed in calculated position, with the O—H bond length constrained to 0.82 Å and Uiso(H1) = 1.5Ueq(O1). Other H atoms were also placed in calculated positions and constrained to ride on their parents atoms, with C—H = 0.93–0.96 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). For atom C12, anisotropic displacement parameters were restrained to approximate an isotropic behaviour.

Structure description top

Schiff bases are used as substrates in the preparation of a number of industrial and biologically active compounds via ring closure, cycloaddition and replacement reactions (Karia et al., 1999). Moreover, Schiff bases are also known to have biological activities such as antimicrobial, antifungal, antitumor and as herbicides. On the industrial scale, they have a wide range of applications such as dyes and pigments (Taggi et al., 2002). In general, Schiff bases display two possible tautomeric forms, the phenol-imine (Hadjoudis et al., 1987) and keto-amine (Şahin et al., 2005) forms. Depending on the tautomers two types of intramolecular hydrogen bonds are observed in Schiff bases: O—H···N in phenol-imine and N—H···O in keto-amine tautomers. Our X-ray investigation of the title compound indicates that the phenol-imine tautomer is favoured over the keto-amine tautomer (Fig. 1).

Selected bond lengths of the title compound are given in Table 1. The N1—C8 bond length of 1.285 (3) Å is typical of a double bond. The dihedral angle between the C2···C7 and C9···C14 benzene rings is 4.43 (13)° and the compound is thus almost planar. The C5—C8—N1—C9 torsion angle is 179.3 (2)°. The compound shows a strong intramolecular hydrogen bond (O1—H1···N1) which forms a S(6) motif. The compound also contains five intermolecular C—H···π interactions. The combination of three C—H···π interactions generates chain of edge-fused R21(7)R22(15) rings running parallel to the [010] direction (Fig. 2). The details of C—H···π interactions are given in Table 2.

For the industrial and biological properties of Schiff bases, see: Karia et al. (1999); Taggi et al. (2002). For Schiff base tautomerism, see: Şahin et al. (2005); Hadjoudis et al. (1987).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing the formation of a chain along [010] generated by the C—H···π interactions.
2-[(4-Ethoxyphenyl)iminomethyl]-5-methoxyphenol top
Crystal data top
C16H17NO3F(000) = 576
Mr = 271.31Dx = 1.268 Mg m3
Monoclinic, P21/cMelting point: 381 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.4609 (7) ÅCell parameters from 5881 reflections
b = 8.3777 (5) Åθ = 1.8–27.3°
c = 23.016 (2) ŵ = 0.09 mm1
β = 98.896 (8)°T = 296 K
V = 1421.3 (2) Å3Plate, yellow
Z = 40.49 × 0.28 × 0.07 mm
Data collection top
Stoe IPDS-II
diffractometer
2788 independent reflections
Radiation source: fine-focus sealed tube971 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.8°
ω scansh = 89
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 810
Tmin = 0.983, Tmax = 0.994l = 2828
8971 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 0.80 w = 1/[σ2(Fo2) + (0.0187P)2]
where P = (Fo2 + 2Fc2)/3
2788 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.06 e Å3
6 restraintsΔρmin = 0.09 e Å3
0 constraints
Crystal data top
C16H17NO3V = 1421.3 (2) Å3
Mr = 271.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4609 (7) ŵ = 0.09 mm1
b = 8.3777 (5) ÅT = 296 K
c = 23.016 (2) Å0.49 × 0.28 × 0.07 mm
β = 98.896 (8)°
Data collection top
Stoe IPDS-II
diffractometer
2788 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
971 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.994Rint = 0.068
8971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0426 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 0.80Δρmax = 0.06 e Å3
2788 reflectionsΔρmin = 0.09 e Å3
181 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6165 (4)0.5043 (3)0.57051 (10)0.1085 (9)
H1A0.56960.61080.56970.163*
H1B0.64830.48280.60860.163*
H1C0.72220.49380.54110.163*
C20.3202 (4)0.3896 (3)0.59654 (12)0.0808 (7)
C30.2831 (4)0.4771 (3)0.64744 (12)0.0856 (8)
H30.36930.54650.65840.103*
C40.1155 (5)0.4605 (3)0.68216 (11)0.0800 (7)
C50.0154 (4)0.3552 (3)0.66750 (11)0.0757 (7)
C60.0289 (4)0.2690 (3)0.61528 (12)0.0893 (8)
H60.05570.19800.60440.107*
C70.1921 (4)0.2855 (3)0.57975 (11)0.0870 (8)
H70.21730.22810.54490.104*
C80.1875 (4)0.3370 (3)0.70488 (12)0.0838 (8)
H80.26930.26120.69530.101*
C90.3994 (5)0.4049 (3)0.78873 (12)0.0795 (7)
C100.4158 (4)0.4914 (3)0.84077 (13)0.0890 (8)
H100.32020.55560.84830.107*
C110.5712 (5)0.4833 (3)0.88123 (12)0.0910 (8)
H110.57930.54230.91580.109*
C120.7163 (4)0.3890 (3)0.87168 (12)0.0808 (7)
C130.7025 (4)0.3066 (3)0.81961 (12)0.0921 (8)
H130.79970.24520.81170.111*
C140.5468 (5)0.3141 (3)0.77915 (12)0.0936 (8)
H140.54030.25640.74440.112*
O30.8627 (3)0.38748 (19)0.91485 (8)0.0937 (5)
C161.0174 (4)0.2954 (3)0.90641 (11)0.0995 (8)
H16A1.06450.33240.87180.119*
H16B0.98410.18390.90080.119*
C171.1580 (4)0.3138 (3)0.95957 (11)0.1148 (10)
H17A1.26370.25320.95460.172*
H17B1.11080.27580.99350.172*
H17C1.19000.42450.96490.172*
N10.2308 (3)0.4230 (2)0.75114 (10)0.0830 (6)
O10.0840 (2)0.55210 (18)0.73075 (7)0.1034 (6)
H10.01750.53280.74860.155*
O20.4817 (3)0.39332 (19)0.55872 (7)0.0959 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.104 (2)0.111 (2)0.119 (2)0.008 (2)0.0432 (17)0.0031 (16)
C20.101 (3)0.0615 (16)0.086 (2)0.0006 (18)0.0332 (17)0.0117 (15)
C30.113 (3)0.0661 (17)0.0850 (18)0.0012 (17)0.0390 (17)0.0099 (15)
C40.110 (2)0.0633 (16)0.0734 (18)0.0098 (18)0.0350 (17)0.0052 (14)
C50.107 (3)0.0510 (15)0.0770 (18)0.0034 (16)0.0393 (17)0.0008 (13)
C60.128 (3)0.0612 (16)0.0856 (19)0.0098 (17)0.0385 (17)0.0017 (15)
C70.122 (3)0.0655 (17)0.0777 (18)0.0055 (18)0.0277 (18)0.0040 (13)
C80.110 (3)0.0594 (16)0.0882 (18)0.0026 (16)0.0367 (17)0.0105 (15)
C90.113 (3)0.0539 (16)0.0788 (19)0.0098 (17)0.0378 (18)0.0004 (14)
C100.095 (2)0.0694 (17)0.109 (2)0.0008 (16)0.0387 (17)0.0109 (16)
C110.106 (2)0.0722 (18)0.103 (2)0.0002 (19)0.0425 (18)0.0223 (15)
C120.104 (3)0.0599 (16)0.0849 (19)0.0066 (17)0.0352 (18)0.0046 (14)
C130.107 (3)0.0849 (19)0.090 (2)0.0093 (18)0.0337 (17)0.0042 (16)
C140.126 (3)0.0754 (18)0.089 (2)0.009 (2)0.044 (2)0.0130 (15)
O30.0995 (16)0.0828 (12)0.1030 (13)0.0054 (11)0.0288 (12)0.0143 (9)
C160.106 (3)0.0844 (18)0.117 (2)0.0038 (18)0.0463 (19)0.0041 (15)
C170.120 (3)0.118 (2)0.107 (2)0.0166 (19)0.0188 (19)0.0062 (16)
N10.111 (2)0.0614 (13)0.0824 (16)0.0081 (13)0.0317 (14)0.0039 (11)
O10.1215 (16)0.0934 (12)0.0997 (12)0.0025 (11)0.0312 (10)0.0327 (10)
O20.1132 (17)0.0798 (12)0.0985 (13)0.0076 (12)0.0283 (12)0.0057 (9)
Geometric parameters (Å, º) top
C1—O21.426 (3)C9—C101.389 (3)
C1—H1A0.9600C9—N11.420 (3)
C1—H1B0.9600C10—C111.372 (3)
C1—H1C0.9600C10—H100.9300
C2—O21.374 (3)C11—C121.385 (3)
C2—C31.374 (3)C11—H110.9300
C2—C71.392 (3)C12—O31.358 (3)
C3—C41.383 (3)C12—C131.373 (3)
C3—H30.9300C13—C141.373 (3)
C4—O11.347 (2)C13—H130.9300
C4—C51.396 (3)C14—H140.9300
C5—C61.398 (3)O3—C161.426 (3)
C5—C81.439 (3)C16—C171.492 (3)
C6—C71.364 (3)C16—H16A0.9700
C6—H60.9300C16—H16B0.9700
C7—H70.9300C17—H17A0.9600
C8—N11.285 (3)C17—H17B0.9600
C8—H80.9300C17—H17C0.9600
C9—C141.383 (3)O1—H10.8200
O2—C1—H1A109.5C11—C10—H10119.6
O2—C1—H1B109.5C9—C10—H10119.6
H1A—C1—H1B109.5C10—C11—C12121.3 (3)
O2—C1—H1C109.5C10—C11—H11119.3
H1A—C1—H1C109.5C12—C11—H11119.3
H1B—C1—H1C109.5O3—C12—C13125.3 (3)
O2—C2—C3124.7 (3)O3—C12—C11116.7 (3)
O2—C2—C7114.3 (3)C13—C12—C11118.1 (3)
C3—C2—C7121.0 (3)C12—C13—C14120.7 (3)
C2—C3—C4118.9 (3)C12—C13—H13119.6
C2—C3—H3120.5C14—C13—H13119.6
C4—C3—H3120.5C13—C14—C9121.8 (3)
O1—C4—C3116.6 (3)C13—C14—H14119.1
O1—C4—C5121.5 (3)C9—C14—H14119.1
C3—C4—C5121.9 (3)C12—O3—C16118.8 (2)
C4—C5—C6116.9 (3)O3—C16—C17108.3 (2)
C4—C5—C8121.1 (3)O3—C16—H16A110.0
C6—C5—C8122.0 (3)C17—C16—H16A110.0
C7—C6—C5122.3 (3)O3—C16—H16B110.0
C7—C6—H6118.9C17—C16—H16B110.0
C5—C6—H6118.9H16A—C16—H16B108.4
C6—C7—C2119.0 (3)C16—C17—H17A109.5
C6—C7—H7120.5C16—C17—H17B109.5
C2—C7—H7120.5H17A—C17—H17B109.5
N1—C8—C5121.5 (3)C16—C17—H17C109.5
N1—C8—H8119.2H17A—C17—H17C109.5
C5—C8—H8119.2H17B—C17—H17C109.5
C14—C9—C10117.3 (3)C8—N1—C9122.1 (2)
C14—C9—N1127.8 (3)C4—O1—H1109.5
C10—C9—N1114.9 (3)C2—O2—C1118.0 (2)
C11—C10—C9120.8 (3)
O2—C2—C3—C4179.0 (2)C9—C10—C11—C120.1 (4)
C7—C2—C3—C40.0 (3)C10—C11—C12—O3179.1 (2)
C2—C3—C4—O1178.26 (19)C10—C11—C12—C131.8 (4)
C2—C3—C4—C51.2 (3)O3—C12—C13—C14178.9 (2)
O1—C4—C5—C6178.2 (2)C11—C12—C13—C142.0 (4)
C3—C4—C5—C61.2 (3)C12—C13—C14—C90.6 (4)
O1—C4—C5—C81.9 (3)C10—C9—C14—C131.1 (3)
C3—C4—C5—C8178.6 (2)N1—C9—C14—C13179.7 (2)
C4—C5—C6—C70.0 (3)C13—C12—O3—C160.7 (3)
C8—C5—C6—C7179.8 (2)C11—C12—O3—C16178.4 (2)
C5—C6—C7—C21.2 (4)C12—O3—C16—C17179.9 (2)
O2—C2—C7—C6178.0 (2)C5—C8—N1—C9179.3 (2)
C3—C2—C7—C61.2 (3)C14—C9—N1—C88.9 (3)
C4—C5—C8—N14.0 (3)C10—C9—N1—C8171.8 (2)
C6—C5—C8—N1176.2 (2)C3—C2—O2—C14.8 (3)
C14—C9—C10—C111.3 (3)C7—C2—O2—C1176.0 (2)
N1—C9—C10—C11179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.832.563 (3)148
C1—H1A···Cg2i0.963.324.000 (3)129
C3—H3···Cg2i0.933.304.155 (3)155
C8—H8···Cg2ii0.933.394.269 (3)159
C10—H10···Cg1i0.933.003.849 (3)153
C16—H16B···Cg1ii0.973.043.822 (3)139
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H17NO3
Mr271.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.4609 (7), 8.3777 (5), 23.016 (2)
β (°) 98.896 (8)
V3)1421.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.49 × 0.28 × 0.07
Data collection
DiffractometerStoe IPDS-II
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.983, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
8971, 2788, 971
Rint0.068
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.075, 0.80
No. of reflections2788
No. of parameters181
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.06, 0.09

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
C1—O21.426 (3)C8—N11.285 (3)
C2—O21.374 (3)C9—N11.420 (3)
C4—O11.347 (2)O3—C161.426 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.832.563 (3)147.7
C1—H1A···Cg2i0.963.32414.000 (3)129
C3—H3···Cg2i0.933.29594.155 (3)154.6
C8—H8···Cg2ii0.933.38734.269 (3)159
C10—H10···Cg1i0.932.99943.849 (3)152.6
C16—H16B···Cg1ii0.973.04023.822 (3)138.6
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationKaria, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991–995.  CAS Google Scholar
First citationŞahin, O., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2859–o2861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds