organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3E,5E)-1-Benzyl-3,5-di­benzyl­idenepiperidin-4-one

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, India, bPhysics Division, School of Science and Humanities, VIT University, Vellore 632 014, India, and cBioinformatics Infrastructure Facility, Department of Biotechnology, School of Life Science, University of Hyderabad, Hyderabad 500 046, India
*Correspondence e-mail: ravindranath_rathore@yahoo.com

(Received 9 September 2009; accepted 17 September 2009; online 17 October 2009)

In the title compound, C26H23NO, C—H⋯O hydrogen bonds generate a ribbon structure along the a axis. These ribbons further assemble into a one-dimensional sheet parallel to the ac plane via C—H⋯π inter­actions. The piperidin-4-one ring adopts a sofa conformation with the 1-benzyl group in the equatorial position, and the 3- and 5-phenyl substituents stretched out on either side. The benzyl­idene units adopt E configurations and the 1-benzyl group is disposed towards the 3- substituent of the piperidin-4-one ring.

Related literature

For literature related to the synthesis and pharmaceutical activity of 3,5-diaryl­idene-4-piperidone compounds, see Krapcho & Turk (1979[Krapcho, J. & Turk, C. F. (1979). J. Med. Chem. 22, 207-210.]); Sviridenkova et al. (2005[Sviridenkova, N. V., Vatsadze, S. Z., Manaenkova, M. A. & Zyk, N. V. (2005). Russ. Chem. Bull. 54, 2590-2593.]); Das et al. (2007[Das, U., Alcorn, J., Shrivastav, A., Sharma, R. K., de Clercq, E., Balzarini, J. & Dimmock, J. R. (2007). Eur. J. Med. Chem. 42, 71-80.]). The crystal structures of four analogous compounds have been reported (Suresh et al., 2007[Suresh, J., Suresh Kumar, R., Perumal, S. & Natarajan, S. (2007). Acta Cryst. C63, o315-o318.]). For ring conformations, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Duax et al. (1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, pp. 271-383. New Jersey: John Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • C26H23NO

  • Mr = 365.45

  • Triclinic, [P \overline 1]

  • a = 6.3354 (4) Å

  • b = 10.2365 (6) Å

  • c = 15.7885 (9) Å

  • α = 75.245 (2)°

  • β = 87.651 (3)°

  • γ = 88.699 (3)°

  • V = 989.24 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.22 × 0.19 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.896, Tmax = 0.964

  • 25021 measured reflections

  • 6540 independent reflections

  • 4181 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.202

  • S = 1.06

  • 6540 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯N1 0.93 2.57 2.885 (2) 100
C14—H14⋯O1 0.93 2.36 2.7560 (18) 106
C21—H21⋯O1 0.93 2.40 2.761 (2) 103
C2—H2B⋯O1i 0.97 2.44 3.3798 (17) 163
C16—H16⋯O1ii 0.93 2.50 3.304 (2) 145
C7—H7ACg2iii 0.97 2.77 3.6957 (18) 159
C19—H19⋯Cg4iv 0.93 2.91 3.523 (2) 125
Symmetry codes: (i) x+1, y, z; (ii) -x, -y, -z; (iii) -x+1, -y, -z+1; (iv) x+1, y-1, z. Cg2 is the centroid of the C8–C13 ring and Cg4 is the centroid of the C22–C27 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Derivatives of 3,5-diarylidene-4-piperidones (D4P) are pharmaceutically important compounds (Krapcho & Turk, 1979; Sviridenkova et al., 2005; Das et al., 2007). During our investigations on D4P, a series of compounds were prepared. The title compound (3E,5E)-3,5-dibenzylidene-1-phenyl-piperidin-4-one, (I), is reported here.

The molecular structure of (I) with atom numbering scheme is shown in Fig 1. The C3, C5 diene moieties possess E configuration. The C3, C5 phenyl substituents of the piperidinone ring are stretched out on either side with following values of torsion angles: C4—C3—C14—C15 = 176.89 (14)°, C3—C14—C15—C16 = 169.52 (15)°, C4—C5—C21—C22 = -177.30 (14)° and C5—C21—C22—C23 = -138.13 (17)°. The dihedral angle of C3, C5-benzene rings is 41.2 (1)°. The dihedral angles between of benzene rings of C3 and C5-substitutens with respect to the corresponding ring of C1-benzyl substituent are 68.3 (1)° and 69.0 (1)°, respectively.

The sp2 hybridized C3, C4 and C5 atoms give rise to a sofa conformation of the six-membered piperidinone ring as also observed in the structures of related compounds, namely, (R)-3,5-Bis[(E)-benzylidene]-1-(1-phenylethyl)piperidin-4-one, 3,5-bis[(E)-4-chlorobenzylidene]-1-[(R)-1-phenylethyl] piperidin-4-one, and 3,5-bis[(E)-2-chlorobenzylidene]-1-[(R)-1-phenylethyl] piperidin-4-one (Suresh et al., 2007). In the sofa conformation, the N1 atom is -0.715 (1)Å shifted out of the base plane (C2/C3/C4/C5/C6). The deviation of the ring from ideal sofa conformation, ΔC2 (Duax et al., 1976) is 13.3°. The Cremer and Pople (Cremer & Pople, 1975) puckering parameters, corresponding to the ring conformation are as follows: q2 = 0.5420 (15) Å, q3 = 0.2419 (15) Å, φ = 65.95 (14)°, θ = 348.13 (16)°, and the total puckering amplitude Q = 0.5934 (14) Å. The benzyl substituent is in equatorial position of piperidinone ring and its conformation is described by the following torsion angles: C2—N1—C7—C8 = -72.72 (16)°, N1—C7—C8—C9 = 157.64 (14)°. The C1-benzyl group is disposed towards C3-substituent of the piperidin-4-one ring, a feature that varies among related structures.

The observed inter- and intra-molecular interactions are listed in Table 1. The adjacent H14 and H21 atoms participate in an intra-molecular C14—H14···O1···H21—C21 interaction scheme. Additionally, proton H13 of C1-benzyl substituent participate in an intra-molecular C13—H13···N1 interaction.

The crystal packing is characterized by molecular ribbon along a-axis due to two C—H···O interactions. They are: C2—H2B···O1 and C16—H16···O1 interactions. These ribbons further assemble via C7—H7A···Cg2 of an inversion-related molecule leading to a sheet structure parallel to ac-plane. Cg2 is the centroid of (C8—C13) ring. Crystal packing is shown in Fig2. In addition, the structure also contains a short contact, C19—H19···Cg4, where Cg4 is the centroid of (C22—C27) ring.

Related literature top

For literature related to the synthesis and pharmaceutical activity of 3,5-diarylidene-4-piperidone compounds, see Krapcho & Turk (1979); Sviridenkova et al. (2005); Das et al. (2007). The crystal structures of four analogous compounds have been reported (Suresh et al., 2007). For literature related to the ring conformation, see Cremer & Pople (1975); Duax et al. (1976).

Experimental top

A mixture of 1-benzyl-4-piperidone (0.01 mol) and 2-fluorobenzaldehyde (0.02 mol) was added to a warm solution of ammonium acetate (0.01 mol) in absolute ethanol (15 ml). The mixture was gradually warmed on a water bath until the yellow color changed to orange. The mixture was kept aside overnight at room temperature. Reactions were monitored with TLC for completeness. The solid obtained was separated and the crude compound were purified using silica gel column chromatography with hexane and ethyl acetate as elutant. Final yields: 84.50%; m.p. 427 (2)°K. Suitable single crystals for data collection were grown from ethanol and tetrahydrofurane in (1:1) ratio.

Refinement top

Hydrogen atoms were placed in the geometrically expected positions and refined with the riding options. The distances with hydrogen atoms are: C(aromatic)—H = 0.93 Å, C(methylene)—H = 0.97 Å, and Uiso = 1.2 Ueq(parent)

Structure description top

Derivatives of 3,5-diarylidene-4-piperidones (D4P) are pharmaceutically important compounds (Krapcho & Turk, 1979; Sviridenkova et al., 2005; Das et al., 2007). During our investigations on D4P, a series of compounds were prepared. The title compound (3E,5E)-3,5-dibenzylidene-1-phenyl-piperidin-4-one, (I), is reported here.

The molecular structure of (I) with atom numbering scheme is shown in Fig 1. The C3, C5 diene moieties possess E configuration. The C3, C5 phenyl substituents of the piperidinone ring are stretched out on either side with following values of torsion angles: C4—C3—C14—C15 = 176.89 (14)°, C3—C14—C15—C16 = 169.52 (15)°, C4—C5—C21—C22 = -177.30 (14)° and C5—C21—C22—C23 = -138.13 (17)°. The dihedral angle of C3, C5-benzene rings is 41.2 (1)°. The dihedral angles between of benzene rings of C3 and C5-substitutens with respect to the corresponding ring of C1-benzyl substituent are 68.3 (1)° and 69.0 (1)°, respectively.

The sp2 hybridized C3, C4 and C5 atoms give rise to a sofa conformation of the six-membered piperidinone ring as also observed in the structures of related compounds, namely, (R)-3,5-Bis[(E)-benzylidene]-1-(1-phenylethyl)piperidin-4-one, 3,5-bis[(E)-4-chlorobenzylidene]-1-[(R)-1-phenylethyl] piperidin-4-one, and 3,5-bis[(E)-2-chlorobenzylidene]-1-[(R)-1-phenylethyl] piperidin-4-one (Suresh et al., 2007). In the sofa conformation, the N1 atom is -0.715 (1)Å shifted out of the base plane (C2/C3/C4/C5/C6). The deviation of the ring from ideal sofa conformation, ΔC2 (Duax et al., 1976) is 13.3°. The Cremer and Pople (Cremer & Pople, 1975) puckering parameters, corresponding to the ring conformation are as follows: q2 = 0.5420 (15) Å, q3 = 0.2419 (15) Å, φ = 65.95 (14)°, θ = 348.13 (16)°, and the total puckering amplitude Q = 0.5934 (14) Å. The benzyl substituent is in equatorial position of piperidinone ring and its conformation is described by the following torsion angles: C2—N1—C7—C8 = -72.72 (16)°, N1—C7—C8—C9 = 157.64 (14)°. The C1-benzyl group is disposed towards C3-substituent of the piperidin-4-one ring, a feature that varies among related structures.

The observed inter- and intra-molecular interactions are listed in Table 1. The adjacent H14 and H21 atoms participate in an intra-molecular C14—H14···O1···H21—C21 interaction scheme. Additionally, proton H13 of C1-benzyl substituent participate in an intra-molecular C13—H13···N1 interaction.

The crystal packing is characterized by molecular ribbon along a-axis due to two C—H···O interactions. They are: C2—H2B···O1 and C16—H16···O1 interactions. These ribbons further assemble via C7—H7A···Cg2 of an inversion-related molecule leading to a sheet structure parallel to ac-plane. Cg2 is the centroid of (C8—C13) ring. Crystal packing is shown in Fig2. In addition, the structure also contains a short contact, C19—H19···Cg4, where Cg4 is the centroid of (C22—C27) ring.

For literature related to the synthesis and pharmaceutical activity of 3,5-diarylidene-4-piperidone compounds, see Krapcho & Turk (1979); Sviridenkova et al. (2005); Das et al. (2007). The crystal structures of four analogous compounds have been reported (Suresh et al., 2007). For literature related to the ring conformation, see Cremer & Pople (1975); Duax et al. (1976).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) with non-H atoms shown as probability ellipsoids at 30% levels (Farrugia, 2008).
[Figure 2] Fig. 2. Molecular associations into one-dimensional sheet via C—H···O and C—H···π interactions (see Table 1 for symmetry code). Cg2 is the centroid of (C8—C13) ring.
(3E,5E)-1-Benzyl-3,5-dibenzylidenepiperidin-4-one top
Crystal data top
C26H23NOZ = 2
Mr = 365.45F(000) = 388
Triclinic, P1Dx = 1.227 Mg m3
Hall symbol: -P 1Melting point: 427 K
a = 6.3354 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2365 (6) ÅCell parameters from 1089 reflections
c = 15.7885 (9) Åθ = 2.6–22.0°
α = 75.245 (2)°µ = 0.07 mm1
β = 87.651 (3)°T = 295 K
γ = 88.699 (3)°Block, yellow
V = 989.24 (10) Å30.22 × 0.19 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6540 independent reflections
Radiation source: fine-focus sealed tube4181 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 31.6°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.896, Tmax = 0.964k = 1415
25021 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1034P)2 + 0.1348P]
where P = (Fo2 + 2Fc2)/3
6540 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C26H23NOγ = 88.699 (3)°
Mr = 365.45V = 989.24 (10) Å3
Triclinic, P1Z = 2
a = 6.3354 (4) ÅMo Kα radiation
b = 10.2365 (6) ŵ = 0.07 mm1
c = 15.7885 (9) ÅT = 295 K
α = 75.245 (2)°0.22 × 0.19 × 0.18 mm
β = 87.651 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6540 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4181 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.964Rint = 0.035
25021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.202H-atom parameters constrained
S = 1.06Δρmax = 0.22 e Å3
6540 reflectionsΔρmin = 0.25 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.41574 (19)0.06361 (11)0.29573 (7)0.0388 (3)
O10.03961 (17)0.09433 (13)0.13155 (9)0.0607 (3)
C20.4799 (2)0.00037 (14)0.22535 (9)0.0388 (3)
H2A0.51840.09340.25040.047*
H2B0.60310.04580.19380.047*
C30.3061 (2)0.00704 (13)0.16274 (9)0.0365 (3)
C40.1269 (2)0.10236 (15)0.16572 (10)0.0409 (3)
C50.1623 (2)0.21277 (14)0.20919 (9)0.0391 (3)
C60.3625 (2)0.20500 (14)0.25728 (10)0.0419 (3)
H6A0.47580.24740.21720.050*
H6B0.34450.25250.30300.050*
C70.5831 (3)0.05303 (15)0.35758 (10)0.0456 (3)
H7A0.55090.11440.39430.055*
H7B0.71450.08180.32520.055*
C80.6140 (2)0.08686 (15)0.41541 (9)0.0450 (3)
C90.8058 (3)0.1227 (2)0.45420 (13)0.0654 (5)
H90.91730.06250.44090.078*
C100.8331 (4)0.2468 (3)0.51234 (15)0.0876 (8)
H100.96190.26870.53900.105*
C110.6736 (5)0.3375 (2)0.53127 (14)0.0902 (8)
H110.69380.42150.57020.108*
C120.4837 (4)0.3047 (2)0.49285 (13)0.0769 (6)
H120.37460.36680.50540.092*
C130.4529 (3)0.17936 (17)0.43535 (11)0.0561 (4)
H130.32260.15740.41000.067*
C140.3014 (2)0.06137 (14)0.10079 (9)0.0390 (3)
H140.18130.04520.06750.047*
C150.4524 (2)0.15682 (13)0.07658 (9)0.0388 (3)
C160.3853 (3)0.22865 (16)0.01835 (10)0.0474 (3)
H160.25050.21270.00360.057*
C170.5152 (3)0.32245 (17)0.00687 (12)0.0589 (4)
H170.46710.36960.04530.071*
C180.7149 (3)0.34718 (17)0.02409 (12)0.0604 (5)
H180.80160.41160.00750.073*
C190.7858 (3)0.27558 (18)0.08004 (12)0.0547 (4)
H190.92170.29140.10090.066*
C200.6575 (2)0.18052 (15)0.10546 (10)0.0467 (3)
H200.70880.13170.14230.056*
C210.0135 (2)0.30848 (15)0.20503 (10)0.0454 (3)
H210.10880.29840.17680.055*
C220.0221 (2)0.42793 (15)0.24022 (10)0.0456 (3)
C230.1555 (3)0.46678 (18)0.28275 (12)0.0582 (4)
H230.27840.41670.28880.070*
C240.1519 (4)0.5785 (2)0.31605 (14)0.0711 (6)
H240.27130.60230.34530.085*
C250.0267 (4)0.6549 (2)0.30642 (14)0.0715 (6)
H250.02850.73030.32900.086*
C260.2030 (3)0.61958 (17)0.26319 (13)0.0631 (5)
H260.32380.67190.25590.076*
C270.2011 (3)0.50666 (15)0.23063 (11)0.0520 (4)
H270.32150.48300.20190.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0467 (7)0.0396 (6)0.0315 (6)0.0051 (5)0.0077 (5)0.0109 (4)
O10.0388 (6)0.0723 (8)0.0803 (9)0.0045 (5)0.0156 (6)0.0349 (7)
C20.0413 (7)0.0429 (7)0.0344 (7)0.0036 (5)0.0053 (5)0.0138 (5)
C30.0367 (7)0.0374 (6)0.0342 (7)0.0019 (5)0.0018 (5)0.0071 (5)
C40.0345 (7)0.0462 (7)0.0420 (8)0.0016 (5)0.0016 (6)0.0112 (6)
C50.0396 (7)0.0415 (7)0.0350 (7)0.0005 (5)0.0003 (5)0.0078 (5)
C60.0482 (8)0.0384 (6)0.0401 (7)0.0028 (5)0.0077 (6)0.0108 (5)
C70.0523 (9)0.0478 (7)0.0398 (8)0.0025 (6)0.0117 (6)0.0156 (6)
C80.0563 (9)0.0497 (8)0.0322 (7)0.0127 (6)0.0089 (6)0.0162 (6)
C90.0654 (11)0.0815 (12)0.0521 (10)0.0227 (9)0.0187 (8)0.0216 (9)
C100.1057 (19)0.0971 (17)0.0605 (13)0.0531 (15)0.0312 (12)0.0211 (12)
C110.161 (3)0.0623 (12)0.0441 (10)0.0447 (15)0.0169 (14)0.0096 (9)
C120.1278 (19)0.0521 (10)0.0483 (10)0.0019 (11)0.0043 (11)0.0094 (8)
C130.0736 (11)0.0530 (9)0.0420 (9)0.0042 (8)0.0071 (8)0.0123 (7)
C140.0404 (7)0.0416 (6)0.0351 (7)0.0015 (5)0.0064 (5)0.0090 (5)
C150.0473 (8)0.0387 (6)0.0296 (6)0.0019 (5)0.0020 (5)0.0070 (5)
C160.0579 (9)0.0483 (8)0.0381 (8)0.0040 (6)0.0061 (6)0.0139 (6)
C170.0847 (13)0.0495 (8)0.0488 (9)0.0041 (8)0.0005 (9)0.0240 (7)
C180.0781 (13)0.0487 (8)0.0556 (10)0.0084 (8)0.0069 (9)0.0176 (7)
C190.0548 (10)0.0577 (9)0.0512 (9)0.0107 (7)0.0018 (7)0.0141 (7)
C200.0489 (9)0.0516 (8)0.0422 (8)0.0026 (6)0.0053 (6)0.0162 (6)
C210.0415 (8)0.0483 (7)0.0461 (8)0.0039 (6)0.0028 (6)0.0117 (6)
C220.0500 (8)0.0416 (7)0.0418 (8)0.0091 (6)0.0039 (6)0.0048 (6)
C230.0563 (10)0.0592 (9)0.0601 (11)0.0085 (7)0.0023 (8)0.0186 (8)
C240.0826 (14)0.0709 (12)0.0630 (12)0.0188 (10)0.0070 (10)0.0261 (10)
C250.1052 (17)0.0520 (9)0.0608 (12)0.0106 (10)0.0095 (11)0.0208 (8)
C260.0816 (13)0.0429 (8)0.0612 (11)0.0042 (8)0.0094 (9)0.0049 (7)
C270.0568 (10)0.0423 (7)0.0519 (9)0.0035 (6)0.0001 (7)0.0033 (6)
Geometric parameters (Å, º) top
N1—C71.4543 (18)C13—H130.9300
N1—C61.4575 (18)C14—C151.4610 (19)
N1—C21.4617 (17)C14—H140.9300
O1—C41.2183 (17)C15—C201.390 (2)
C2—C31.4984 (19)C15—C161.399 (2)
C2—H2A0.9700C16—C171.375 (2)
C2—H2B0.9700C16—H160.9300
C3—C141.3417 (19)C17—C181.370 (3)
C3—C41.4870 (19)C17—H170.9300
C4—C51.489 (2)C18—C191.377 (3)
C5—C211.3354 (19)C18—H180.9300
C5—C61.495 (2)C19—C201.380 (2)
C6—H6A0.9700C19—H190.9300
C6—H6B0.9700C20—H200.9300
C7—C81.503 (2)C21—C221.469 (2)
C7—H7A0.9700C21—H210.9300
C7—H7B0.9700C22—C271.387 (2)
C8—C131.380 (3)C22—C231.389 (2)
C8—C91.383 (2)C23—C241.376 (3)
C9—C101.376 (3)C23—H230.9300
C9—H90.9300C24—C251.371 (3)
C10—C111.360 (4)C24—H240.9300
C10—H100.9300C25—C261.374 (3)
C11—C121.366 (4)C25—H250.9300
C11—H110.9300C26—C271.380 (2)
C12—C131.385 (3)C26—H260.9300
C12—H120.9300C27—H270.9300
C7—N1—C6110.28 (11)C8—C13—C12120.50 (19)
C7—N1—C2111.05 (11)C8—C13—H13119.8
C6—N1—C2108.77 (11)C12—C13—H13119.8
N1—C2—C3111.46 (11)C3—C14—C15131.10 (13)
N1—C2—H2A109.3C3—C14—H14114.4
C3—C2—H2A109.3C15—C14—H14114.4
N1—C2—H2B109.3C20—C15—C16117.51 (13)
C3—C2—H2B109.3C20—C15—C14125.51 (13)
H2A—C2—H2B108.0C16—C15—C14116.97 (13)
C14—C3—C4116.30 (12)C17—C16—C15121.06 (16)
C14—C3—C2125.73 (12)C17—C16—H16119.5
C4—C3—C2117.90 (11)C15—C16—H16119.5
O1—C4—C3121.95 (13)C18—C17—C16120.63 (16)
O1—C4—C5120.88 (13)C18—C17—H17119.7
C3—C4—C5117.12 (12)C16—C17—H17119.7
C21—C5—C4118.78 (13)C17—C18—C19119.27 (15)
C21—C5—C6124.66 (13)C17—C18—H18120.4
C4—C5—C6116.54 (11)C19—C18—H18120.4
N1—C6—C5109.06 (11)C18—C19—C20120.70 (17)
N1—C6—H6A109.9C18—C19—H19119.7
C5—C6—H6A109.9C20—C19—H19119.7
N1—C6—H6B109.9C19—C20—C15120.77 (15)
C5—C6—H6B109.9C19—C20—H20119.6
H6A—C6—H6B108.3C15—C20—H20119.6
N1—C7—C8113.90 (12)C5—C21—C22127.05 (14)
N1—C7—H7A108.8C5—C21—H21116.5
C8—C7—H7A108.8C22—C21—H21116.5
N1—C7—H7B108.8C27—C22—C23118.09 (16)
C8—C7—H7B108.8C27—C22—C21122.26 (14)
H7A—C7—H7B107.7C23—C22—C21119.63 (15)
C13—C8—C9118.31 (16)C24—C23—C22120.79 (18)
C13—C8—C7122.09 (14)C24—C23—H23119.6
C9—C8—C7119.49 (16)C22—C23—H23119.6
C10—C9—C8120.6 (2)C25—C24—C23120.40 (18)
C10—C9—H9119.7C25—C24—H24119.8
C8—C9—H9119.7C23—C24—H24119.8
C11—C10—C9120.7 (2)C24—C25—C26119.73 (18)
C11—C10—H10119.7C24—C25—H25120.1
C9—C10—H10119.7C26—C25—H25120.1
C10—C11—C12119.7 (2)C25—C26—C27120.11 (19)
C10—C11—H11120.2C25—C26—H26119.9
C12—C11—H11120.2C27—C26—H26119.9
C11—C12—C13120.3 (2)C26—C27—C22120.86 (16)
C11—C12—H12119.9C26—C27—H27119.6
C13—C12—H12119.9C22—C27—H27119.6
C7—N1—C2—C3178.28 (12)C7—C8—C13—C12176.30 (15)
C6—N1—C2—C360.18 (15)C11—C12—C13—C80.8 (3)
N1—C2—C3—C14167.71 (13)C4—C3—C14—C15176.89 (14)
N1—C2—C3—C415.50 (17)C2—C3—C14—C150.1 (2)
C14—C3—C4—O118.9 (2)C3—C14—C15—C2011.5 (3)
C2—C3—C4—O1164.04 (14)C3—C14—C15—C16169.52 (15)
C14—C3—C4—C5158.55 (13)C20—C15—C16—C172.2 (2)
C2—C3—C4—C518.54 (18)C14—C15—C16—C17178.79 (14)
O1—C4—C5—C214.5 (2)C15—C16—C17—C180.5 (3)
C3—C4—C5—C21173.00 (13)C16—C17—C18—C190.9 (3)
O1—C4—C5—C6173.68 (14)C17—C18—C19—C200.5 (3)
C3—C4—C5—C68.87 (19)C18—C19—C20—C151.3 (3)
C7—N1—C6—C5168.16 (12)C16—C15—C20—C192.6 (2)
C2—N1—C6—C569.84 (14)C14—C15—C20—C19178.48 (15)
C21—C5—C6—N1144.04 (14)C4—C5—C21—C22177.30 (14)
C4—C5—C6—N133.97 (17)C6—C5—C21—C224.7 (3)
C6—N1—C7—C8166.64 (12)C5—C21—C22—C2743.6 (2)
C2—N1—C7—C872.72 (16)C5—C21—C22—C23138.13 (17)
N1—C7—C8—C1326.1 (2)C27—C22—C23—C241.4 (3)
N1—C7—C8—C9157.64 (14)C21—C22—C23—C24179.78 (17)
C13—C8—C9—C101.1 (3)C22—C23—C24—C251.1 (3)
C7—C8—C9—C10175.31 (17)C23—C24—C25—C260.0 (3)
C8—C9—C10—C111.4 (3)C24—C25—C26—C270.9 (3)
C9—C10—C11—C120.7 (3)C25—C26—C27—C220.5 (3)
C10—C11—C12—C130.4 (3)C23—C22—C27—C260.6 (2)
C9—C8—C13—C120.0 (2)C21—C22—C27—C26178.91 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N10.932.572.885 (2)100
C14—H14···O10.932.362.7560 (18)106
C21—H21···O10.932.402.761 (2)103
C2—H2B···O1i0.972.443.3798 (17)163
C16—H16···O1ii0.932.503.304 (2)145
C7—H7A···Cg2iii0.972.773.6957 (18)159
C19—H19···Cg4iv0.932.913.523 (2)125
Symmetry codes: (i) x+1, y, z; (ii) x, y, z; (iii) x+1, y, z+1; (iv) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC26H23NO
Mr365.45
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.3354 (4), 10.2365 (6), 15.7885 (9)
α, β, γ (°)75.245 (2), 87.651 (3), 88.699 (3)
V3)989.24 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.22 × 0.19 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.896, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
25021, 6540, 4181
Rint0.035
(sin θ/λ)max1)0.738
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.202, 1.06
No. of reflections6540
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.25

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N10.932.572.885 (2)100
C14—H14···O10.932.362.7560 (18)106
C21—H21···O10.932.402.761 (2)103
C2—H2B···O1i0.972.443.3798 (17)163
C16—H16···O1ii0.932.503.304 (2)145
C7—H7A···Cg2iii0.972.773.6957 (18)159
C19—H19···Cg4iv0.932.913.523 (2)125
Symmetry codes: (i) x+1, y, z; (ii) x, y, z; (iii) x+1, y, z+1; (iv) x+1, y1, z.
 

Acknowledgements

RSR thanks the Council for Scientific and Industrial Research, New Delhi, for funding via the scientists' pool scheme and the Bioinformatics Infrastructure Facility of the University of Hyderabad for computational resources.

References

First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDas, U., Alcorn, J., Shrivastav, A., Sharma, R. K., de Clercq, E., Balzarini, J. & Dimmock, J. R. (2007). Eur. J. Med. Chem. 42, 71–80.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDuax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, pp. 271–383. New Jersey: John Wiley.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKrapcho, J. & Turk, C. F. (1979). J. Med. Chem. 22, 207–210.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh, J., Suresh Kumar, R., Perumal, S. & Natarajan, S. (2007). Acta Cryst. C63, o315–o318.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSviridenkova, N. V., Vatsadze, S. Z., Manaenkova, M. A. & Zyk, N. V. (2005). Russ. Chem. Bull. 54, 2590–2593.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds