organic compounds
c-3,t-3-Dimethyl-r-2,c-6-diphenylpiperidin-4-one
aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India
*Correspondence e-mail: mnpsy2004@yahoo.com
In the title compound, C19H21NO, the piperidine ring adopts a chair conformation. The two phenyl rings attached to the piperidine ring at 2 and 6 positions occupy equatorial orientations and the dihedral angle between them is 57.53 (11)°. In the crystal, the molecules are connected via weak intermolecular C—H⋯π interactions, leading to a zigzag chains.
Related literature
For general background to piperidine derivatives, see: Badorrey et al. (1999); Nalanishi et al. (1974); Elena et al. (2002). For see: Beddoes et al. (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring see: Cremer & Pople (1975); Nardelli (1983). For the synthesis of the title compound, see Noller & Baliah (1948).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536809041580/bt5058sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809041580/bt5058Isup2.hkl
The procedure reported by Noller and Baliah was followed for the preparation of this compound (Noller & Baliah, 1948). Benzaldehyde (21ml), 3-methyl-2-butanone (10ml) and ammonium acetate (8gm) were dissolved in distilled ethanol (50ml) and heated over boiling water bath with shaking, until an yellow colour developed and changed into orange. The solution was left undisturbed for 14 hours. The solid thrown out was filtered, purified and recrystallized from ethanol.
The H atom bonded to N was freely refined. H atoms bonded to C were positioned geometrically (C-H = 0.93 - 0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms. The components of the anisotropic displacement parameters of C18 and C19 in the direction of the bond between them were restrained to be equal within an effective standard deviation of 0.001.
Various piperidine derivatives are present in numerous
(Badorrey et al., 1999). Piperidines have been found to exhibit blood cholesterol-lowering activities (Nalanishi et al., 1974). Trans-platinum piperidine derivatives deserve evaluation of their efficacy in tumor-bearing animals (Elena et al., 2002). In view of these importance, the of the title compound has been carrried out.The ORTEP plot of the molecule is shown in Fig. 1. The piperidine ring adopts chair conformation and the ring-puckering parameters (Cremer & Pople, 1975) are: q2 = 0.1578 (20)Å, q3 = -0.5364 (21)Å, and φ = 176.7 (8)°, and the smallest asymmetry parameter Δs(N1)=Δs(C4) = 1.97 (16)° (Nardelli, 1983). The two phenyl rings attached to the piperidine ring at 2,6- positions occupy equatorial orientation [C7-C2-C3-C4 = -174.77 (16)°; C4-C5-C6-C15 = 175.09 (16)°], respectively and the dihedral angle between them is 57.52 (11)°. The methyl groups attached at position 3 of the piperidine ring takes up syn-periplanar [C13-C3-C4-O1 = -22.3 (3)°] and anti-clinical [C14-C3-C4-O1 = 97.1 (2)°] orientations. The sum of the bond angles at N1[329.62 (5)°] of the piperidine ring is in accordance with sp3 (Beddoes et al., 1986).
The molecules are connected via intermolecular C–H···π interactions (Table 1) which lead to a zig–zag chain running along b – axis in addition to (Fig. 2).
For general background to piperidine derivatives, see: Badorrey et al.(1999); Nalanishi et al. (1974); Elena et al.(2002). For
see: Beddoes et al.(1986). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring see: Cremer & Pople (1975); Nardelli (1983). For the synthesis of the title compound, see Noller & Baliah (1948).Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The ORTEP plot of the molecule with 30% probability displacement ellipsoids. | |
Fig. 2. The crystal packing of the molecules viewed along b - axis. |
C19H21NO | Z = 2 |
Mr = 279.37 | F(000) = 300 |
Triclinic, P1 | Dx = 1.193 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.0293 (4) Å | Cell parameters from 3556 reflections |
b = 10.8198 (6) Å | θ = 1.7–28.2° |
c = 12.1649 (6) Å | µ = 0.07 mm−1 |
α = 98.559 (2)° | T = 293 K |
β = 92.836 (3)° | Block, colourless |
γ = 96.677 (3)° | 0.20 × 0.20 × 0.18 mm |
V = 777.62 (8) Å3 |
Bruker Kappa APEXII area-detector diffractometer | 3556 independent reflections |
Radiation source: fine-focus sealed tube | 1930 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
ω and φ scans | θmax = 28.2°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) | h = −8→7 |
Tmin = 0.986, Tmax = 0.987 | k = −14→13 |
15310 measured reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.050 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.168 | w = 1/[σ2(Fo2) + (0.0729P)2 + 0.1205P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.014 |
3556 reflections | Δρmax = 0.18 e Å−3 |
197 parameters | Δρmin = −0.19 e Å−3 |
1 restraint | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.020 (5) |
C19H21NO | γ = 96.677 (3)° |
Mr = 279.37 | V = 777.62 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.0293 (4) Å | Mo Kα radiation |
b = 10.8198 (6) Å | µ = 0.07 mm−1 |
c = 12.1649 (6) Å | T = 293 K |
α = 98.559 (2)° | 0.20 × 0.20 × 0.18 mm |
β = 92.836 (3)° |
Bruker Kappa APEXII area-detector diffractometer | 3556 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) | 1930 reflections with I > 2σ(I) |
Tmin = 0.986, Tmax = 0.987 | Rint = 0.036 |
15310 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 1 restraint |
wR(F2) = 0.168 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.18 e Å−3 |
3556 reflections | Δρmin = −0.19 e Å−3 |
197 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C2 | 0.1988 (3) | 0.24655 (18) | 0.32290 (15) | 0.0425 (5) | |
H2 | 0.0400 | 0.2403 | 0.3379 | 0.051* | |
C3 | 0.3320 (3) | 0.22876 (19) | 0.43103 (15) | 0.0468 (5) | |
C4 | 0.2694 (3) | 0.0952 (2) | 0.45372 (16) | 0.0493 (5) | |
C5 | 0.2448 (4) | −0.00903 (19) | 0.35615 (16) | 0.0524 (6) | |
H5A | 0.1674 | −0.0845 | 0.3778 | 0.063* | |
H5B | 0.3923 | −0.0271 | 0.3353 | 0.063* | |
C6 | 0.1161 (3) | 0.02397 (18) | 0.25591 (15) | 0.0442 (5) | |
H6 | −0.0376 | 0.0336 | 0.2750 | 0.053* | |
C7 | 0.2596 (3) | 0.37123 (18) | 0.28453 (15) | 0.0455 (5) | |
C8 | 0.1269 (4) | 0.4668 (2) | 0.30562 (18) | 0.0588 (6) | |
H8 | 0.0030 | 0.4548 | 0.3472 | 0.071* | |
C9 | 0.1733 (5) | 0.5791 (2) | 0.2668 (2) | 0.0723 (7) | |
H9 | 0.0818 | 0.6421 | 0.2825 | 0.087* | |
C10 | 0.3532 (5) | 0.5982 (2) | 0.2053 (2) | 0.0750 (8) | |
H10 | 0.3836 | 0.6738 | 0.1781 | 0.090* | |
C11 | 0.4897 (5) | 0.5055 (2) | 0.18330 (19) | 0.0704 (7) | |
H11 | 0.6138 | 0.5187 | 0.1421 | 0.084* | |
C12 | 0.4420 (4) | 0.3928 (2) | 0.22252 (17) | 0.0551 (6) | |
H12 | 0.5344 | 0.3301 | 0.2069 | 0.066* | |
C13 | 0.2732 (5) | 0.3230 (2) | 0.52803 (18) | 0.0740 (8) | |
H13A | 0.1152 | 0.3097 | 0.5367 | 0.111* | |
H13B | 0.3139 | 0.4072 | 0.5133 | 0.111* | |
H13C | 0.3535 | 0.3117 | 0.5952 | 0.111* | |
C14 | 0.5846 (4) | 0.2435 (2) | 0.41959 (19) | 0.0644 (7) | |
H14A | 0.6588 | 0.2207 | 0.4839 | 0.097* | |
H14B | 0.6361 | 0.3294 | 0.4137 | 0.097* | |
H14C | 0.6176 | 0.1895 | 0.3540 | 0.097* | |
C15 | 0.1096 (4) | −0.07639 (18) | 0.15558 (16) | 0.0460 (5) | |
C16 | 0.2873 (4) | −0.0837 (2) | 0.08964 (18) | 0.0605 (6) | |
H16 | 0.4134 | −0.0243 | 0.1061 | 0.073* | |
C17 | 0.2818 (5) | −0.1775 (2) | −0.0003 (2) | 0.0728 (7) | |
H17 | 0.4041 | −0.1810 | −0.0438 | 0.087* | |
C18 | 0.0987 (5) | −0.2653 (2) | −0.0261 (2) | 0.0726 (7) | |
H18 | 0.0952 | −0.3285 | −0.0872 | 0.087* | |
C19 | −0.0791 (5) | −0.2598 (2) | 0.0383 (2) | 0.0732 (7) | |
H19 | −0.2041 | −0.3199 | 0.0214 | 0.088* | |
C20 | −0.0753 (4) | −0.1654 (2) | 0.12890 (19) | 0.0620 (6) | |
H20 | −0.1982 | −0.1621 | 0.1720 | 0.074* | |
N1 | 0.2245 (3) | 0.14438 (15) | 0.23353 (13) | 0.0435 (4) | |
O1 | 0.2492 (3) | 0.07213 (16) | 0.54724 (12) | 0.0687 (5) | |
H1 | 0.168 (4) | 0.1575 (19) | 0.1717 (19) | 0.058 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0418 (11) | 0.0477 (12) | 0.0367 (10) | 0.0071 (9) | 0.0038 (8) | 0.0012 (8) |
C3 | 0.0453 (12) | 0.0570 (13) | 0.0363 (10) | 0.0018 (9) | 0.0019 (8) | 0.0053 (9) |
C4 | 0.0431 (12) | 0.0697 (15) | 0.0359 (11) | 0.0030 (10) | 0.0002 (8) | 0.0143 (10) |
C5 | 0.0626 (14) | 0.0528 (13) | 0.0438 (11) | 0.0061 (10) | 0.0021 (10) | 0.0155 (10) |
C6 | 0.0457 (12) | 0.0475 (12) | 0.0408 (10) | 0.0046 (9) | 0.0043 (8) | 0.0118 (9) |
C7 | 0.0534 (13) | 0.0460 (12) | 0.0343 (10) | 0.0066 (9) | −0.0041 (8) | −0.0013 (8) |
C8 | 0.0655 (16) | 0.0525 (14) | 0.0571 (13) | 0.0139 (11) | −0.0024 (11) | 0.0016 (11) |
C9 | 0.093 (2) | 0.0524 (15) | 0.0708 (16) | 0.0209 (13) | −0.0092 (15) | 0.0045 (12) |
C10 | 0.113 (2) | 0.0494 (15) | 0.0612 (15) | 0.0044 (15) | −0.0152 (15) | 0.0155 (12) |
C11 | 0.094 (2) | 0.0629 (16) | 0.0531 (14) | −0.0037 (14) | 0.0060 (12) | 0.0151 (12) |
C12 | 0.0680 (15) | 0.0488 (13) | 0.0489 (12) | 0.0079 (11) | 0.0092 (10) | 0.0065 (10) |
C13 | 0.096 (2) | 0.0789 (17) | 0.0410 (12) | 0.0077 (14) | −0.0001 (12) | −0.0051 (12) |
C14 | 0.0462 (14) | 0.0788 (17) | 0.0677 (15) | −0.0021 (12) | −0.0080 (10) | 0.0215 (13) |
C15 | 0.0554 (13) | 0.0428 (11) | 0.0402 (10) | 0.0039 (9) | −0.0023 (9) | 0.0113 (9) |
C16 | 0.0711 (16) | 0.0504 (13) | 0.0572 (14) | 0.0011 (11) | 0.0117 (12) | 0.0015 (11) |
C17 | 0.096 (2) | 0.0644 (16) | 0.0565 (14) | 0.0135 (14) | 0.0155 (13) | −0.0003 (12) |
C18 | 0.110 (2) | 0.0549 (14) | 0.0486 (14) | 0.0124 (15) | −0.0144 (11) | 0.0005 (11) |
C19 | 0.0874 (18) | 0.0583 (15) | 0.0652 (15) | −0.0101 (13) | −0.0227 (10) | 0.0058 (12) |
C20 | 0.0625 (15) | 0.0627 (15) | 0.0569 (14) | −0.0055 (12) | −0.0061 (11) | 0.0103 (11) |
N1 | 0.0562 (11) | 0.0423 (10) | 0.0321 (9) | 0.0055 (8) | 0.0016 (7) | 0.0071 (7) |
O1 | 0.0743 (11) | 0.0921 (12) | 0.0396 (8) | −0.0042 (9) | 0.0012 (7) | 0.0223 (8) |
C2—N1 | 1.458 (2) | C10—H10 | 0.9300 |
C2—C7 | 1.504 (3) | C11—C12 | 1.380 (3) |
C2—C3 | 1.555 (3) | C11—H11 | 0.9300 |
C2—H2 | 0.9800 | C12—H12 | 0.9300 |
C3—C4 | 1.520 (3) | C13—H13A | 0.9600 |
C3—C13 | 1.525 (3) | C13—H13B | 0.9600 |
C3—C14 | 1.528 (3) | C13—H13C | 0.9600 |
C4—O1 | 1.209 (2) | C14—H14A | 0.9600 |
C4—C5 | 1.499 (3) | C14—H14B | 0.9600 |
C5—C6 | 1.522 (3) | C14—H14C | 0.9600 |
C5—H5A | 0.9700 | C15—C16 | 1.372 (3) |
C5—H5B | 0.9700 | C15—C20 | 1.377 (3) |
C6—N1 | 1.457 (2) | C16—C17 | 1.372 (3) |
C6—C15 | 1.504 (3) | C16—H16 | 0.9300 |
C6—H6 | 0.9800 | C17—C18 | 1.362 (4) |
C7—C12 | 1.381 (3) | C17—H17 | 0.9300 |
C7—C8 | 1.382 (3) | C18—C19 | 1.360 (4) |
C8—C9 | 1.371 (3) | C18—H18 | 0.9300 |
C8—H8 | 0.9300 | C19—C20 | 1.383 (3) |
C9—C10 | 1.361 (4) | C19—H19 | 0.9300 |
C9—H9 | 0.9300 | C20—H20 | 0.9300 |
C10—C11 | 1.374 (4) | N1—H1 | 0.85 (2) |
N1—C2—C7 | 109.70 (15) | C10—C11—C12 | 119.8 (2) |
N1—C2—C3 | 109.78 (16) | C10—C11—H11 | 120.1 |
C7—C2—C3 | 114.76 (15) | C12—C11—H11 | 120.1 |
N1—C2—H2 | 107.4 | C11—C12—C7 | 121.2 (2) |
C7—C2—H2 | 107.4 | C11—C12—H12 | 119.4 |
C3—C2—H2 | 107.4 | C7—C12—H12 | 119.4 |
C4—C3—C13 | 109.95 (17) | C3—C13—H13A | 109.5 |
C4—C3—C14 | 106.01 (17) | C3—C13—H13B | 109.5 |
C13—C3—C14 | 110.43 (18) | H13A—C13—H13B | 109.5 |
C4—C3—C2 | 108.99 (15) | C3—C13—H13C | 109.5 |
C13—C3—C2 | 109.16 (18) | H13A—C13—H13C | 109.5 |
C14—C3—C2 | 112.25 (16) | H13B—C13—H13C | 109.5 |
O1—C4—C5 | 120.6 (2) | C3—C14—H14A | 109.5 |
O1—C4—C3 | 121.75 (19) | C3—C14—H14B | 109.5 |
C5—C4—C3 | 117.57 (16) | H14A—C14—H14B | 109.5 |
C4—C5—C6 | 112.35 (17) | C3—C14—H14C | 109.5 |
C4—C5—H5A | 109.1 | H14A—C14—H14C | 109.5 |
C6—C5—H5A | 109.1 | H14B—C14—H14C | 109.5 |
C4—C5—H5B | 109.1 | C16—C15—C20 | 118.2 (2) |
C6—C5—H5B | 109.1 | C16—C15—C6 | 121.47 (18) |
H5A—C5—H5B | 107.9 | C20—C15—C6 | 120.3 (2) |
N1—C6—C15 | 111.07 (15) | C17—C16—C15 | 121.0 (2) |
N1—C6—C5 | 107.32 (16) | C17—C16—H16 | 119.5 |
C15—C6—C5 | 111.89 (17) | C15—C16—H16 | 119.5 |
N1—C6—H6 | 108.8 | C18—C17—C16 | 120.4 (2) |
C15—C6—H6 | 108.8 | C18—C17—H17 | 119.8 |
C5—C6—H6 | 108.8 | C16—C17—H17 | 119.8 |
C12—C7—C8 | 117.4 (2) | C17—C18—C19 | 119.4 (2) |
C12—C7—C2 | 121.77 (19) | C17—C18—H18 | 120.3 |
C8—C7—C2 | 120.70 (19) | C19—C18—H18 | 120.3 |
C9—C8—C7 | 121.6 (2) | C18—C19—C20 | 120.5 (2) |
C9—C8—H8 | 119.2 | C18—C19—H19 | 119.8 |
C7—C8—H8 | 119.2 | C20—C19—H19 | 119.8 |
C10—C9—C8 | 120.0 (3) | C15—C20—C19 | 120.4 (2) |
C10—C9—H9 | 120.0 | C15—C20—H20 | 119.8 |
C8—C9—H9 | 120.0 | C19—C20—H20 | 119.8 |
C9—C10—C11 | 119.9 (2) | C6—N1—C2 | 111.51 (15) |
C9—C10—H10 | 120.0 | C6—N1—H1 | 107.9 (14) |
C11—C10—H10 | 120.0 | C2—N1—H1 | 111.3 (15) |
N1—C2—C3—C4 | −50.7 (2) | C7—C8—C9—C10 | 0.4 (4) |
C7—C2—C3—C4 | −174.77 (16) | C8—C9—C10—C11 | −0.8 (4) |
N1—C2—C3—C13 | −170.78 (17) | C9—C10—C11—C12 | 0.8 (4) |
C7—C2—C3—C13 | 65.1 (2) | C10—C11—C12—C7 | −0.5 (3) |
N1—C2—C3—C14 | 66.4 (2) | C8—C7—C12—C11 | 0.0 (3) |
C7—C2—C3—C14 | −57.6 (2) | C2—C7—C12—C11 | 176.84 (19) |
C13—C3—C4—O1 | −22.3 (3) | N1—C6—C15—C16 | 39.6 (3) |
C14—C3—C4—O1 | 97.1 (2) | C5—C6—C15—C16 | −80.3 (2) |
C2—C3—C4—O1 | −141.9 (2) | N1—C6—C15—C20 | −141.7 (2) |
C13—C3—C4—C5 | 160.91 (19) | C5—C6—C15—C20 | 98.4 (2) |
C14—C3—C4—C5 | −79.7 (2) | C20—C15—C16—C17 | −0.3 (3) |
C2—C3—C4—C5 | 41.3 (2) | C6—C15—C16—C17 | 178.5 (2) |
O1—C4—C5—C6 | 139.4 (2) | C15—C16—C17—C18 | 0.2 (4) |
C3—C4—C5—C6 | −43.7 (2) | C16—C17—C18—C19 | −0.3 (4) |
C4—C5—C6—N1 | 53.0 (2) | C17—C18—C19—C20 | 0.5 (4) |
C4—C5—C6—C15 | 175.09 (16) | C16—C15—C20—C19 | 0.5 (3) |
N1—C2—C7—C12 | −41.6 (2) | C6—C15—C20—C19 | −178.3 (2) |
C3—C2—C7—C12 | 82.6 (2) | C18—C19—C20—C15 | −0.6 (4) |
N1—C2—C7—C8 | 135.14 (19) | C15—C6—N1—C2 | 170.45 (16) |
C3—C2—C7—C8 | −100.7 (2) | C5—C6—N1—C2 | −67.0 (2) |
C12—C7—C8—C9 | 0.0 (3) | C7—C2—N1—C6 | −165.75 (16) |
C2—C7—C8—C9 | −176.82 (19) | C3—C2—N1—C6 | 67.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···Cg3i | 0.93 | 2.95 | 3.648 | 133 |
Symmetry code: (i) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C19H21NO |
Mr | 279.37 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.0293 (4), 10.8198 (6), 12.1649 (6) |
α, β, γ (°) | 98.559 (2), 92.836 (3), 96.677 (3) |
V (Å3) | 777.62 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.20 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Bruker Kappa APEXII area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2001) |
Tmin, Tmax | 0.986, 0.987 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15310, 3556, 1930 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.168, 1.06 |
No. of reflections | 3556 |
No. of parameters | 197 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.18, −0.19 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···Cg3i | 0.93 | 2.9466 | 3.648 | 133.31 |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
MT thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection. SP thanks the UGC, India, for financial support.
References
Badorrey, R., Cativiela, C., Diaz-de-Villegas, M. D. & Galvez, J. A. (1999). Tetrahedron, 55, 7601–7612. Web of Science CrossRef CAS Google Scholar
Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797. CSD CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Elena, K., Yechezkel, B., Dan, G. & Yousef, N. (2002). J. Med. Chem. 45, 5196–5204. Web of Science CrossRef PubMed Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Nalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Jpn Patent 74-03987. Google Scholar
Nardelli, M. (1983). Acta Cryst. C39, 1141–1142. CrossRef CAS Web of Science IUCr Journals Google Scholar
Noller, C. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853–3855. CrossRef PubMed CAS Web of Science Google Scholar
Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Various piperidine derivatives are present in numerous alkaloids (Badorrey et al., 1999). Piperidines have been found to exhibit blood cholesterol-lowering activities (Nalanishi et al., 1974). Trans-platinum piperidine derivatives deserve evaluation of their efficacy in tumor-bearing animals (Elena et al., 2002). In view of these importance, the crystal structure of the title compound has been carrried out.
The ORTEP plot of the molecule is shown in Fig. 1. The piperidine ring adopts chair conformation and the ring-puckering parameters (Cremer & Pople, 1975) are: q2 = 0.1578 (20)Å, q3 = -0.5364 (21)Å, and φ = 176.7 (8)°, and the smallest asymmetry parameter Δs(N1)=Δs(C4) = 1.97 (16)° (Nardelli, 1983). The two phenyl rings attached to the piperidine ring at 2,6- positions occupy equatorial orientation [C7-C2-C3-C4 = -174.77 (16)°; C4-C5-C6-C15 = 175.09 (16)°], respectively and the dihedral angle between them is 57.52 (11)°. The methyl groups attached at position 3 of the piperidine ring takes up syn-periplanar [C13-C3-C4-O1 = -22.3 (3)°] and anti-clinical [C14-C3-C4-O1 = 97.1 (2)°] orientations. The sum of the bond angles at N1[329.62 (5)°] of the piperidine ring is in accordance with sp3 hybridization (Beddoes et al., 1986).
The molecules are connected via intermolecular C–H···π interactions (Table 1) which lead to a zig–zag chain running along b – axis in addition to van der Waals forces (Fig. 2).