organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

c-3,t-3-Di­methyl-r-2,c-6-di­phenyl­piperidin-4-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 10 September 2009; accepted 12 October 2009; online 17 October 2009)

In the title compound, C19H21NO, the piperidine ring adopts a chair conformation. The two phenyl rings attached to the piperidine ring at 2 and 6 positions occupy equatorial orientations and the dihedral angle between them is 57.53 (11)°. In the crystal, the mol­ecules are connected via weak inter­molecular C—H⋯π inter­actions, leading to a zigzag chains.

Related literature

For general background to piperidine derivatives, see: Badorrey et al. (1999[Badorrey, R., Cativiela, C., Diaz-de-Villegas, M. D. & Galvez, J. A. (1999). Tetrahedron, 55, 7601-7612.]); Nalanishi et al. (1974[Nalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Jpn Patent 74-03987.]); Elena et al. (2002[Elena, K., Yechezkel, B., Dan, G. & Yousef, N. (2002). J. Med. Chem. 45, 5196-5204.]). For hybridization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For the synthesis of the title compound, see Noller & Baliah (1948[Noller, C. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853-3855.]).

[Scheme 1]

Experimental

Crystal data
  • C19H21NO

  • Mr = 279.37

  • Triclinic, [P \overline 1]

  • a = 6.0293 (4) Å

  • b = 10.8198 (6) Å

  • c = 12.1649 (6) Å

  • α = 98.559 (2)°

  • β = 92.836 (3)°

  • γ = 96.677 (3)°

  • V = 777.62 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.986, Tmax = 0.987

  • 15310 measured reflections

  • 3556 independent reflections

  • 1930 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.168

  • S = 1.06

  • 3556 reflections

  • 197 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cg3i 0.93 2.95 3.648 133
Symmetry codes: (i) x, y+1, z. Cg3 is the centroid of the C15–C20 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Various piperidine derivatives are present in numerous alkaloids (Badorrey et al., 1999). Piperidines have been found to exhibit blood cholesterol-lowering activities (Nalanishi et al., 1974). Trans-platinum piperidine derivatives deserve evaluation of their efficacy in tumor-bearing animals (Elena et al., 2002). In view of these importance, the crystal structure of the title compound has been carrried out.

The ORTEP plot of the molecule is shown in Fig. 1. The piperidine ring adopts chair conformation and the ring-puckering parameters (Cremer & Pople, 1975) are: q2 = 0.1578 (20)Å, q3 = -0.5364 (21)Å, and φ = 176.7 (8)°, and the smallest asymmetry parameter Δs(N1)=Δs(C4) = 1.97 (16)° (Nardelli, 1983). The two phenyl rings attached to the piperidine ring at 2,6- positions occupy equatorial orientation [C7-C2-C3-C4 = -174.77 (16)°; C4-C5-C6-C15 = 175.09 (16)°], respectively and the dihedral angle between them is 57.52 (11)°. The methyl groups attached at position 3 of the piperidine ring takes up syn-periplanar [C13-C3-C4-O1 = -22.3 (3)°] and anti-clinical [C14-C3-C4-O1 = 97.1 (2)°] orientations. The sum of the bond angles at N1[329.62 (5)°] of the piperidine ring is in accordance with sp3 hybridization (Beddoes et al., 1986).

The molecules are connected via intermolecular C–H···π interactions (Table 1) which lead to a zig–zag chain running along b – axis in addition to van der Waals forces (Fig. 2).

Related literature top

For general background to piperidine derivatives, see: Badorrey et al.(1999); Nalanishi et al. (1974); Elena et al.(2002). For hybridization, see: Beddoes et al.(1986). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983). For the synthesis of the title compound, see Noller & Baliah (1948).

Experimental top

The procedure reported by Noller and Baliah was followed for the preparation of this compound (Noller & Baliah, 1948). Benzaldehyde (21ml), 3-methyl-2-butanone (10ml) and ammonium acetate (8gm) were dissolved in distilled ethanol (50ml) and heated over boiling water bath with shaking, until an yellow colour developed and changed into orange. The solution was left undisturbed for 14 hours. The solid thrown out was filtered, purified and recrystallized from ethanol.

Refinement top

The H atom bonded to N was freely refined. H atoms bonded to C were positioned geometrically (C-H = 0.93 - 0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms. The components of the anisotropic displacement parameters of C18 and C19 in the direction of the bond between them were restrained to be equal within an effective standard deviation of 0.001.

Structure description top

Various piperidine derivatives are present in numerous alkaloids (Badorrey et al., 1999). Piperidines have been found to exhibit blood cholesterol-lowering activities (Nalanishi et al., 1974). Trans-platinum piperidine derivatives deserve evaluation of their efficacy in tumor-bearing animals (Elena et al., 2002). In view of these importance, the crystal structure of the title compound has been carrried out.

The ORTEP plot of the molecule is shown in Fig. 1. The piperidine ring adopts chair conformation and the ring-puckering parameters (Cremer & Pople, 1975) are: q2 = 0.1578 (20)Å, q3 = -0.5364 (21)Å, and φ = 176.7 (8)°, and the smallest asymmetry parameter Δs(N1)=Δs(C4) = 1.97 (16)° (Nardelli, 1983). The two phenyl rings attached to the piperidine ring at 2,6- positions occupy equatorial orientation [C7-C2-C3-C4 = -174.77 (16)°; C4-C5-C6-C15 = 175.09 (16)°], respectively and the dihedral angle between them is 57.52 (11)°. The methyl groups attached at position 3 of the piperidine ring takes up syn-periplanar [C13-C3-C4-O1 = -22.3 (3)°] and anti-clinical [C14-C3-C4-O1 = 97.1 (2)°] orientations. The sum of the bond angles at N1[329.62 (5)°] of the piperidine ring is in accordance with sp3 hybridization (Beddoes et al., 1986).

The molecules are connected via intermolecular C–H···π interactions (Table 1) which lead to a zig–zag chain running along b – axis in addition to van der Waals forces (Fig. 2).

For general background to piperidine derivatives, see: Badorrey et al.(1999); Nalanishi et al. (1974); Elena et al.(2002). For hybridization, see: Beddoes et al.(1986). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983). For the synthesis of the title compound, see Noller & Baliah (1948).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The ORTEP plot of the molecule with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed along b - axis.
c-3,t-3-Dimethyl-r-2,c-6-diphenylpiperidin-4-one top
Crystal data top
C19H21NOZ = 2
Mr = 279.37F(000) = 300
Triclinic, P1Dx = 1.193 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0293 (4) ÅCell parameters from 3556 reflections
b = 10.8198 (6) Åθ = 1.7–28.2°
c = 12.1649 (6) ŵ = 0.07 mm1
α = 98.559 (2)°T = 293 K
β = 92.836 (3)°Block, colourless
γ = 96.677 (3)°0.20 × 0.20 × 0.18 mm
V = 777.62 (8) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3556 independent reflections
Radiation source: fine-focus sealed tube1930 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and φ scansθmax = 28.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 87
Tmin = 0.986, Tmax = 0.987k = 1413
15310 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.168 w = 1/[σ2(Fo2) + (0.0729P)2 + 0.1205P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.014
3556 reflectionsΔρmax = 0.18 e Å3
197 parametersΔρmin = 0.19 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (5)
Crystal data top
C19H21NOγ = 96.677 (3)°
Mr = 279.37V = 777.62 (8) Å3
Triclinic, P1Z = 2
a = 6.0293 (4) ÅMo Kα radiation
b = 10.8198 (6) ŵ = 0.07 mm1
c = 12.1649 (6) ÅT = 293 K
α = 98.559 (2)°0.20 × 0.20 × 0.18 mm
β = 92.836 (3)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3556 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
1930 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.987Rint = 0.036
15310 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.18 e Å3
3556 reflectionsΔρmin = 0.19 e Å3
197 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.1988 (3)0.24655 (18)0.32290 (15)0.0425 (5)
H20.04000.24030.33790.051*
C30.3320 (3)0.22876 (19)0.43103 (15)0.0468 (5)
C40.2694 (3)0.0952 (2)0.45372 (16)0.0493 (5)
C50.2448 (4)0.00903 (19)0.35615 (16)0.0524 (6)
H5A0.16740.08450.37780.063*
H5B0.39230.02710.33530.063*
C60.1161 (3)0.02397 (18)0.25591 (15)0.0442 (5)
H60.03760.03360.27500.053*
C70.2596 (3)0.37123 (18)0.28453 (15)0.0455 (5)
C80.1269 (4)0.4668 (2)0.30562 (18)0.0588 (6)
H80.00300.45480.34720.071*
C90.1733 (5)0.5791 (2)0.2668 (2)0.0723 (7)
H90.08180.64210.28250.087*
C100.3532 (5)0.5982 (2)0.2053 (2)0.0750 (8)
H100.38360.67380.17810.090*
C110.4897 (5)0.5055 (2)0.18330 (19)0.0704 (7)
H110.61380.51870.14210.084*
C120.4420 (4)0.3928 (2)0.22252 (17)0.0551 (6)
H120.53440.33010.20690.066*
C130.2732 (5)0.3230 (2)0.52803 (18)0.0740 (8)
H13A0.11520.30970.53670.111*
H13B0.31390.40720.51330.111*
H13C0.35350.31170.59520.111*
C140.5846 (4)0.2435 (2)0.41959 (19)0.0644 (7)
H14A0.65880.22070.48390.097*
H14B0.63610.32940.41370.097*
H14C0.61760.18950.35400.097*
C150.1096 (4)0.07639 (18)0.15558 (16)0.0460 (5)
C160.2873 (4)0.0837 (2)0.08964 (18)0.0605 (6)
H160.41340.02430.10610.073*
C170.2818 (5)0.1775 (2)0.0003 (2)0.0728 (7)
H170.40410.18100.04380.087*
C180.0987 (5)0.2653 (2)0.0261 (2)0.0726 (7)
H180.09520.32850.08720.087*
C190.0791 (5)0.2598 (2)0.0383 (2)0.0732 (7)
H190.20410.31990.02140.088*
C200.0753 (4)0.1654 (2)0.12890 (19)0.0620 (6)
H200.19820.16210.17200.074*
N10.2245 (3)0.14438 (15)0.23353 (13)0.0435 (4)
O10.2492 (3)0.07213 (16)0.54724 (12)0.0687 (5)
H10.168 (4)0.1575 (19)0.1717 (19)0.058 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0418 (11)0.0477 (12)0.0367 (10)0.0071 (9)0.0038 (8)0.0012 (8)
C30.0453 (12)0.0570 (13)0.0363 (10)0.0018 (9)0.0019 (8)0.0053 (9)
C40.0431 (12)0.0697 (15)0.0359 (11)0.0030 (10)0.0002 (8)0.0143 (10)
C50.0626 (14)0.0528 (13)0.0438 (11)0.0061 (10)0.0021 (10)0.0155 (10)
C60.0457 (12)0.0475 (12)0.0408 (10)0.0046 (9)0.0043 (8)0.0118 (9)
C70.0534 (13)0.0460 (12)0.0343 (10)0.0066 (9)0.0041 (8)0.0013 (8)
C80.0655 (16)0.0525 (14)0.0571 (13)0.0139 (11)0.0024 (11)0.0016 (11)
C90.093 (2)0.0524 (15)0.0708 (16)0.0209 (13)0.0092 (15)0.0045 (12)
C100.113 (2)0.0494 (15)0.0612 (15)0.0044 (15)0.0152 (15)0.0155 (12)
C110.094 (2)0.0629 (16)0.0531 (14)0.0037 (14)0.0060 (12)0.0151 (12)
C120.0680 (15)0.0488 (13)0.0489 (12)0.0079 (11)0.0092 (10)0.0065 (10)
C130.096 (2)0.0789 (17)0.0410 (12)0.0077 (14)0.0001 (12)0.0051 (12)
C140.0462 (14)0.0788 (17)0.0677 (15)0.0021 (12)0.0080 (10)0.0215 (13)
C150.0554 (13)0.0428 (11)0.0402 (10)0.0039 (9)0.0023 (9)0.0113 (9)
C160.0711 (16)0.0504 (13)0.0572 (14)0.0011 (11)0.0117 (12)0.0015 (11)
C170.096 (2)0.0644 (16)0.0565 (14)0.0135 (14)0.0155 (13)0.0003 (12)
C180.110 (2)0.0549 (14)0.0486 (14)0.0124 (15)0.0144 (11)0.0005 (11)
C190.0874 (18)0.0583 (15)0.0652 (15)0.0101 (13)0.0227 (10)0.0058 (12)
C200.0625 (15)0.0627 (15)0.0569 (14)0.0055 (12)0.0061 (11)0.0103 (11)
N10.0562 (11)0.0423 (10)0.0321 (9)0.0055 (8)0.0016 (7)0.0071 (7)
O10.0743 (11)0.0921 (12)0.0396 (8)0.0042 (9)0.0012 (7)0.0223 (8)
Geometric parameters (Å, º) top
C2—N11.458 (2)C10—H100.9300
C2—C71.504 (3)C11—C121.380 (3)
C2—C31.555 (3)C11—H110.9300
C2—H20.9800C12—H120.9300
C3—C41.520 (3)C13—H13A0.9600
C3—C131.525 (3)C13—H13B0.9600
C3—C141.528 (3)C13—H13C0.9600
C4—O11.209 (2)C14—H14A0.9600
C4—C51.499 (3)C14—H14B0.9600
C5—C61.522 (3)C14—H14C0.9600
C5—H5A0.9700C15—C161.372 (3)
C5—H5B0.9700C15—C201.377 (3)
C6—N11.457 (2)C16—C171.372 (3)
C6—C151.504 (3)C16—H160.9300
C6—H60.9800C17—C181.362 (4)
C7—C121.381 (3)C17—H170.9300
C7—C81.382 (3)C18—C191.360 (4)
C8—C91.371 (3)C18—H180.9300
C8—H80.9300C19—C201.383 (3)
C9—C101.361 (4)C19—H190.9300
C9—H90.9300C20—H200.9300
C10—C111.374 (4)N1—H10.85 (2)
N1—C2—C7109.70 (15)C10—C11—C12119.8 (2)
N1—C2—C3109.78 (16)C10—C11—H11120.1
C7—C2—C3114.76 (15)C12—C11—H11120.1
N1—C2—H2107.4C11—C12—C7121.2 (2)
C7—C2—H2107.4C11—C12—H12119.4
C3—C2—H2107.4C7—C12—H12119.4
C4—C3—C13109.95 (17)C3—C13—H13A109.5
C4—C3—C14106.01 (17)C3—C13—H13B109.5
C13—C3—C14110.43 (18)H13A—C13—H13B109.5
C4—C3—C2108.99 (15)C3—C13—H13C109.5
C13—C3—C2109.16 (18)H13A—C13—H13C109.5
C14—C3—C2112.25 (16)H13B—C13—H13C109.5
O1—C4—C5120.6 (2)C3—C14—H14A109.5
O1—C4—C3121.75 (19)C3—C14—H14B109.5
C5—C4—C3117.57 (16)H14A—C14—H14B109.5
C4—C5—C6112.35 (17)C3—C14—H14C109.5
C4—C5—H5A109.1H14A—C14—H14C109.5
C6—C5—H5A109.1H14B—C14—H14C109.5
C4—C5—H5B109.1C16—C15—C20118.2 (2)
C6—C5—H5B109.1C16—C15—C6121.47 (18)
H5A—C5—H5B107.9C20—C15—C6120.3 (2)
N1—C6—C15111.07 (15)C17—C16—C15121.0 (2)
N1—C6—C5107.32 (16)C17—C16—H16119.5
C15—C6—C5111.89 (17)C15—C16—H16119.5
N1—C6—H6108.8C18—C17—C16120.4 (2)
C15—C6—H6108.8C18—C17—H17119.8
C5—C6—H6108.8C16—C17—H17119.8
C12—C7—C8117.4 (2)C17—C18—C19119.4 (2)
C12—C7—C2121.77 (19)C17—C18—H18120.3
C8—C7—C2120.70 (19)C19—C18—H18120.3
C9—C8—C7121.6 (2)C18—C19—C20120.5 (2)
C9—C8—H8119.2C18—C19—H19119.8
C7—C8—H8119.2C20—C19—H19119.8
C10—C9—C8120.0 (3)C15—C20—C19120.4 (2)
C10—C9—H9120.0C15—C20—H20119.8
C8—C9—H9120.0C19—C20—H20119.8
C9—C10—C11119.9 (2)C6—N1—C2111.51 (15)
C9—C10—H10120.0C6—N1—H1107.9 (14)
C11—C10—H10120.0C2—N1—H1111.3 (15)
N1—C2—C3—C450.7 (2)C7—C8—C9—C100.4 (4)
C7—C2—C3—C4174.77 (16)C8—C9—C10—C110.8 (4)
N1—C2—C3—C13170.78 (17)C9—C10—C11—C120.8 (4)
C7—C2—C3—C1365.1 (2)C10—C11—C12—C70.5 (3)
N1—C2—C3—C1466.4 (2)C8—C7—C12—C110.0 (3)
C7—C2—C3—C1457.6 (2)C2—C7—C12—C11176.84 (19)
C13—C3—C4—O122.3 (3)N1—C6—C15—C1639.6 (3)
C14—C3—C4—O197.1 (2)C5—C6—C15—C1680.3 (2)
C2—C3—C4—O1141.9 (2)N1—C6—C15—C20141.7 (2)
C13—C3—C4—C5160.91 (19)C5—C6—C15—C2098.4 (2)
C14—C3—C4—C579.7 (2)C20—C15—C16—C170.3 (3)
C2—C3—C4—C541.3 (2)C6—C15—C16—C17178.5 (2)
O1—C4—C5—C6139.4 (2)C15—C16—C17—C180.2 (4)
C3—C4—C5—C643.7 (2)C16—C17—C18—C190.3 (4)
C4—C5—C6—N153.0 (2)C17—C18—C19—C200.5 (4)
C4—C5—C6—C15175.09 (16)C16—C15—C20—C190.5 (3)
N1—C2—C7—C1241.6 (2)C6—C15—C20—C19178.3 (2)
C3—C2—C7—C1282.6 (2)C18—C19—C20—C150.6 (4)
N1—C2—C7—C8135.14 (19)C15—C6—N1—C2170.45 (16)
C3—C2—C7—C8100.7 (2)C5—C6—N1—C267.0 (2)
C12—C7—C8—C90.0 (3)C7—C2—N1—C6165.75 (16)
C2—C7—C8—C9176.82 (19)C3—C2—N1—C667.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg3i0.932.953.648133
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H21NO
Mr279.37
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.0293 (4), 10.8198 (6), 12.1649 (6)
α, β, γ (°)98.559 (2), 92.836 (3), 96.677 (3)
V3)777.62 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.986, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
15310, 3556, 1930
Rint0.036
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.168, 1.06
No. of reflections3556
No. of parameters197
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg3i0.932.94663.648133.31
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

MT thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection. SP thanks the UGC, India, for financial support.

References

First citationBadorrey, R., Cativiela, C., Diaz-de-Villegas, M. D. & Galvez, J. A. (1999). Tetrahedron, 55, 7601–7612.  Web of Science CrossRef CAS Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationElena, K., Yechezkel, B., Dan, G. & Yousef, N. (2002). J. Med. Chem. 45, 5196–5204.  Web of Science CrossRef PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Jpn Patent 74-03987.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNoller, C. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853–3855.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds