organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(2-Furylmethyl­ene)benzo­hydrazide

aCollege of Chemistry and Chemical Technology, Binzhou University, Binzhou 256600, Shandong, People's Republic of China
*Correspondence e-mail: fanchuangang2009@163.com

(Received 13 October 2009; accepted 14 October 2009; online 23 October 2009)

In the title compound, C12H10N2O2, the dihedral angle between the benzene and furan rings is 52.54 (7)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds and C—H⋯π inter­actions link the mol­ecules.

Related literature

For biological properties of Schiff base ligands, see: Chakraborty et al. (1996[Chakraborty, J. & Patel, R. N. (1996). J. Indian Chem. Soc. 73, 191-195.]); Jeewoth et al. (1999[Jeewoth, T., Bhowon, M. G. & Wah, H. L. K. (1999). Transition Met. Chem. 24, 445-448.]). For related crystal structures, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594-o1595.]); Cui et al. (2009[Cui, C., Meng, Q. & Wang, Y. (2009). Acta Cryst. E65, o2472.]); Nie (2008[Nie, Y. (2008). Acta Cryst. E64, o471.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O2

  • Mr = 214.22

  • Monoclinic, P 21 /c

  • a = 12.3955 (11) Å

  • b = 9.4777 (9) Å

  • c = 9.6845 (10) Å

  • β = 110.610 (1)°

  • V = 1064.93 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.43 × 0.38 × 0.30 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.961, Tmax = 0.973

  • 5190 measured reflections

  • 1882 independent reflections

  • 1360 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.05

  • 1882 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.14 2.972 (2) 163
C10—H10⋯Cg1ii 0.93 2.84 3.498 (2) 128
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x, y-1, z. Cg1 is the centroid of the C2–C7 ring.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Conventionally, Schiff bases derived from a large number of carbonyl compounds and amines. It has been shown that Schiff base compounds have strong anticancer activity (Chakraborty et al., 1996). It has been well known that a series of certain Schiff base compounds, have received considerable attention during the last decades, mainly because their structures or for their biological properties (Jeewoth et al., 1999).

In the compound (I), (Fig. 1), the bond lengths an angles are normal and are comparable to the values observed in similar compounds (Nie et al., 2008; Fun et al., 2008; Cui et al., 2009).

In the crystal structure, the C=N bond length in the molecule is 1.273 (2) ° (C8=N2), showing the double-bond character. Meanwhile, the dihedral angle between the benzene ring (C2-C7) and the furan ring (C9-C12/O2) in the Schiff base molecule is 52.54 (7)°, indicating that the two aromatic ring planes are not coplanar.

Moreover, the crystal supramolecular structure was built from the connections of intermolecular N—H···O hydrogen bonds and C-H···π hydrogen bonding interactions, as shown in Table 1.

Related literature top

For biological properties of Schiff base ligands, see: Chakraborty, et al.(1996); Jeewoth et al.(1999). For related crystal structures, see: Fun et al.(2008); Cui et al.(2009); Nie (2008). Cg1 is the centroid of the C2–C7 ring.

Experimental top

Benzohydrazide (5.0 mmol), 20 ml ethanol and furfural (5.0 mmol) were mixed in 50 ml flash. After refluxing 3 h, the resulting mixture was cooled to room temperature, and recrystalized from ethanol, and afforded the title compound as a crystalline solid. Elemental analysis: calculated for C12H10N2O2: C 67.28, H 4.71, N 13.08%; found: C 67.16, H 4.66, N 13.19%.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H 0.86 and C—H 0.93 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2U5eq(C) (C,N).

Structure description top

Conventionally, Schiff bases derived from a large number of carbonyl compounds and amines. It has been shown that Schiff base compounds have strong anticancer activity (Chakraborty et al., 1996). It has been well known that a series of certain Schiff base compounds, have received considerable attention during the last decades, mainly because their structures or for their biological properties (Jeewoth et al., 1999).

In the compound (I), (Fig. 1), the bond lengths an angles are normal and are comparable to the values observed in similar compounds (Nie et al., 2008; Fun et al., 2008; Cui et al., 2009).

In the crystal structure, the C=N bond length in the molecule is 1.273 (2) ° (C8=N2), showing the double-bond character. Meanwhile, the dihedral angle between the benzene ring (C2-C7) and the furan ring (C9-C12/O2) in the Schiff base molecule is 52.54 (7)°, indicating that the two aromatic ring planes are not coplanar.

Moreover, the crystal supramolecular structure was built from the connections of intermolecular N—H···O hydrogen bonds and C-H···π hydrogen bonding interactions, as shown in Table 1.

For biological properties of Schiff base ligands, see: Chakraborty, et al.(1996); Jeewoth et al.(1999). For related crystal structures, see: Fun et al.(2008); Cui et al.(2009); Nie (2008). Cg1 is the centroid of the C2–C7 ring.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) showing the atomic numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing of (I) viewed down b-axis showing the N-H..O and C-H···π H-bond interactions with dashed lines. Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) x, y-1, z.
(E)-N'-(2-Furylmethylene)benzohydrazide top
Crystal data top
C12H10N2O2F(000) = 448
Mr = 214.22Dx = 1.336 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1760 reflections
a = 12.3955 (11) Åθ = 2.8–25.6°
b = 9.4777 (9) ŵ = 0.09 mm1
c = 9.6845 (10) ÅT = 298 K
β = 110.610 (1)°Needle, green
V = 1064.93 (18) Å30.43 × 0.38 × 0.30 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1882 independent reflections
Radiation source: fine-focus sealed tube1360 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
phi and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.961, Tmax = 0.973k = 115
5190 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.2066P]
where P = (Fo2 + 2Fc2)/3
1882 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C12H10N2O2V = 1064.93 (18) Å3
Mr = 214.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3955 (11) ŵ = 0.09 mm1
b = 9.4777 (9) ÅT = 298 K
c = 9.6845 (10) Å0.43 × 0.38 × 0.30 mm
β = 110.610 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1882 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1360 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.973Rint = 0.032
5190 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
1882 reflectionsΔρmin = 0.20 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.23549 (11)0.22758 (14)0.10288 (15)0.0393 (4)
H10.24620.22630.19560.047*
N20.18065 (12)0.11622 (15)0.01303 (15)0.0394 (4)
O10.26227 (11)0.34211 (13)0.08757 (13)0.0525 (4)
O20.05357 (11)0.11197 (14)0.14345 (14)0.0552 (4)
C10.27183 (14)0.33810 (18)0.04323 (18)0.0369 (4)
C20.32908 (13)0.45449 (17)0.14650 (18)0.0357 (4)
C30.31657 (15)0.47508 (18)0.28218 (19)0.0439 (4)
H30.26980.41480.31220.053*
C40.37320 (17)0.5846 (2)0.3724 (2)0.0539 (5)
H40.36420.59820.46280.065*
C50.44318 (17)0.6740 (2)0.3290 (2)0.0576 (6)
H50.48220.74680.39080.069*
C60.45522 (16)0.6555 (2)0.1942 (2)0.0553 (5)
H60.50190.71610.16460.066*
C70.39802 (15)0.5469 (2)0.1033 (2)0.0460 (5)
H70.40570.53540.01180.055*
C80.17622 (14)0.00187 (18)0.07975 (19)0.0407 (4)
H80.20880.00110.18210.049*
C90.12239 (14)0.12242 (18)0.00150 (19)0.0406 (4)
C100.12911 (17)0.2579 (2)0.0460 (2)0.0574 (5)
H100.17010.29240.13980.069*
C110.06160 (19)0.3374 (2)0.0779 (3)0.0693 (6)
H110.05040.43460.08180.083*
C120.01745 (18)0.2464 (3)0.1875 (3)0.0635 (6)
H120.03160.27080.28170.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0512 (9)0.0397 (8)0.0276 (7)0.0026 (7)0.0147 (6)0.0027 (6)
N20.0459 (8)0.0386 (8)0.0341 (8)0.0018 (7)0.0146 (6)0.0038 (7)
O10.0821 (9)0.0482 (8)0.0309 (7)0.0056 (7)0.0245 (6)0.0012 (6)
O20.0565 (8)0.0579 (9)0.0459 (8)0.0045 (7)0.0116 (6)0.0062 (7)
C10.0414 (9)0.0386 (10)0.0318 (9)0.0061 (8)0.0142 (7)0.0030 (8)
C20.0383 (9)0.0362 (9)0.0332 (9)0.0047 (7)0.0134 (7)0.0017 (8)
C30.0554 (11)0.0432 (10)0.0381 (10)0.0067 (9)0.0225 (8)0.0012 (8)
C40.0699 (13)0.0579 (13)0.0391 (11)0.0131 (10)0.0257 (10)0.0102 (9)
C50.0634 (12)0.0576 (13)0.0502 (12)0.0191 (11)0.0180 (10)0.0126 (10)
C60.0571 (12)0.0598 (13)0.0522 (12)0.0185 (10)0.0233 (10)0.0014 (10)
C70.0509 (11)0.0534 (11)0.0386 (10)0.0041 (9)0.0218 (9)0.0008 (9)
C80.0451 (10)0.0430 (10)0.0338 (9)0.0013 (8)0.0136 (8)0.0006 (8)
C90.0428 (10)0.0429 (11)0.0378 (10)0.0015 (8)0.0162 (8)0.0012 (8)
C100.0647 (13)0.0460 (12)0.0627 (13)0.0011 (10)0.0241 (11)0.0039 (11)
C110.0781 (15)0.0457 (12)0.0926 (19)0.0118 (12)0.0406 (14)0.0163 (13)
C120.0560 (12)0.0711 (15)0.0633 (14)0.0171 (12)0.0210 (11)0.0292 (13)
Geometric parameters (Å, º) top
N1—C11.348 (2)C5—C61.376 (3)
N1—N21.3844 (19)C5—H50.9300
N1—H10.8600C6—C71.377 (3)
N2—C81.273 (2)C6—H60.9300
O1—C11.2306 (19)C7—H70.9300
O2—C91.366 (2)C8—C91.432 (2)
O2—C121.368 (2)C8—H80.9300
C1—C21.490 (2)C9—C101.348 (3)
C2—C71.387 (2)C10—C111.415 (3)
C2—C31.390 (2)C10—H100.9300
C3—C41.379 (2)C11—C121.327 (3)
C3—H30.9300C11—H110.9300
C4—C51.380 (3)C12—H120.9300
C4—H40.9300
C1—N1—N2119.16 (13)C5—C6—H6120.1
C1—N1—H1120.4C7—C6—H6120.1
N2—N1—H1120.4C6—C7—C2120.79 (17)
C8—N2—N1115.43 (14)C6—C7—H7119.6
C9—O2—C12105.68 (16)C2—C7—H7119.6
O1—C1—N1122.65 (16)N2—C8—C9121.81 (16)
O1—C1—C2121.24 (15)N2—C8—H8119.1
N1—C1—C2116.08 (14)C9—C8—H8119.1
C7—C2—C3118.82 (16)C10—C9—O2110.11 (16)
C7—C2—C1117.59 (15)C10—C9—C8130.51 (17)
C3—C2—C1123.59 (15)O2—C9—C8119.36 (15)
C4—C3—C2120.22 (17)C9—C10—C11106.54 (19)
C4—C3—H3119.9C9—C10—H10126.7
C2—C3—H3119.9C11—C10—H10126.7
C3—C4—C5120.23 (18)C12—C11—C10106.65 (19)
C3—C4—H4119.9C12—C11—H11126.7
C5—C4—H4119.9C10—C11—H11126.7
C6—C5—C4120.03 (18)C11—C12—O2111.01 (18)
C6—C5—H5120.0C11—C12—H12124.5
C4—C5—H5120.0O2—C12—H12124.5
C5—C6—C7119.89 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.142.972 (2)163
C10—H10···Cg1ii0.932.853.498 (2)128
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC12H10N2O2
Mr214.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.3955 (11), 9.4777 (9), 9.6845 (10)
β (°) 110.610 (1)
V3)1064.93 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.38 × 0.30
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.961, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
5190, 1882, 1360
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.05
No. of reflections1882
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.142.972 (2)162.9
C10—H10···Cg1ii0.932.84463.498 (2)128.3
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1, z.
 

Acknowledgements

The authors acknowledge the financial support of the Foundation of Binzhou University (No. BZXYLG200609).

References

First citationChakraborty, J. & Patel, R. N. (1996). J. Indian Chem. Soc. 73, 191–195.  CAS Google Scholar
First citationCui, C., Meng, Q. & Wang, Y. (2009). Acta Cryst. E65, o2472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeewoth, T., Bhowon, M. G. & Wah, H. L. K. (1999). Transition Met. Chem. 24, 445–448.  Web of Science CrossRef CAS Google Scholar
First citationNie, Y. (2008). Acta Cryst. E64, o471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds