metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aquabis[1-hy­droxy-2-(imidazol-3-ium-1-yl)-1,1′-ethylidenediphophonato-κ2O,O′]zinc(II) dihydrate

aGerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica and, Escuela de Ciencia y Tecnología, Universidad Nacional General San Martín, Buenos Aires, Argentina
*Correspondence e-mail: freire@tandar.cnea.gov.ar

(Received 5 October 2009; accepted 19 October 2009; online 23 October 2009)

In the title complex, [Zn(C5H9NO7P2)2(H2O)]·2H2O, the zinc atom is coordinated by two zoledronate anions [zoledronate = (2-(1-imidazole)-1-hydr­oxy-1,1′-ethyl­idenediphophonate)] and one water mol­ecule. The coordination number is 5. There is one half-mol­ecule in the asymmetric unit, the zinc atom being located on a twofold rotation axis passing through the metal centre and the coordinating water O atom. The anion exists as a zwitterion with an overall charge of −1; the protonated nitro­gen in the ring has a positive charge and the two phospho­nates groups each have a single negative charge. Inter­molecular O—H⋯O hydrogen bonds link the mol­ecules. An N—H⋯O inter­action is also present.

Related literature

For general background to bis­phospho­nates, see: Fleisch et al. (1968[Fleisch, H., Russell, R. G. G., Bisaz, S., Termine, J. D. & Posner, A. S. (1968). Calcif. Tissue Res. 2, 49-59.]); Green et al. (1994[Green, J. R., Mueller, K. & Jaeggi, K. A. (1994). J. Bone Miner. Res. 9, 745-751.]); Fleisch (2000[Fleisch, H. (2000). Bisphosphonates in Bone Disease. From the Laboratory to the Patient, 4th ed. New York: Academic Press.]); Ross et al. (2004[Ross, J. R., Saunders, Y., Edmonds, P. M., Wonderling, D., Normand, C. & Broadley, K. (2004). Health Technol. Assess. 8, 1-176.]); Smith (2005[Smith, M. R. (2005). Cancer Treat. Rev. 31 (Suppl 3), 19-25.]); Ralston et al. (1989[Ralston, S. H., Patel, U., Fraser, W. D., Gallacher, S. J., Dryburgh, F. J., Cowan, R. A. & Boyle, I. T. (1989). Lancet, 334, 1180-1182.]); Reid et al. (2005[Reid, I. R., Miller, P., Lyles, K., Fraser, W., Brown, J. P., Saidi, Y., Mesenbrink, P., Su, G., Pak, J., Zelenakas, K., Luchi, M., Richardson, P. & Hosking, D. (2005). N. Engl. J. Med. 353, 898-908.]); Rauch & Glorieux (2005[Rauch, F. & Glorieux, F. H. (2005). Am. J. Med. Genet. C. Semin. Med. Genet. 139, 31-37.]); Chesnut et al. (2004[Chesnut, C. H. III, Skag, A., Christiansen, C., Recker, R., Stakkestad, J. A., Hoiseth, A., Felsenberg, D., Huss, H., Gilbride, J., Schimmer, R. C. & Delmas, P. D. (2004). J. Bone Miner. Res. 19, 1241-1249.]). For structures of transition metal (Ni, Co and Cu) complexes with the zoledronate anion, see: Cao et al. (2007[Cao, D.-K., Li, Y.-Z. & Zheng, L.-M. (2007). Inorg. Chem. 46, 7571-7578.], 2008[Cao, D.-K., Xie, X.-J., Li, Y.-Z. & Zheng, L.-M. (2008). Dalton Trans. pp. 5008-5015.]). For metal complexes of other bis­phospho­nates (Etidronate and Pamidronate), see: Fernández et al. (2002[Fernández, D., Vega, D. & Goeta, A. (2002). Acta Cryst. C58, m494-m497.]); Li et al. (2008[Li, G., Fan, Y., Zhang, T., Ge, T. & Hou, H. (2008). J. Coord. Chem. 61, 540-549.]); Chen et al. (2008[Chen, H., Sun, Z., Dong, D., Meng, L., Zheng, X., Zhu, Y., Zha, Y. & Zhang, J. (2008). J. Coord. Chem. 61, 1316-1324.]); Uchtman (1972[Uchtman, V. A. (1972). J. Phys. Chem. 76, 1298-1304.]). For a hexa­coordinated zinc(II)–zoledronate complex, see: Freire & Vega (2009[Freire, E. & Vega, D. R. (2009). Acta Cryst. E65, m1428-m1429.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C5H9N2O7P2)2(H2O)]·2H2O

  • Mr = 661.58

  • Monoclinic, C 2/c

  • a = 12.089 (2) Å

  • b = 9.858 (2) Å

  • c = 18.831 (4) Å

  • β = 95.09 (3)°

  • V = 2235.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.09 mm

Data collection
  • Rigaku AFC6 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.75, Tmax = 0.87

  • 2847 measured reflections

  • 2208 independent reflections

  • 1528 reflections with I > 2σ(I)

  • Rint = 0.054

  • 3 standard reflections every 150 reflections intensity decay: <3%

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.096

  • S = 1.00

  • 2208 reflections

  • 167 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O1W 1.999 (4)
Zn1—O11 2.006 (2)
Zn1—O21 2.041 (2)
O1W—Zn1—O11 112.97 (8)
O11—Zn1—O11i 134.06 (15)
O11—Zn1—O21i 89.03 (9)
O1W—Zn1—O21 88.48 (7)
O11—Zn1—O21 92.16 (9)
O21i—Zn1—O21 176.96 (14)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H12⋯O2W 0.82 1.75 2.566 (3) 171
O22—H22⋯O13ii 0.82 1.84 2.645 (3) 167
O2W—H2WA⋯O21iii 0.82 2.38 2.990 (3) 132
O2W—H2WB⋯O13iv 0.82 1.94 2.758 (4) 173
N2—H2⋯O12v 0.86 2.11 2.917 (4) 157
O1W—H1W⋯O23ii 0.82 1.81 2.632 (3) 177
O1—H1⋯O23ii 0.82 1.80 2.581 (3) 160
Symmetry codes: (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+1, z-{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (v) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988[Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA.]); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: MSC/AFC Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The following work is part of a project directed to the preparation and characterization of coordination complexes obtained by the interaction among metals and organic molecules of relevant pharmacological interest like bisphosphonates. An informative introduction on bisphosphonates has been made in the previous paper (Freire & Vega, 2009). Although few metal derivatives of Zoledronic acid have been reported in CSD (Allen, 2002), an isostructural compound of copper has been synthesized (Cao et al., 2008).

So, we present herein the crystal structure of a Zinc-Zoledronate complex: monozinc dizoledronate trihydrate, (I), Zn.(H2O).2(P2O7N2C5H9).2H2O. In (I), as in the similar hexacoordinated compound (Freire & Vega, 2009), the zoledronate anion exists as a zwitterion with an overall charge of -1; the protonated nitrogen in the ring has a positive charge and the two phosphonates groups each have a single negative charge.

The coordination number of Zn is 5 (Fig. 1) and the resulting coordination polyhedron is a trigonal bipiramid defined by O21, O21A, O11, O11A and O1W. Atoms O11A and O21A are generated by the symmetry operation (1 - x, y, 3/2 - z). The equatorial plane is defined by O11, O11A and O1W, the apexes are defined by and O21 and O21A. The apical Zn—O distance is 2.041 (2) Å while in the equatorial plane the mean value for the Zn—O distance is 2.004 (4) Å. The coordination angles in the equatorial plane are a little turned aside from the expected 120 ° theoretically due to the "bite" of the ligand: O11—Zn—O11A 134.08 (15)°, O11—Zn—O1W and O11A—Zn—O1W are 112.96 (8) °. The angle between the line defined by O21 and O21A with the normal to the equatorial plane (O11, O11A, O1W and Zn1) is 2.3 °.

Considering the bisphosphonates groups, there are two distinct types of P—O bonds, as shown by the mean value in the following bond distances and angles: P—OH 1,576 (8), P - O 1.505 (5) Å, O—P—OH 109.4° (11), O—P—O 116.4° (14). The staggered conformation of PO3 groups in compound (II) is more prominent than in the hexacoordinated complex (Freire & Vega, 2009), the non bonded torsion angle O12—P1···P2 O22 is -16.1°. In (I), the imidazol ring is planar, maximum deviation from the L. S. mean plane is 0.0026 Å for C3, and it is not coplanar with C2, between the plane of the ring and the bond N1—C2 is 3.4 ° and C2 is 0.0837 Å far from the ring. The torsion angle C1—C2—N1—C3 is of -78.62 ° and it is possible to describe it like - Syn-Clinal (-sc).

Five hydrogen bonds, involving, H22, H1W, H1, H2WA and H2WB, provide intermolecular cohesion, defining a two-dimensional arrangement, while the three-dimensional net completes with two more hydrogen bonds, involving H2 from the aromatic ring and H12 from the bisphosphonate group (Fig. 2 and Table 2).

Related literature top

For general background to bisphosphonates, see: Fleisch et al. (1968); Green et al. (1994); Fleisch (2000); Ross et al. (2004); Smith (2005); Ralston et al. (1989); Reid et al. (2005); Rauch et al. (2005); Chesnut et al. (2004). For structures of transition metal (Ni, Co and Cu) complexes with the zoledronate anion, see: Cao et al. (2007, 2008). For metal complexes of other bisphosphonates (Etidronate and Pamidronate), see: Fernández et al. (2002); Li et al. (2008); Chen et al. (2008); Uchtman (1972). For a pentacoordinated zinc(II)—zoledronate complex, see: Freire & Vega (2009).

Experimental top

Zoledronic Acid was obtained from Gador S. A. laboratory. Compound (II) was obtained by direct mix of a water solution of Zoledronic Acid and a water solution of ZnCl2. Colorless prismatic crystals were grown after a few days.

Refinement top

The H atoms attached to O were found in a difference Fourier map, further idealized (O—H: 0.82 Å - 0.90 Å) and finally allowed to ride. Those attached to C and N were placed at calculated positions (C—H: 0.93 Å; C—H2: 0.97 Å; N—H2: 0.90 Å) and allowed to ride. Displacement factors were taken as U(H)isot = x.U(host), x: 1.2 (C—H); 1.5 (C—H2, N—H2, O—H).

Structure description top

The following work is part of a project directed to the preparation and characterization of coordination complexes obtained by the interaction among metals and organic molecules of relevant pharmacological interest like bisphosphonates. An informative introduction on bisphosphonates has been made in the previous paper (Freire & Vega, 2009). Although few metal derivatives of Zoledronic acid have been reported in CSD (Allen, 2002), an isostructural compound of copper has been synthesized (Cao et al., 2008).

So, we present herein the crystal structure of a Zinc-Zoledronate complex: monozinc dizoledronate trihydrate, (I), Zn.(H2O).2(P2O7N2C5H9).2H2O. In (I), as in the similar hexacoordinated compound (Freire & Vega, 2009), the zoledronate anion exists as a zwitterion with an overall charge of -1; the protonated nitrogen in the ring has a positive charge and the two phosphonates groups each have a single negative charge.

The coordination number of Zn is 5 (Fig. 1) and the resulting coordination polyhedron is a trigonal bipiramid defined by O21, O21A, O11, O11A and O1W. Atoms O11A and O21A are generated by the symmetry operation (1 - x, y, 3/2 - z). The equatorial plane is defined by O11, O11A and O1W, the apexes are defined by and O21 and O21A. The apical Zn—O distance is 2.041 (2) Å while in the equatorial plane the mean value for the Zn—O distance is 2.004 (4) Å. The coordination angles in the equatorial plane are a little turned aside from the expected 120 ° theoretically due to the "bite" of the ligand: O11—Zn—O11A 134.08 (15)°, O11—Zn—O1W and O11A—Zn—O1W are 112.96 (8) °. The angle between the line defined by O21 and O21A with the normal to the equatorial plane (O11, O11A, O1W and Zn1) is 2.3 °.

Considering the bisphosphonates groups, there are two distinct types of P—O bonds, as shown by the mean value in the following bond distances and angles: P—OH 1,576 (8), P - O 1.505 (5) Å, O—P—OH 109.4° (11), O—P—O 116.4° (14). The staggered conformation of PO3 groups in compound (II) is more prominent than in the hexacoordinated complex (Freire & Vega, 2009), the non bonded torsion angle O12—P1···P2 O22 is -16.1°. In (I), the imidazol ring is planar, maximum deviation from the L. S. mean plane is 0.0026 Å for C3, and it is not coplanar with C2, between the plane of the ring and the bond N1—C2 is 3.4 ° and C2 is 0.0837 Å far from the ring. The torsion angle C1—C2—N1—C3 is of -78.62 ° and it is possible to describe it like - Syn-Clinal (-sc).

Five hydrogen bonds, involving, H22, H1W, H1, H2WA and H2WB, provide intermolecular cohesion, defining a two-dimensional arrangement, while the three-dimensional net completes with two more hydrogen bonds, involving H2 from the aromatic ring and H12 from the bisphosphonate group (Fig. 2 and Table 2).

For general background to bisphosphonates, see: Fleisch et al. (1968); Green et al. (1994); Fleisch (2000); Ross et al. (2004); Smith (2005); Ralston et al. (1989); Reid et al. (2005); Rauch et al. (2005); Chesnut et al. (2004). For structures of transition metal (Ni, Co and Cu) complexes with the zoledronate anion, see: Cao et al. (2007, 2008). For metal complexes of other bisphosphonates (Etidronate and Pamidronate), see: Fernández et al. (2002); Li et al. (2008); Chen et al. (2008); Uchtman (1972). For a pentacoordinated zinc(II)—zoledronate complex, see: Freire & Vega (2009).

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); data reduction: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : Molecular view of (I), showing the labeling scheme used. Hydrogen bonding is shown in dashed lines.
[Figure 2] Fig. 2. : Full packing diagram of (I).
Aquabis[1-hydroxy-2-(imidazol-3-ium-1-yl)-1,1'-ethylidenediphophonato- κ2O,O']zinc(II) dihydrate top
Crystal data top
[Zn(C5H9N2O7P2)2(H2O)]·2H2OF(000) = 1352
Mr = 661.58Dx = 1.966 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 42 reflections
a = 12.089 (2) Åθ = 8–25°
b = 9.858 (2) ŵ = 1.48 mm1
c = 18.831 (4) ÅT = 293 K
β = 95.09 (3)°Prism, colorless
V = 2235.3 (8) Å30.20 × 0.18 × 0.09 mm
Z = 4
Data collection top
Rigaku AFC6
diffractometer
1528 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 26.0°, θmin = 2.2°
ω/2θ scansh = 114
Absorption correction: ψ scan
(North et al., 1968)
k = 112
Tmin = 0.75, Tmax = 0.87l = 2323
2847 measured reflections3 standard reflections every 150 reflections
2208 independent reflections intensity decay: <3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0521P)2 + 1.3378P]
where P = (Fo2 + 2Fc2)/3
2208 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.87 e Å3
Crystal data top
[Zn(C5H9N2O7P2)2(H2O)]·2H2OV = 2235.3 (8) Å3
Mr = 661.58Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.089 (2) ŵ = 1.48 mm1
b = 9.858 (2) ÅT = 293 K
c = 18.831 (4) Å0.20 × 0.18 × 0.09 mm
β = 95.09 (3)°
Data collection top
Rigaku AFC6
diffractometer
1528 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.054
Tmin = 0.75, Tmax = 0.873 standard reflections every 150 reflections
2847 measured reflections intensity decay: <3%
2208 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.00Δρmax = 0.35 e Å3
2208 reflectionsΔρmin = 0.87 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50532 (5)0.75000.02015 (15)
P10.64482 (6)0.41327 (8)0.61862 (4)0.01916 (19)
P20.76934 (6)0.48891 (8)0.75923 (4)0.01749 (19)
O10.71512 (19)0.6590 (2)0.64590 (11)0.0237 (5)
H10.71540.70930.68060.043 (12)*
O110.54208 (18)0.4259 (3)0.65807 (12)0.0299 (5)
O120.6205 (2)0.4826 (2)0.54319 (13)0.0288 (5)
H120.62710.43690.50750.050 (14)*
O130.68721 (19)0.2707 (2)0.61059 (12)0.0277 (5)
O210.66152 (17)0.5108 (2)0.79201 (11)0.0253 (5)
O220.85809 (18)0.5945 (2)0.79009 (12)0.0269 (5)
H220.83390.64910.81770.051 (14)*
O230.81904 (19)0.3498 (2)0.76479 (12)0.0280 (5)
O1W0.50000.7080 (4)0.75000.0727 (17)
H1W0.55650.75300.74700.109*
O2W0.6191 (2)0.3463 (3)0.42704 (13)0.0394 (6)
H2WA0.58990.39100.39370.059*
H2WB0.67900.31240.41960.059*
N10.8788 (2)0.5706 (3)0.56618 (13)0.0218 (5)
N20.8895 (2)0.7275 (3)0.48801 (15)0.0328 (7)
H20.89720.80600.46910.039*
C10.7536 (2)0.5248 (3)0.66243 (16)0.0183 (6)
C20.8707 (2)0.5064 (3)0.63530 (16)0.0216 (6)
H2A0.92620.54530.66980.026*
H2B0.88650.41030.63150.026*
C30.8930 (3)0.7035 (3)0.55705 (18)0.0278 (7)
H30.90340.76800.59310.033*
C40.8718 (3)0.6092 (4)0.45095 (19)0.0351 (8)
H40.86570.59910.40170.042*
C50.8649 (3)0.5096 (4)0.49990 (17)0.0282 (7)
H50.85300.41780.49070.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0189 (2)0.0212 (3)0.0206 (3)0.0000.00281 (18)0.000
P10.0201 (4)0.0188 (4)0.0187 (4)0.0007 (3)0.0023 (3)0.0026 (3)
P20.0181 (4)0.0171 (4)0.0172 (4)0.0010 (3)0.0010 (3)0.0012 (3)
O10.0348 (12)0.0148 (10)0.0211 (11)0.0063 (9)0.0003 (9)0.0005 (9)
O110.0207 (11)0.0397 (14)0.0304 (13)0.0072 (10)0.0080 (9)0.0142 (11)
O120.0363 (13)0.0275 (12)0.0217 (11)0.0036 (10)0.0033 (10)0.0023 (10)
O130.0378 (13)0.0175 (11)0.0282 (11)0.0015 (10)0.0044 (10)0.0035 (10)
O210.0190 (10)0.0362 (13)0.0208 (11)0.0021 (9)0.0029 (8)0.0011 (10)
O220.0231 (11)0.0291 (13)0.0284 (12)0.0052 (9)0.0019 (9)0.0081 (11)
O230.0360 (13)0.0193 (11)0.0296 (12)0.0064 (9)0.0072 (10)0.0062 (9)
O1W0.025 (2)0.0195 (19)0.177 (6)0.0000.027 (3)0.000
O2W0.0535 (17)0.0414 (15)0.0233 (12)0.0094 (13)0.0041 (11)0.0019 (11)
N10.0212 (12)0.0244 (13)0.0203 (13)0.0008 (10)0.0051 (10)0.0006 (12)
N20.0363 (16)0.0302 (15)0.0324 (15)0.0009 (12)0.0062 (13)0.0132 (14)
C10.0207 (14)0.0144 (13)0.0197 (14)0.0035 (11)0.0020 (11)0.0013 (11)
C20.0193 (14)0.0239 (16)0.0217 (15)0.0002 (12)0.0025 (12)0.0034 (13)
C30.0288 (17)0.0252 (16)0.0304 (18)0.0040 (13)0.0073 (13)0.0004 (14)
C40.0333 (19)0.049 (2)0.0230 (17)0.0047 (16)0.0012 (14)0.0041 (17)
C50.0291 (17)0.0322 (18)0.0237 (16)0.0001 (14)0.0044 (13)0.0070 (15)
Geometric parameters (Å, º) top
Zn1—O1W1.999 (4)O1W—H1W0.8200
Zn1—O112.006 (2)O2W—H2WA0.8200
Zn1—O11i2.006 (2)O2W—H2WB0.8200
Zn1—O21i2.041 (2)N1—C31.335 (4)
Zn1—O212.041 (2)N1—C51.382 (4)
P1—O131.508 (2)N1—C21.458 (4)
P1—O111.508 (2)N2—C31.318 (4)
P1—O121.580 (2)N2—C41.366 (5)
P1—C11.851 (3)N2—H20.8600
P2—O231.497 (2)C1—C21.558 (4)
P2—O211.506 (2)C2—H2A0.9700
P2—O221.569 (2)C2—H2B0.9700
P2—C11.850 (3)C3—H30.9300
O1—C11.427 (3)C4—C51.355 (5)
O1—H10.8200C4—H40.9300
O12—H120.8200C5—H50.9300
O22—H220.8200
O1W—Zn1—O11112.97 (8)H2WA—O2W—H2WB114.6
O1W—Zn1—O11i112.97 (7)C3—N1—C5108.5 (3)
O11—Zn1—O11i134.06 (15)C3—N1—C2124.1 (3)
O1W—Zn1—O21i88.48 (7)C5—N1—C2127.2 (3)
O11—Zn1—O21i89.03 (9)C3—N2—C4109.9 (3)
O11i—Zn1—O21i92.16 (9)C3—N2—H2125.0
O1W—Zn1—O2188.48 (7)C4—N2—H2125.0
O11—Zn1—O2192.16 (9)O1—C1—C2108.9 (2)
O11i—Zn1—O2189.03 (9)O1—C1—P2113.3 (2)
O21i—Zn1—O21176.96 (14)C2—C1—P2106.45 (19)
O13—P1—O11115.37 (14)O1—C1—P1104.41 (18)
O13—P1—O12110.54 (13)C2—C1—P1114.5 (2)
O11—P1—O12108.12 (14)P2—C1—P1109.42 (15)
O13—P1—C1111.36 (13)N1—C2—C1112.1 (2)
O11—P1—C1108.35 (13)N1—C2—H2A109.2
O12—P1—C1102.23 (13)C1—C2—H2A109.2
O23—P2—O21117.33 (14)N1—C2—H2B109.2
O23—P2—O22108.95 (14)C1—C2—H2B109.2
O21—P2—O22109.95 (13)H2A—C2—H2B107.9
O23—P2—C1104.47 (13)N2—C3—N1108.1 (3)
O21—P2—C1111.03 (13)N2—C3—H3126.0
O22—P2—C1104.20 (13)N1—C3—H3126.0
C1—O1—H1114.1C5—C4—N2106.7 (3)
P1—O11—Zn1137.76 (14)C5—C4—H4126.6
P1—O12—H12118.4N2—C4—H4126.6
P2—O21—Zn1132.07 (13)C4—C5—N1106.8 (3)
P2—O22—H22113.5C4—C5—H5126.6
Zn1—O1W—H1W122.7N1—C5—H5126.6
O13—P1—O11—Zn1114.0 (2)O13—P1—C1—O1162.06 (18)
O12—P1—O11—Zn1121.6 (2)O11—P1—C1—O170.0 (2)
C1—P1—O11—Zn111.6 (3)O12—P1—C1—O144.0 (2)
O1W—Zn1—O11—P170.5 (2)O13—P1—C1—C243.0 (2)
O11i—Zn1—O11—P1109.5 (2)O11—P1—C1—C2170.9 (2)
O21i—Zn1—O11—P1158.5 (2)O12—P1—C1—C275.0 (2)
O21—Zn1—O11—P118.7 (2)O13—P1—C1—P276.38 (17)
O23—P2—O21—Zn195.2 (2)O11—P1—C1—P251.53 (18)
O22—P2—O21—Zn1139.62 (18)O12—P1—C1—P2165.57 (14)
C1—P2—O21—Zn124.8 (2)C3—N1—C2—C178.5 (4)
O1W—Zn1—O21—P2102.54 (19)C5—N1—C2—C196.1 (3)
O11—Zn1—O21—P210.4 (2)O1—C1—C2—N139.8 (3)
O11i—Zn1—O21—P2144.5 (2)P2—C1—C2—N1162.3 (2)
O23—P2—C1—O1175.2 (2)P1—C1—C2—N176.6 (3)
O21—P2—C1—O157.4 (2)C4—N2—C3—N10.6 (4)
O22—P2—C1—O160.9 (2)C5—N1—C3—N20.6 (4)
O23—P2—C1—C255.5 (2)C2—N1—C3—N2176.1 (3)
O21—P2—C1—C2177.09 (19)C3—N2—C4—C50.3 (4)
O22—P2—C1—C258.8 (2)N2—C4—C5—N10.0 (4)
O23—P2—C1—P168.72 (17)C3—N1—C5—C40.4 (4)
O21—P2—C1—P158.67 (18)C2—N1—C5—C4175.7 (3)
O22—P2—C1—P1176.99 (13)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O2W0.821.752.566 (3)171
O22—H22···O13ii0.821.842.645 (3)167
O2W—H2WA···O21iii0.822.382.990 (3)132
O2W—H2WB···O13iv0.821.942.758 (4)173
N2—H2···O12v0.862.112.917 (4)157
O1W—H1W···O23ii0.821.812.632 (3)177
O1—H1···O23ii0.821.802.581 (3)160
Symmetry codes: (ii) x+3/2, y+1/2, z+3/2; (iii) x, y+1, z1/2; (iv) x+3/2, y+1/2, z+1; (v) x+3/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C5H9N2O7P2)2(H2O)]·2H2O
Mr661.58
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)12.089 (2), 9.858 (2), 18.831 (4)
β (°) 95.09 (3)
V3)2235.3 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.20 × 0.18 × 0.09
Data collection
DiffractometerRigaku AFC6
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.75, 0.87
No. of measured, independent and
observed [I > 2σ(I)] reflections
2847, 2208, 1528
Rint0.054
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.096, 1.00
No. of reflections2208
No. of parameters167
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.87

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Zn1—O1W1.999 (4)Zn1—O212.041 (2)
Zn1—O112.006 (2)
O1W—Zn1—O11112.97 (8)O1W—Zn1—O2188.48 (7)
O11—Zn1—O11i134.06 (15)O11—Zn1—O2192.16 (9)
O11—Zn1—O21i89.03 (9)O21i—Zn1—O21176.96 (14)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O2W0.821.752.566 (3)170.8
O22—H22···O13ii0.821.842.645 (3)166.7
O2W—H2WA···O21iii0.822.382.990 (3)132.2
O2W—H2WB···O13iv0.821.942.758 (4)172.6
N2—H2···O12v0.862.112.917 (4)157.2
O1W—H1W···O23ii0.821.812.632 (3)176.8
O1—H1···O23ii0.821.802.581 (3)159.7
Symmetry codes: (ii) x+3/2, y+1/2, z+3/2; (iii) x, y+1, z1/2; (iv) x+3/2, y+1/2, z+1; (v) x+3/2, y+3/2, z+1.
 

Footnotes

Member of Consejo Nacional de Ciencia y Técnica, Conicet.

Acknowledgements

We acknowledge PICT 25409, the Spanish Research Council (CSIC) for providing us with a free-of-charge licence to use the CSD system (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) and Professor Judith Howard for the donation of a Rigaku AFC6S four-circle diffractometer. EF is a member of the research staff of Conicet. The authors are grateful to Laboratorios Gador for providing the zoledronic acid.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCao, D.-K., Li, Y.-Z. & Zheng, L.-M. (2007). Inorg. Chem. 46, 7571–7578.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCao, D.-K., Xie, X.-J., Li, Y.-Z. & Zheng, L.-M. (2008). Dalton Trans. pp. 5008–5015.  Web of Science CSD CrossRef Google Scholar
First citationChen, H., Sun, Z., Dong, D., Meng, L., Zheng, X., Zhu, Y., Zha, Y. & Zhang, J. (2008). J. Coord. Chem. 61, 1316–1324.  Web of Science CSD CrossRef CAS Google Scholar
First citationChesnut, C. H. III, Skag, A., Christiansen, C., Recker, R., Stakkestad, J. A., Hoiseth, A., Felsenberg, D., Huss, H., Gilbride, J., Schimmer, R. C. & Delmas, P. D. (2004). J. Bone Miner. Res. 19, 1241–1249.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFernández, D., Vega, D. & Goeta, A. (2002). Acta Cryst. C58, m494–m497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFleisch, H. (2000). Bisphosphonates in Bone Disease. From the Laboratory to the Patient, 4th ed. New York: Academic Press.  Google Scholar
First citationFleisch, H., Russell, R. G. G., Bisaz, S., Termine, J. D. & Posner, A. S. (1968). Calcif. Tissue Res. 2, 49–59.  CrossRef CAS Web of Science Google Scholar
First citationFreire, E. & Vega, D. R. (2009). Acta Cryst. E65, m1428–m1429.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGreen, J. R., Mueller, K. & Jaeggi, K. A. (1994). J. Bone Miner. Res. 9, 745–751.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLi, G., Fan, Y., Zhang, T., Ge, T. & Hou, H. (2008). J. Coord. Chem. 61, 540–549.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRalston, S. H., Patel, U., Fraser, W. D., Gallacher, S. J., Dryburgh, F. J., Cowan, R. A. & Boyle, I. T. (1989). Lancet, 334, 1180–1182.  CrossRef Google Scholar
First citationRauch, F. & Glorieux, F. H. (2005). Am. J. Med. Genet. C. Semin. Med. Genet. 139, 31–37.  CrossRef Google Scholar
First citationReid, I. R., Miller, P., Lyles, K., Fraser, W., Brown, J. P., Saidi, Y., Mesenbrink, P., Su, G., Pak, J., Zelenakas, K., Luchi, M., Richardson, P. & Hosking, D. (2005). N. Engl. J. Med. 353, 898–908.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRoss, J. R., Saunders, Y., Edmonds, P. M., Wonderling, D., Normand, C. & Broadley, K. (2004). Health Technol. Assess. 8, 1–176.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, M. R. (2005). Cancer Treat. Rev. 31 (Suppl 3), 19–25.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUchtman, V. A. (1972). J. Phys. Chem. 76, 1298–1304.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds