metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis[bis­­(2-meth­oxy­phen­yl)phenyl­phosphine-κP]di­chloridopalladium(II)

aUniversity of Johannesburg, Department of Chemistry, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: cvanblerk@uj.ac.za

(Received 23 September 2009; accepted 6 October 2009; online 10 October 2009)

The structure of the title compound, [PdCl2(C20H19O2P)2], shows a square-planar geometry for the PdII ion within a Cl2Pd[PPh(PhOMe)2]2 ligand set. The PdII atom sits on an inversion centre and therefore the asymmetric unit contains the PdII atom, one Cl atom and one bis­(2-methoxy­phen­yl)phenyl­phosphine ligand. The trans arrangement of ligands is also imposed by symmetry.

Related literature

For related structures of similar palladium complexes and their use in methoxy­carbonyl­ation reactions, see: Robertson & Cole-Hamilton (2002[Robertson, R. A. M. & Cole-Hamilton, D. J. (2002). Coord. Chem Rev. 225, 67-90.]); Van Leeuwen et al. (2003[Van Leeuwen, P. W. N. M., Zuideveld, M. A., Swennenhuis, B. H., Freixa, Z., Kamer, P. C. J., Goubitz, K., Fraanje, J., Lutz, M. & Spek, A. L. (2003). J. Am. Chem. Soc. 125, 5523-5539.]); Williams et al. (2008[Williams, D. B. G., Shaw, M. L., Green, M. J. & Holzapfel, C. W. (2008). Angew. Chem. Int. Ed. 47, 560-563.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C20H19O2P)2]

  • Mr = 821.94

  • Monoclinic, P 21 /n

  • a = 9.1617 (2) Å

  • b = 12.7203 (3) Å

  • c = 16.4939 (4) Å

  • β = 94.114 (1)°

  • V = 1917.24 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 296 K

  • 0.22 × 0.18 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (APEX AXScale; Bruker, 2008[Bruker (2008). APEX AXScale and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.853, Tmax = 0.916

  • 23435 measured reflections

  • 4750 independent reflections

  • 3339 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.089

  • S = 1.02

  • 4750 reflections

  • 225 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected geometric parameters (Å, °)

P1—Pd1 2.3458 (6)
Cl1—Pd1 2.3048 (7)
Cl1—Pd1—P1 93.24 (2)
Cl1i—Pd1—P1 86.76 (2)
Symmetry code: (i) -x, -y, -z.

Data collection: SMART-NT (Bruker, 1999[Bruker (1999). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX AXScale and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The palladium-catalysed methoxycarbonylation (Robertson & Cole-Hamilton, 2002) of 1-alkenes is an active area of research. The preferred (pre)-catalysts of general structure (Ar3P)2PdX2 (X = Cl, DMS, OTf, etc.) are either preformed or generated in situ. The X-ray structures (Van Leeuwen et al., 2003; Williams et al., 2008) of several of this class of palladium(II) complexes have been determined. Only some of these have found application in the catalysis of the methoxycarbonylation reaction, but their use results mainly in the formation of linear esters (Robertson & Cole-Hamilton, 2002). However, we have identified some palladium(II) complexes which catalyse the regioselective formation of branched esters. We report here the structure of one of these.

The structure of the title compound, [PdCl2(C40H38P2O4)], shows a square planar geometry for the PdII ion within the Cl2(PPh(PhOMe)2) ligand set. The palladium atom sits on a centre of inversion and therefore the asymmetric unit contains the palladium atom, one chlorine atom and one bis-(2-methoxyphenyl)phenylphosphine ligand. Figure 1 shows the molecular structure of the title compound.

Related literature top

For related structures of similar palladium complexes and literature about their use in methoxycarbonylation reactions, see: Robertson et al. (2002); Van Leeuwen et al. (2003); Williams et al. (2008).

Experimental top

Bis-(2-methoxyphenyl)phenylphosphine (1.288 g, 4 mmol) was added to a solution of palladium(II) chloride (354 mg, 2 mmol) and anhydrous lithium chloride (168 mg, 4 mmol) in methanol (15 ml). The mixture was refluxed in an atmosphere of nitrogen until all the phosphine reagent had reacted and a light yellow product had formed (ca. 45 min). The reaction mixture was cooled and the product collected by filtration, washed with fresh methanol and dried under vacuum. The crude product (1.37 g) was dissolved in dichloromethane and crystallization of the title compound was carried out by diethyl ether vapour diffusion into the dichloromethane. The crystals of the title compound were pale yellow blocks (m.p. > 503 K, decomp.) and a suitable crystal was selected for the single-crystal X-ray diffraction analysis.

Refinement top

H atoms were geometrically positioned and refined in the riding-model approximation, with C—H = 0.93–0.97 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). The highest peak in the final difference map is 2.20 Å from H37A and the deepest hole is 0.31 Å from Pd1.

Structure description top

The palladium-catalysed methoxycarbonylation (Robertson & Cole-Hamilton, 2002) of 1-alkenes is an active area of research. The preferred (pre)-catalysts of general structure (Ar3P)2PdX2 (X = Cl, DMS, OTf, etc.) are either preformed or generated in situ. The X-ray structures (Van Leeuwen et al., 2003; Williams et al., 2008) of several of this class of palladium(II) complexes have been determined. Only some of these have found application in the catalysis of the methoxycarbonylation reaction, but their use results mainly in the formation of linear esters (Robertson & Cole-Hamilton, 2002). However, we have identified some palladium(II) complexes which catalyse the regioselective formation of branched esters. We report here the structure of one of these.

The structure of the title compound, [PdCl2(C40H38P2O4)], shows a square planar geometry for the PdII ion within the Cl2(PPh(PhOMe)2) ligand set. The palladium atom sits on a centre of inversion and therefore the asymmetric unit contains the palladium atom, one chlorine atom and one bis-(2-methoxyphenyl)phenylphosphine ligand. Figure 1 shows the molecular structure of the title compound.

For related structures of similar palladium complexes and literature about their use in methoxycarbonylation reactions, see: Robertson et al. (2002); Van Leeuwen et al. (2003); Williams et al. (2008).

Computing details top

Data collection: SMART-NT (Bruker, 1999); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. Atoms labelled with (i) are at symmetry position (-x, -y, -z).
trans-Bis[bis(2-methoxyphenyl)phenylphosphine- κP]dichloridopalladium(II) top
Crystal data top
[PdCl2(C20H19O2P)2]F(000) = 840
Mr = 821.94Dx = 1.424 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5078 reflections
a = 9.1617 (2) Åθ = 2.5–24.7°
b = 12.7203 (3) ŵ = 0.75 mm1
c = 16.4939 (4) ÅT = 296 K
β = 94.114 (1)°Block, yellow
V = 1917.24 (8) Å30.22 × 0.18 × 0.12 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
4750 independent reflections
Radiation source: fine-focus sealed tube3339 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
φ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(APEX AXScale; Bruker, 2008)
h = 1212
Tmin = 0.853, Tmax = 0.916k = 1616
23435 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0441P)2]
where P = (Fo2 + 2Fc2)/3
4750 reflections(Δ/σ)max = 0.001
225 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.38 e Å3
0 constraints
Crystal data top
[PdCl2(C20H19O2P)2]V = 1917.24 (8) Å3
Mr = 821.94Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.1617 (2) ŵ = 0.75 mm1
b = 12.7203 (3) ÅT = 296 K
c = 16.4939 (4) Å0.22 × 0.18 × 0.12 mm
β = 94.114 (1)°
Data collection top
Bruker SMART CCD
diffractometer
4750 independent reflections
Absorption correction: multi-scan
(APEX AXScale; Bruker, 2008)
3339 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.916Rint = 0.064
23435 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.02Δρmax = 0.63 e Å3
4750 reflectionsΔρmin = 0.38 e Å3
225 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.0228 (3)0.1927 (2)0.15944 (16)0.0323 (6)
C120.0094 (3)0.1268 (2)0.22659 (16)0.0401 (7)
H120.04320.06460.22400.048*
C130.0734 (3)0.1526 (3)0.29741 (18)0.0505 (8)
H130.06470.10720.34170.061*
C140.1500 (3)0.2454 (3)0.3024 (2)0.0528 (8)
H140.19270.26280.35010.063*
C150.1626 (3)0.3112 (3)0.2373 (2)0.0505 (8)
H150.21280.37440.24090.061*
C160.1016 (3)0.2850 (2)0.16577 (18)0.0426 (7)
H160.11360.32990.12130.051*
C210.2607 (3)0.1459 (2)0.10562 (17)0.0363 (6)
C220.3400 (3)0.0578 (2)0.08536 (18)0.0434 (7)
H220.29540.00760.05080.052*
C230.4839 (3)0.0426 (3)0.1152 (2)0.0569 (9)
H230.53580.01630.10020.068*
C240.5481 (4)0.1156 (3)0.1671 (2)0.0670 (10)
H240.64440.10550.18760.080*
C250.4735 (4)0.2040 (3)0.1898 (2)0.0631 (10)
H250.51910.25250.22540.076*
C260.3300 (3)0.2201 (3)0.15904 (19)0.0472 (8)
C270.3017 (6)0.3742 (4)0.2385 (3)0.1117 (19)
H27A0.31800.33540.28820.167*
H27B0.23110.42860.24540.167*
H27C0.39210.40520.22450.167*
C310.0464 (3)0.2692 (2)0.00191 (17)0.0403 (7)
C320.1582 (4)0.3370 (2)0.0142 (2)0.0518 (8)
H320.25100.32760.01140.062*
C330.1318 (5)0.4201 (3)0.0691 (2)0.0707 (11)
H330.20660.46640.07960.085*
C340.0048 (6)0.4326 (3)0.1071 (2)0.0805 (13)
H340.02120.48690.14440.097*
C350.1175 (5)0.3675 (3)0.0916 (2)0.0737 (12)
H350.20990.37790.11750.088*
C360.0933 (4)0.2854 (2)0.03693 (19)0.0505 (8)
C370.3458 (4)0.2356 (4)0.0401 (3)0.1033 (17)
H37A0.37050.30480.02240.155*
H37B0.40600.18470.01540.155*
H37C0.36180.23120.09810.155*
O10.2494 (2)0.30626 (18)0.17624 (15)0.0639 (7)
O20.1969 (2)0.21487 (18)0.01702 (15)0.0628 (7)
P10.06893 (7)0.15556 (5)0.06890 (4)0.03007 (16)
Cl10.12498 (8)0.06305 (6)0.10623 (4)0.04534 (19)
Pd10.00000.00000.00000.02642 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0277 (13)0.0311 (14)0.0378 (14)0.0047 (11)0.0009 (11)0.0057 (11)
C120.0412 (16)0.0401 (16)0.0384 (16)0.0050 (13)0.0002 (13)0.0031 (13)
C130.056 (2)0.059 (2)0.0359 (16)0.0035 (16)0.0020 (15)0.0028 (15)
C140.0448 (19)0.069 (2)0.0461 (18)0.0056 (17)0.0128 (15)0.0177 (17)
C150.0432 (18)0.0463 (19)0.063 (2)0.0063 (15)0.0130 (16)0.0168 (16)
C160.0434 (17)0.0356 (16)0.0492 (17)0.0033 (13)0.0056 (14)0.0043 (13)
C210.0268 (14)0.0406 (16)0.0415 (15)0.0064 (12)0.0030 (12)0.0073 (12)
C220.0336 (16)0.0468 (18)0.0492 (17)0.0012 (13)0.0001 (13)0.0083 (14)
C230.0321 (17)0.062 (2)0.076 (2)0.0062 (15)0.0007 (16)0.0080 (19)
C240.0341 (18)0.091 (3)0.074 (2)0.0017 (19)0.0093 (17)0.004 (2)
C250.0407 (19)0.080 (3)0.067 (2)0.0151 (18)0.0095 (17)0.022 (2)
C260.0381 (17)0.0505 (19)0.0529 (18)0.0081 (14)0.0027 (14)0.0131 (15)
C270.128 (4)0.086 (3)0.114 (4)0.004 (3)0.035 (3)0.063 (3)
C310.0531 (18)0.0263 (14)0.0425 (16)0.0021 (12)0.0100 (15)0.0037 (12)
C320.062 (2)0.0367 (17)0.060 (2)0.0031 (15)0.0236 (17)0.0025 (15)
C330.099 (3)0.039 (2)0.079 (3)0.009 (2)0.046 (2)0.0043 (19)
C340.124 (4)0.054 (3)0.064 (3)0.007 (3)0.016 (3)0.018 (2)
C350.102 (3)0.049 (2)0.068 (2)0.010 (2)0.014 (2)0.0157 (19)
C360.067 (2)0.0352 (16)0.0484 (18)0.0089 (15)0.0040 (16)0.0039 (14)
C370.059 (3)0.094 (3)0.151 (4)0.009 (2)0.033 (3)0.026 (3)
O10.0490 (13)0.0574 (14)0.0837 (17)0.0081 (11)0.0064 (12)0.0361 (13)
O20.0521 (14)0.0522 (14)0.0802 (16)0.0009 (11)0.0218 (12)0.0140 (12)
P10.0294 (3)0.0265 (3)0.0342 (4)0.0024 (3)0.0015 (3)0.0036 (3)
Cl10.0549 (5)0.0435 (4)0.0395 (4)0.0124 (3)0.0169 (3)0.0021 (3)
Pd10.02524 (14)0.02514 (14)0.02887 (14)0.00229 (12)0.00193 (10)0.00150 (12)
Geometric parameters (Å, º) top
C11—C161.386 (4)C27—O11.400 (4)
C11—C121.387 (4)C27—H27A0.9600
C11—P11.827 (3)C27—H27B0.9600
C12—C131.383 (4)C27—H27C0.9600
C12—H120.9300C31—C321.379 (4)
C13—C141.379 (4)C31—C361.405 (4)
C13—H130.9300C31—P11.822 (3)
C14—C151.361 (5)C32—C331.402 (5)
C14—H140.9300C32—H320.9300
C15—C161.382 (4)C33—C341.368 (6)
C15—H150.9300C33—H330.9300
C16—H160.9300C34—C351.362 (6)
C21—C221.390 (4)C34—H340.9300
C21—C261.410 (4)C35—C361.388 (4)
C21—P11.821 (3)C35—H350.9300
C22—C231.387 (4)C36—O21.363 (4)
C22—H220.9300C37—O21.414 (4)
C23—C241.367 (5)C37—H37A0.9600
C23—H230.9300C37—H37B0.9600
C24—C251.381 (5)C37—H37C0.9600
C24—H240.9300P1—Pd12.3458 (6)
C25—C261.390 (4)Cl1—Pd12.3048 (7)
C25—H250.9300Pd1—Cl1i2.3048 (7)
C26—O11.363 (4)Pd1—P1i2.3458 (6)
C16—C11—C12117.9 (3)H27A—C27—H27C109.5
C16—C11—P1123.6 (2)H27B—C27—H27C109.5
C12—C11—P1118.5 (2)C32—C31—C36119.0 (3)
C13—C12—C11120.9 (3)C32—C31—P1124.0 (3)
C13—C12—H12119.6C36—C31—P1116.9 (2)
C11—C12—H12119.6C31—C32—C33120.0 (3)
C14—C13—C12120.1 (3)C31—C32—H32120.0
C14—C13—H13119.9C33—C32—H32120.0
C12—C13—H13119.9C34—C33—C32119.6 (4)
C15—C14—C13119.6 (3)C34—C33—H33120.2
C15—C14—H14120.2C32—C33—H33120.2
C13—C14—H14120.2C35—C34—C33121.6 (4)
C14—C15—C16120.6 (3)C35—C34—H34119.2
C14—C15—H15119.7C33—C34—H34119.2
C16—C15—H15119.7C34—C35—C36119.5 (4)
C15—C16—C11120.9 (3)C34—C35—H35120.3
C15—C16—H16119.5C36—C35—H35120.3
C11—C16—H16119.5O2—C36—C35124.8 (3)
C22—C21—C26118.1 (3)O2—C36—C31114.9 (3)
C22—C21—P1118.9 (2)C35—C36—C31120.3 (3)
C26—C21—P1122.9 (2)O2—C37—H37A109.5
C23—C22—C21121.8 (3)O2—C37—H37B109.5
C23—C22—H22119.1H37A—C37—H37B109.5
C21—C22—H22119.1O2—C37—H37C109.5
C24—C23—C22118.9 (3)H37A—C37—H37C109.5
C24—C23—H23120.6H37B—C37—H37C109.5
C22—C23—H23120.6C26—O1—C27119.1 (3)
C23—C24—C25121.6 (3)C36—O2—C37119.2 (3)
C23—C24—H24119.2C21—P1—C31108.64 (14)
C25—C24—H24119.2C21—P1—C11103.58 (12)
C24—C25—C26119.7 (3)C31—P1—C11104.58 (13)
C24—C25—H25120.2C21—P1—Pd1108.91 (9)
C26—C25—H25120.2C31—P1—Pd1111.13 (9)
O1—C26—C25123.7 (3)C11—P1—Pd1119.37 (8)
O1—C26—C21116.2 (3)Cl1—Pd1—Cl1i180.00 (4)
C25—C26—C21120.0 (3)Cl1—Pd1—P1i86.76 (2)
O1—C27—H27A109.5Cl1i—Pd1—P1i93.24 (2)
O1—C27—H27B109.5Cl1—Pd1—P193.24 (2)
H27A—C27—H27B109.5Cl1i—Pd1—P186.76 (2)
O1—C27—H27C109.5P1i—Pd1—P1180.00 (5)
C16—C11—C12—C130.2 (4)P1—C31—C36—C35177.1 (3)
P1—C11—C12—C13178.3 (2)C25—C26—O1—C2711.5 (5)
C11—C12—C13—C140.9 (4)C21—C26—O1—C27169.7 (3)
C12—C13—C14—C150.2 (5)C35—C36—O2—C3712.9 (5)
C13—C14—C15—C161.2 (5)C31—C36—O2—C37167.9 (3)
C14—C15—C16—C111.9 (5)C22—C21—P1—C31117.1 (2)
C12—C11—C16—C151.1 (4)C26—C21—P1—C3167.9 (3)
P1—C11—C16—C15176.8 (2)C22—C21—P1—C11132.1 (2)
C26—C21—C22—C231.0 (5)C26—C21—P1—C1142.9 (3)
P1—C21—C22—C23176.2 (3)C22—C21—P1—Pd14.1 (3)
C21—C22—C23—C241.2 (5)C26—C21—P1—Pd1170.9 (2)
C22—C23—C24—C250.5 (6)C32—C31—P1—C212.3 (3)
C23—C24—C25—C260.4 (6)C36—C31—P1—C21175.8 (2)
C24—C25—C26—O1178.1 (3)C32—C31—P1—C11107.8 (3)
C24—C25—C26—C210.6 (5)C36—C31—P1—C1174.1 (2)
C22—C21—C26—O1178.9 (3)C32—C31—P1—Pd1122.1 (2)
P1—C21—C26—O16.1 (4)C36—C31—P1—Pd156.0 (2)
C22—C21—C26—C250.0 (5)C16—C11—P1—C21119.4 (2)
P1—C21—C26—C25175.0 (3)C12—C11—P1—C2158.5 (2)
C36—C31—C32—C330.5 (5)C16—C11—P1—C315.7 (3)
P1—C31—C32—C33177.5 (2)C12—C11—P1—C31172.3 (2)
C31—C32—C33—C340.7 (5)C16—C11—P1—Pd1119.4 (2)
C32—C33—C34—C351.4 (6)C12—C11—P1—Pd162.7 (2)
C33—C34—C35—C360.9 (6)C21—P1—Pd1—Cl1103.82 (10)
C34—C35—C36—O2179.6 (3)C31—P1—Pd1—Cl1136.53 (11)
C34—C35—C36—C310.3 (6)C11—P1—Pd1—Cl114.71 (10)
C32—C31—C36—O2179.7 (3)C21—P1—Pd1—Cl1i76.18 (10)
P1—C31—C36—O22.2 (4)C31—P1—Pd1—Cl1i43.47 (11)
C32—C31—C36—C351.0 (5)C11—P1—Pd1—Cl1i165.29 (10)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[PdCl2(C20H19O2P)2]
Mr821.94
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.1617 (2), 12.7203 (3), 16.4939 (4)
β (°) 94.114 (1)
V3)1917.24 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.22 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(APEX AXScale; Bruker, 2008)
Tmin, Tmax0.853, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
23435, 4750, 3339
Rint0.064
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.089, 1.02
No. of reflections4750
No. of parameters225
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.38

Computer programs: SMART-NT (Bruker, 1999), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2009).

Selected geometric parameters (Å, º) top
P1—Pd12.3458 (6)Cl1—Pd12.3048 (7)
Cl1—Pd1—P193.24 (2)Cl1i—Pd1—P186.76 (2)
Symmetry code: (i) x, y, z.
 

Acknowledgements

The authors acknowledge the University of the Witwaters­rand for their facilities and the use of the diffractometer in the Jan Boeyens Structural Chemistry Laboratory.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (1999). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). APEX AXScale and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRobertson, R. A. M. & Cole-Hamilton, D. J. (2002). Coord. Chem Rev. 225, 67–90.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan Leeuwen, P. W. N. M., Zuideveld, M. A., Swennenhuis, B. H., Freixa, Z., Kamer, P. C. J., Goubitz, K., Fraanje, J., Lutz, M. & Spek, A. L. (2003). J. Am. Chem. Soc. 125, 5523–5539.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationWilliams, D. B. G., Shaw, M. L., Green, M. J. & Holzapfel, C. W. (2008). Angew. Chem. Int. Ed. 47, 560–563.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds