metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­chloridobis[tris­­(2-meth­oxy­phen­yl)phosphine]palladium(II)

aUniversity of Johannesburg, Department of Chemistry, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: cvanblerk@uj.ac.za

(Received 23 September 2009; accepted 6 October 2009; online 10 October 2009)

The structure of the title compound, [PdCl2(C21H21O3P)2], shows a nearly square-planar geometry for the PdII atom within the Cl2Pd[P(PhOMe)3]2 ligand set. The PdII atom sits on a centre of inversion and therefore the asymmetric unit contains one half-mol­ecule, i.e. half of one PdII atom, one Cl atom and one tris­(2-methoxy­phen­yl)phosphine ligand.

Related literature

For related structures and literature on similar palladium complexes, see: Robertson & Cole-Hamilton (2002[Robertson, R. A. M. & Cole-Hamilton, D. J. (2002). Coord. Chem. Rev. 225, 67-90.]); Van Leeuwen et al. (2003[Van Leeuwen, P. W. N. M., Zuideveld, M. A., Swennenhuis, B. H., Freixa, Z., Kamer, P. C. J., Goubitz, K., Fraanje, J., Lutz, M. & Spek, A. L. (2003). J. Am. Chem. Soc. 125, 5523-5539.]); Williams et al. (2008[Williams, D. B. G., Shaw, M. L., Green, M. J. & Holzapfel, C. W. (2008). Angew. Chem. Int. Ed. 47, 560-563.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C21H21O3P)2]

  • Mr = 882.00

  • Triclinic, [P \overline 1]

  • a = 9.1415 (2) Å

  • b = 10.8985 (3) Å

  • c = 12.0287 (3) Å

  • α = 103.691 (2)°

  • β = 109.275 (3)°

  • γ = 108.438 (2)°

  • V = 992.26 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 294 K

  • 0.30 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (APEX2 AXScale; Bruker, 2008[Bruker (2008). APEX2 AXScale and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.811, Tmax = 0.931

  • 11296 measured reflections

  • 4894 independent reflections

  • 3672 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.094

  • S = 0.97

  • 4894 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd1—Cl1 2.3120 (7)
Pd1—P1 2.3417 (7)
Cl1—Pd1—P1i 94.27 (3)
Cl1—Pd1—P1 85.73 (3)
Symmetry code: (i) -x, -y, -z+1.

Data collection: SMART-NT (Bruker, 1999[Bruker (1999). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 AXScale and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The palladium-catalysed methoxycarbonylation (Robertson and Cole-Hamilton, 2002) of 1-alkenes is an active area of research. The preferred (pre)-catalysts of general structure (Ar3P)2PdX2 (X = Cl, DMS, OTf etc.) are either preformed or generated in situ. The x-ray structures (Van Leeuwen et al., 2003 and Williams et al., 2008) of several of this class of palladium(II) complexes have been determined. Only some of these have found application in the catalysis of the methoxycarbonylation reaction, but their use results mainly in the formation of linear esters (Robertson and Cole-Hamilton, 2002). However, we have identified some palladium(II) complexes which catalyse the regioselective formation of branched esters. We report here the structure of one of these.

The structure of the title compound, [PdCl2(C42H42P2O6)], (I), shows a nearly square planar geometry (Table 1.) for the PdII atom within the Cl2(P(PhOMe)3) ligand set. The palladium atom sits on a centre of inversion and therefore the the asymmetric unit contains the half of the molecule, i.e. half of the palladium atom, one chlorine atom and one tris-(2-methoxyphenyl)phosphine ligand (Figure 1.)

Related literature top

For related structures and literature on similar palladium complexes, see: Robertson & Cole-Hamilton (2002); Van Leeuwen et al. (2003); Williams et al. (2008).

Experimental top

Starting ligand material, tris-(2-methoxyphenyl)phosphine (1.408 g, 4 mmol) was added to a solution of palladium(II) chloride (1.288 g, 2 mmol) and anhydrous lithium chloride (168 mg, 4 mmol) in 15 ml methanol. The mixture was stirred under reflux in an atmosphere of nitrogen until all the phosphine reagent had reacted and a yellow product had formed (ca 1 hr). The reaction mixture was cooled and the product collected by filtration; washed with fresh methanol and dried under vacuum. The crude product (1.41 g) was dissolved in dichloromethane and crystallization of the title compound was carried out by diethyl ether vapor diffusion into the dichloromethane. The crystals of the title compound were bright yellow prisms (m. p. > 222° C, decomp.) and a suitable crystal was selected for the single-crystal X-ray diffraction analysis.

Refinement top

H atoms were geometrically positioned and refined in the riding-model approximation, with C—H = 0.93-0.96 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C for Me). For (I), the highest peak in the final difference map is 1.01 Å from Pd1 and the deepest hole is 0.01 Å from Pd1.

Structure description top

The palladium-catalysed methoxycarbonylation (Robertson and Cole-Hamilton, 2002) of 1-alkenes is an active area of research. The preferred (pre)-catalysts of general structure (Ar3P)2PdX2 (X = Cl, DMS, OTf etc.) are either preformed or generated in situ. The x-ray structures (Van Leeuwen et al., 2003 and Williams et al., 2008) of several of this class of palladium(II) complexes have been determined. Only some of these have found application in the catalysis of the methoxycarbonylation reaction, but their use results mainly in the formation of linear esters (Robertson and Cole-Hamilton, 2002). However, we have identified some palladium(II) complexes which catalyse the regioselective formation of branched esters. We report here the structure of one of these.

The structure of the title compound, [PdCl2(C42H42P2O6)], (I), shows a nearly square planar geometry (Table 1.) for the PdII atom within the Cl2(P(PhOMe)3) ligand set. The palladium atom sits on a centre of inversion and therefore the the asymmetric unit contains the half of the molecule, i.e. half of the palladium atom, one chlorine atom and one tris-(2-methoxyphenyl)phosphine ligand (Figure 1.)

For related structures and literature on similar palladium complexes, see: Robertson & Cole-Hamilton (2002); Van Leeuwen et al. (2003); Williams et al. (2008).

Computing details top

Data collection: SMART-NT (Bruker, 1999); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. : Molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.[Symmetry code:(i) -x, -y, -z+1].
trans-Dichloridobis[tris(2-methoxyphenyl)phosphine]palladium(II) top
Crystal data top
[PdCl2(C42H42O6P2)]Z = 1
Mr = 882.00F(000) = 452
Triclinic, P1Dx = 1.476 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1415 (2) ÅCell parameters from 3513 reflections
b = 10.8985 (3) Åθ = 2.3–25.9°
c = 12.0287 (3) ŵ = 0.73 mm1
α = 103.691 (2)°T = 294 K
β = 109.275 (3)°Plate, yellow
γ = 108.438 (2)°0.30 × 0.16 × 0.10 mm
V = 992.26 (5) Å3
Data collection top
Bruker SMART CCD
diffractometer
4894 independent reflections
Radiation source: fine-focus sealed tube3672 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(APEX2 AXScale; Bruker, 2008)
h = 1211
Tmin = 0.811, Tmax = 0.931k = 1413
11296 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.051P)2]
where P = (Fo2 + 2Fc2)/3
4894 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[PdCl2(C42H42O6P2)]γ = 108.438 (2)°
Mr = 882.00V = 992.26 (5) Å3
Triclinic, P1Z = 1
a = 9.1415 (2) ÅMo Kα radiation
b = 10.8985 (3) ŵ = 0.73 mm1
c = 12.0287 (3) ÅT = 294 K
α = 103.691 (2)°0.30 × 0.16 × 0.10 mm
β = 109.275 (3)°
Data collection top
Bruker SMART CCD
diffractometer
4894 independent reflections
Absorption correction: multi-scan
(APEX2 AXScale; Bruker, 2008)
3672 reflections with I > 2σ(I)
Tmin = 0.811, Tmax = 0.931Rint = 0.039
11296 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 0.97Δρmax = 0.35 e Å3
4894 reflectionsΔρmin = 0.43 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.00000.00000.50000.02713 (10)
Cl10.15837 (9)0.10437 (8)0.59870 (7)0.04185 (18)
P10.08161 (8)0.18084 (7)0.30980 (7)0.02821 (16)
O10.0797 (3)0.3741 (2)0.0829 (2)0.0456 (5)
O20.0304 (3)0.0196 (2)0.1933 (2)0.0514 (6)
O30.3775 (3)0.2921 (2)0.3590 (2)0.0499 (6)
C110.0985 (3)0.1701 (3)0.2718 (3)0.0330 (6)
C120.2580 (4)0.0560 (3)0.3521 (3)0.0389 (7)
H120.27480.00320.42950.047*
C130.3914 (4)0.0308 (3)0.3165 (3)0.0460 (8)
H130.49690.04530.37020.055*
C140.3682 (4)0.1176 (4)0.2026 (3)0.0477 (8)
H140.45810.10020.17960.057*
C150.2113 (4)0.2308 (3)0.1219 (3)0.0449 (8)
H150.19580.28900.04460.054*
C160.0765 (4)0.2577 (3)0.1565 (3)0.0367 (7)
C170.1525 (5)0.4108 (4)0.0510 (3)0.0573 (9)
H17A0.17020.33440.06980.086*
H17B0.26050.49190.09060.086*
H17C0.07610.43090.08320.086*
C210.2402 (3)0.1916 (3)0.1633 (3)0.0321 (6)
C220.4005 (4)0.3027 (3)0.0900 (3)0.0374 (7)
H220.43080.37760.11530.045*
C230.5172 (4)0.3056 (4)0.0200 (3)0.0471 (8)
H230.62350.38220.06930.056*
C240.4724 (5)0.1919 (4)0.0553 (3)0.0572 (9)
H240.55140.19080.12700.069*
C250.3139 (5)0.0814 (4)0.0140 (3)0.0540 (9)
H250.28530.00650.01150.065*
C260.1954 (4)0.0806 (3)0.1223 (3)0.0388 (7)
C270.0186 (6)0.1455 (4)0.1722 (5)0.0838 (14)
H27A0.06170.18420.17450.126*
H27B0.01960.12680.09040.126*
H27C0.13130.21100.23740.126*
C310.1653 (3)0.3488 (3)0.3249 (3)0.0311 (6)
C320.0820 (4)0.4361 (3)0.3219 (3)0.0397 (7)
H320.01070.41420.30210.048*
C330.1362 (5)0.5554 (3)0.3482 (3)0.0507 (9)
H330.08050.61350.34540.061*
C340.2717 (5)0.5873 (3)0.3784 (3)0.0574 (9)
H340.30690.66680.39690.069*
C350.3573 (5)0.5032 (3)0.3817 (3)0.0522 (9)
H350.45050.52670.40090.063*
C360.3034 (4)0.3833 (3)0.3561 (3)0.0403 (7)
C370.5075 (5)0.3122 (4)0.4017 (4)0.0604 (10)
H37A0.46120.30540.48820.091*
H37B0.60070.40310.34880.091*
H37C0.54860.24180.39680.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02580 (16)0.02587 (16)0.02807 (18)0.01139 (13)0.01105 (13)0.00837 (13)
Cl10.0434 (4)0.0428 (4)0.0399 (4)0.0256 (4)0.0126 (4)0.0151 (4)
P10.0270 (4)0.0260 (4)0.0292 (4)0.0104 (3)0.0123 (3)0.0080 (3)
O10.0460 (13)0.0431 (12)0.0391 (13)0.0129 (11)0.0218 (11)0.0058 (11)
O20.0507 (14)0.0417 (12)0.0597 (16)0.0118 (11)0.0254 (12)0.0255 (12)
O30.0570 (14)0.0500 (13)0.0703 (17)0.0293 (12)0.0437 (13)0.0363 (13)
C110.0313 (14)0.0336 (15)0.0346 (16)0.0148 (12)0.0158 (13)0.0107 (13)
C120.0347 (16)0.0396 (16)0.0374 (17)0.0140 (14)0.0153 (14)0.0104 (14)
C130.0309 (16)0.0493 (19)0.056 (2)0.0150 (15)0.0182 (16)0.0205 (17)
C140.0445 (18)0.060 (2)0.060 (2)0.0299 (17)0.0343 (18)0.0301 (19)
C150.0510 (19)0.0494 (19)0.045 (2)0.0264 (17)0.0296 (17)0.0175 (17)
C160.0381 (16)0.0345 (15)0.0401 (18)0.0169 (13)0.0199 (14)0.0128 (14)
C170.062 (2)0.055 (2)0.040 (2)0.0152 (19)0.0176 (18)0.0142 (18)
C210.0349 (15)0.0357 (15)0.0280 (15)0.0174 (13)0.0150 (13)0.0111 (13)
C220.0354 (16)0.0389 (16)0.0338 (16)0.0168 (14)0.0134 (14)0.0089 (14)
C230.0415 (18)0.053 (2)0.0350 (18)0.0240 (16)0.0079 (15)0.0063 (16)
C240.061 (2)0.073 (3)0.0312 (18)0.039 (2)0.0069 (17)0.0153 (18)
C250.076 (3)0.054 (2)0.044 (2)0.035 (2)0.026 (2)0.0282 (18)
C260.0434 (17)0.0390 (16)0.0357 (17)0.0185 (14)0.0191 (15)0.0135 (14)
C270.092 (3)0.052 (2)0.102 (4)0.013 (2)0.041 (3)0.047 (3)
C310.0337 (14)0.0236 (13)0.0253 (14)0.0084 (12)0.0070 (12)0.0056 (12)
C320.0413 (17)0.0349 (16)0.0309 (16)0.0145 (14)0.0073 (14)0.0079 (13)
C330.067 (2)0.0354 (17)0.042 (2)0.0262 (17)0.0112 (18)0.0138 (16)
C340.082 (3)0.0341 (18)0.047 (2)0.0177 (18)0.021 (2)0.0208 (17)
C350.064 (2)0.0405 (18)0.056 (2)0.0166 (17)0.0304 (19)0.0270 (18)
C360.0459 (17)0.0335 (15)0.0386 (18)0.0135 (14)0.0178 (15)0.0153 (14)
C370.064 (2)0.067 (2)0.073 (3)0.030 (2)0.048 (2)0.036 (2)
Geometric parameters (Å, º) top
Pd1—Cl1i2.3120 (7)C21—C221.382 (4)
Pd1—Cl12.3120 (7)C21—C261.406 (4)
Pd1—P1i2.3417 (7)C22—C231.385 (4)
Pd1—P12.3417 (7)C22—H220.9300
P1—C111.826 (3)C23—C241.388 (5)
P1—C311.825 (3)C23—H230.9300
P1—C211.824 (3)C24—C251.367 (5)
O1—C161.386 (3)C24—H240.9300
O1—C171.420 (4)C25—C261.389 (4)
O2—C261.365 (4)C25—H250.9300
O2—C271.415 (4)C27—H27A0.9600
O3—C361.370 (4)C27—H27B0.9600
O3—C371.419 (4)C27—H27C0.9600
C11—C161.394 (4)C31—C321.395 (4)
C11—C121.400 (4)C31—C361.398 (4)
C12—C131.391 (4)C32—C331.388 (4)
C12—H120.9300C32—H320.9300
C13—C141.373 (5)C33—C341.368 (5)
C13—H130.9300C33—H330.9300
C14—C151.384 (5)C34—C351.383 (5)
C14—H140.9300C34—H340.9300
C15—C161.395 (4)C35—C361.388 (4)
C15—H150.9300C35—H350.9300
C17—H17A0.9600C37—H37A0.9600
C17—H17B0.9600C37—H37B0.9600
C17—H17C0.9600C37—H37C0.9600
Cl1i—Pd1—Cl1180.00 (4)C21—C22—H22119.1
Cl1i—Pd1—P1i85.73 (3)C22—C23—C24118.7 (3)
Cl1—Pd1—P1i94.27 (3)C22—C23—H23120.7
Cl1i—Pd1—P194.27 (3)C24—C23—H23120.7
Cl1—Pd1—P185.73 (3)C25—C24—C23120.9 (3)
P1i—Pd1—P1180.0C25—C24—H24119.5
C11—P1—C31107.32 (13)C23—C24—H24119.5
C11—P1—C21102.23 (13)C24—C25—C26120.2 (3)
C31—P1—C21107.11 (13)C24—C25—H25119.9
C11—P1—Pd1112.29 (9)C26—C25—H25119.9
C31—P1—Pd1109.33 (9)O2—C26—C25124.9 (3)
C21—P1—Pd1117.89 (9)O2—C26—C21115.1 (3)
C16—O1—C17117.7 (2)C25—C26—C21120.0 (3)
C26—O2—C27119.1 (3)O2—C27—H27A109.5
C36—O3—C37119.0 (2)O2—C27—H27B109.5
C16—C11—C12118.9 (2)H27A—C27—H27B109.5
C16—C11—P1122.1 (2)O2—C27—H27C109.5
C12—C11—P1118.1 (2)H27A—C27—H27C109.5
C13—C12—C11120.2 (3)H27B—C27—H27C109.5
C13—C12—H12119.9C32—C31—C36118.6 (3)
C11—C12—H12119.9C32—C31—P1121.6 (2)
C14—C13—C12120.4 (3)C36—C31—P1119.3 (2)
C14—C13—H13119.8C33—C32—C31120.7 (3)
C12—C13—H13119.8C33—C32—H32119.7
C13—C14—C15120.2 (3)C31—C32—H32119.7
C13—C14—H14119.9C34—C33—C32119.8 (3)
C15—C14—H14119.9C34—C33—H33120.1
C14—C15—C16120.1 (3)C32—C33—H33120.1
C14—C15—H15120.0C33—C34—C35120.9 (3)
C16—C15—H15120.0C33—C34—H34119.5
O1—C16—C11117.3 (2)C35—C34—H34119.5
O1—C16—C15122.4 (3)C34—C35—C36119.6 (3)
C11—C16—C15120.2 (3)C34—C35—H35120.2
O1—C17—H17A109.5C36—C35—H35120.2
O1—C17—H17B109.5O3—C36—C35124.1 (3)
H17A—C17—H17B109.5O3—C36—C31115.5 (2)
O1—C17—H17C109.5C35—C36—C31120.4 (3)
H17A—C17—H17C109.5O3—C37—H37A109.5
H17B—C17—H17C109.5O3—C37—H37B109.5
C22—C21—C26118.3 (3)H37A—C37—H37B109.5
C22—C21—P1123.9 (2)O3—C37—H37C109.5
C26—C21—P1117.8 (2)H37A—C37—H37C109.5
C23—C22—C21121.8 (3)H37B—C37—H37C109.5
C23—C22—H22119.1
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[PdCl2(C42H42O6P2)]
Mr882.00
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)9.1415 (2), 10.8985 (3), 12.0287 (3)
α, β, γ (°)103.691 (2), 109.275 (3), 108.438 (2)
V3)992.26 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.30 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(APEX2 AXScale; Bruker, 2008)
Tmin, Tmax0.811, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
11296, 4894, 3672
Rint0.039
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 0.97
No. of reflections4894
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.43

Computer programs: SMART-NT (Bruker, 1999), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2009).

Selected geometric parameters (Å, º) top
Pd1—Cl12.3120 (7)Pd1—P12.3417 (7)
Cl1—Pd1—P1i94.27 (3)Cl1—Pd1—P185.73 (3)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors acknowledge the University of the Witwaters­rand for their facilities and the use of the diffractometer in the Jan Boeyens Structural Chemistry Laboratory.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (1999). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). APEX2 AXScale and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRobertson, R. A. M. & Cole-Hamilton, D. J. (2002). Coord. Chem. Rev. 225, 67–90.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan Leeuwen, P. W. N. M., Zuideveld, M. A., Swennenhuis, B. H., Freixa, Z., Kamer, P. C. J., Goubitz, K., Fraanje, J., Lutz, M. & Spek, A. L. (2003). J. Am. Chem. Soc. 125, 5523–5539.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationWilliams, D. B. G., Shaw, M. L., Green, M. J. & Holzapfel, C. W. (2008). Angew. Chem. Int. Ed. 47, 560–563.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds