organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

c-3,t-3-Di­methyl-4-oxo-r-2,c-6-di­phenyl­piperidine-1-carboxamide

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 12 September 2009; accepted 12 October 2009; online 23 October 2009)

In the title compound, C26H26N2O2, the piperidinone ring adopts a distorted boat conformation. The two phenyl rings substituted at positions 2 and 6 of the piperidinone ring occupy axial and equatorial orientations, which are approximately perpendicular to each other [89.14 (8)°]. The phenyl­carbamoyl group adopts an extended conformation. The crystal structure is stabilized by inter­molecular C—H⋯O inter­actions.

Related literature

For general background to the pharmaceutical activity of piperidine derivatives, see: Mobio et al. (1989[Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sargeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. & Andreeva, E. I. (1989). Khim. Farm. Zh. 23, 421-427.]); Palani et al. (2002[Palani, A., Shapiro, S., Josien, H., Bara, T., Clader, J. W., Greenlee, W. J., Cox, K., Strizki, J. M., Bahige, M. & Baroudy, B. M. (2002). J. Med. Chem. 45, 3143-3160.]). For hybridization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C26H26N2O2

  • Mr = 398.49

  • Triclinic, [P \overline 1]

  • a = 9.6648 (2) Å

  • b = 10.7938 (3) Å

  • c = 11.4233 (3) Å

  • α = 101.303 (2)°

  • β = 90.158 (1)°

  • γ = 113.191 (1)°

  • V = 1069.91 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.12 × 0.12 × 0.10 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.991, Tmax = 0.992

  • 26776 measured reflections

  • 6362 independent reflections

  • 4483 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.129

  • S = 1.03

  • 6362 reflections

  • 278 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O2i 0.93 2.56 3.4488 (17) 161
C20—H20B⋯O1ii 0.96 2.52 3.4520 (17) 162
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Several 2,6-disubstituted piperidine derivatives have fungicidal, herbicidal and bactericidal properties. Both the natural and synthetic piperidine derivatives exhibit high pharmaceutical values (Mobio et al., 1989). Piperidines have a favourable pharmacokinetic profile in rodents and primates, excellent oral bioavailability, and potent antiviral activity against a wide range of primary HIV-1 isolates and considered as promising new candidate for the treatment of HIV-1 infection (Palani et al., 2002).

The ORTEP plot of the molecule is shown in Fig. 1. The piperidine ring adopts distorted boat conformation, with the puckering amplitudes q2 = 0.5877 (13)°, q3 =-0.1100 (13)°, φ = 258.06 (12)° (Cremer & Pople, 1975) and asymmetry parameters Δs(C2)=Δs(C5) = 18.55 (12)° (Nardelli, 1983). The planar phenyl rings substituted at positions 2 and 6 occupy axial [70.71 (13)°] and equatorial [-162.73 (11)°] orientations and are approximately perpendicular to each other [89.14 (8)°]. One of the methyl groups attached at position 3 of the piperidine ring occupy equatorial [N1-C2-C3-C20 = 177.95 (10)°] orientation and other one is in axial [N1-C2-C3-C21 = 58.31 (12)°] orientation. The sum of the bond angles around N1[358.2 (3)°] indicates sp2 hybridization (Beddoes et al., 1986).

The phenylcarbamoyl group attached to the N1 atom adopts an extended conformation which is evidenced from the torsion angle [N1-C7-N2-C8=]169.19 (11)°. The crystal structure is stabilized by C-H···O type of intermolecular interactions in addition to van der Waals forces. The C20-H20B···O1 interaction between the molecules lead to the dimer arrangement along the bc plane. These dimers are interconnected by C18-H18···O2 hydrogen bonds, which form a one dimensional chain running along a - axis (Fig. 2).

Related literature top

For general background to the pharmaceutical activity of piperidine derivatives, see: Mobio et al. (1989); Palani et al. (2002). For hybridization, see: Beddoes et al. (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

A mixture of c-3,t-3-dimethyl-r-2,c-6-diphenylpiperidin-4-one (1.4g), phenylisocyanate (1.1ml) and triethylamine (2ml) in anhydrous benzene (20ml) was stirred at room temperature for 7 hours. The precipitated ammonium salt was washed with water (40ml). The resulting pasty mass was purified by crystallization from benzene and pet-ether (60-80°C) in the ratio of 95 : 5.

Refinement top

H atoms were positioned geometrically (C-H = 0.93 - 0.98Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms. The components of the anisotropic displacement parameters of C24 and C25 in the direction of the bond between them were restrained to be equal within an effective standard deviation of 0.001.

Structure description top

Several 2,6-disubstituted piperidine derivatives have fungicidal, herbicidal and bactericidal properties. Both the natural and synthetic piperidine derivatives exhibit high pharmaceutical values (Mobio et al., 1989). Piperidines have a favourable pharmacokinetic profile in rodents and primates, excellent oral bioavailability, and potent antiviral activity against a wide range of primary HIV-1 isolates and considered as promising new candidate for the treatment of HIV-1 infection (Palani et al., 2002).

The ORTEP plot of the molecule is shown in Fig. 1. The piperidine ring adopts distorted boat conformation, with the puckering amplitudes q2 = 0.5877 (13)°, q3 =-0.1100 (13)°, φ = 258.06 (12)° (Cremer & Pople, 1975) and asymmetry parameters Δs(C2)=Δs(C5) = 18.55 (12)° (Nardelli, 1983). The planar phenyl rings substituted at positions 2 and 6 occupy axial [70.71 (13)°] and equatorial [-162.73 (11)°] orientations and are approximately perpendicular to each other [89.14 (8)°]. One of the methyl groups attached at position 3 of the piperidine ring occupy equatorial [N1-C2-C3-C20 = 177.95 (10)°] orientation and other one is in axial [N1-C2-C3-C21 = 58.31 (12)°] orientation. The sum of the bond angles around N1[358.2 (3)°] indicates sp2 hybridization (Beddoes et al., 1986).

The phenylcarbamoyl group attached to the N1 atom adopts an extended conformation which is evidenced from the torsion angle [N1-C7-N2-C8=]169.19 (11)°. The crystal structure is stabilized by C-H···O type of intermolecular interactions in addition to van der Waals forces. The C20-H20B···O1 interaction between the molecules lead to the dimer arrangement along the bc plane. These dimers are interconnected by C18-H18···O2 hydrogen bonds, which form a one dimensional chain running along a - axis (Fig. 2).

For general background to the pharmaceutical activity of piperidine derivatives, see: Mobio et al. (1989); Palani et al. (2002). For hybridization, see: Beddoes et al. (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The ORTEP plot of the molecule with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed along a - axis.
c-3,t-3-Dimethyl-4-oxo-r-2,c-6- diphenylpiperidine-1-carboxamide top
Crystal data top
C26H26N2O2Z = 2
Mr = 398.49F(000) = 424
Triclinic, P1Dx = 1.237 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6648 (2) ÅCell parameters from 6362 reflections
b = 10.7938 (3) Åθ = 2.1–30.3°
c = 11.4233 (3) ŵ = 0.08 mm1
α = 101.303 (2)°T = 293 K
β = 90.158 (1)°Block, colourless
γ = 113.191 (1)°0.12 × 0.12 × 0.10 mm
V = 1069.91 (5) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
6362 independent reflections
Radiation source: fine-focus sealed tube4483 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and φ scansθmax = 30.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1313
Tmin = 0.991, Tmax = 0.992k = 1515
26776 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.1478P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.010
6362 reflectionsΔρmax = 0.23 e Å3
278 parametersΔρmin = 0.16 e Å3
1 restraintExtinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.034 (3)
Crystal data top
C26H26N2O2γ = 113.191 (1)°
Mr = 398.49V = 1069.91 (5) Å3
Triclinic, P1Z = 2
a = 9.6648 (2) ÅMo Kα radiation
b = 10.7938 (3) ŵ = 0.08 mm1
c = 11.4233 (3) ÅT = 293 K
α = 101.303 (2)°0.12 × 0.12 × 0.10 mm
β = 90.158 (1)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
6362 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4483 reflections with I > 2σ(I)
Tmin = 0.991, Tmax = 0.992Rint = 0.027
26776 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.23 e Å3
6362 reflectionsΔρmin = 0.16 e Å3
278 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.44729 (12)0.65312 (11)0.17958 (10)0.0397 (2)
H20.46610.58890.11480.048*
C30.27465 (12)0.60768 (12)0.17189 (11)0.0464 (3)
C40.23264 (13)0.71273 (13)0.25470 (11)0.0482 (3)
C50.34974 (13)0.85807 (13)0.28686 (12)0.0486 (3)
H5A0.39810.87180.36560.058*
H5B0.29790.91970.29360.058*
C60.47423 (12)0.90306 (11)0.20204 (10)0.0414 (2)
H60.43240.92680.13560.050*
C70.60634 (12)0.79834 (11)0.05299 (10)0.0397 (2)
C80.78032 (12)0.96713 (11)0.05439 (10)0.0404 (2)
C90.77964 (15)0.88317 (13)0.16236 (11)0.0503 (3)
H90.70570.79380.18430.060*
C100.89077 (17)0.93379 (15)0.23770 (13)0.0628 (4)
H100.89160.87700.31010.075*
C110.99929 (16)1.06556 (15)0.20790 (14)0.0628 (4)
H111.07291.09800.25960.075*
C120.99842 (15)1.14898 (14)0.10158 (14)0.0582 (3)
H121.07111.23900.08120.070*
C130.89053 (14)1.10043 (12)0.02441 (11)0.0485 (3)
H130.89161.15750.04840.058*
C140.52831 (12)0.64977 (11)0.29232 (10)0.0419 (2)
C150.48157 (15)0.66344 (14)0.40654 (12)0.0550 (3)
H150.38880.66900.41830.066*
C160.5715 (2)0.66892 (17)0.50407 (14)0.0684 (4)
H160.53870.67850.58050.082*
C170.70797 (18)0.66035 (16)0.48857 (15)0.0683 (4)
H170.76800.66460.55430.082*
C180.75602 (15)0.64543 (15)0.37601 (15)0.0630 (4)
H180.84860.63920.36510.076*
C190.66678 (13)0.63960 (13)0.27891 (13)0.0510 (3)
H190.69990.62860.20270.061*
C200.19496 (16)0.46380 (14)0.19745 (15)0.0632 (4)
H20A0.22150.46590.27910.095*
H20B0.22570.40030.14470.095*
H20C0.08760.43470.18470.095*
C210.22210 (16)0.60584 (16)0.04407 (13)0.0628 (4)
H21A0.11470.57930.03740.094*
H21B0.24700.54090.01240.094*
H21C0.27180.69620.02750.094*
C220.60341 (13)1.03354 (12)0.26859 (11)0.0474 (3)
C230.70016 (15)1.02965 (15)0.35611 (12)0.0587 (3)
H230.68780.94550.37370.070*
C240.81482 (18)1.1497 (2)0.41752 (16)0.0796 (5)
H240.87861.14600.47660.095*
C250.8349 (2)1.27372 (19)0.3918 (2)0.0935 (6)
H250.91221.35430.43340.112*
C260.7412 (2)1.27938 (16)0.3048 (2)0.0903 (6)
H260.75581.36390.28700.108*
C270.62430 (18)1.15950 (14)0.24296 (15)0.0664 (4)
H270.56031.16400.18450.080*
N10.52148 (10)0.79071 (9)0.15014 (8)0.0386 (2)
N20.67000 (12)0.92692 (11)0.02715 (9)0.0469 (2)
O10.62406 (11)0.69939 (9)0.00520 (8)0.0565 (2)
O20.11166 (10)0.68212 (11)0.29595 (10)0.0686 (3)
H2A0.6752 (17)0.9942 (16)0.0847 (14)0.061 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0345 (5)0.0362 (5)0.0476 (6)0.0130 (4)0.0116 (4)0.0097 (4)
C30.0332 (5)0.0434 (6)0.0576 (7)0.0109 (4)0.0071 (5)0.0091 (5)
C40.0336 (5)0.0558 (7)0.0562 (7)0.0185 (5)0.0092 (5)0.0132 (5)
C50.0407 (6)0.0486 (6)0.0588 (7)0.0219 (5)0.0163 (5)0.0078 (5)
C60.0381 (5)0.0406 (5)0.0475 (6)0.0186 (4)0.0088 (4)0.0081 (4)
C70.0360 (5)0.0403 (5)0.0425 (5)0.0149 (4)0.0079 (4)0.0090 (4)
C80.0395 (5)0.0421 (6)0.0443 (6)0.0190 (5)0.0088 (4)0.0145 (4)
C90.0519 (7)0.0447 (6)0.0498 (6)0.0154 (5)0.0129 (5)0.0084 (5)
C100.0709 (9)0.0624 (8)0.0555 (8)0.0271 (7)0.0264 (7)0.0123 (6)
C110.0537 (8)0.0642 (9)0.0750 (9)0.0229 (7)0.0297 (7)0.0265 (7)
C120.0436 (7)0.0491 (7)0.0772 (9)0.0112 (5)0.0121 (6)0.0187 (6)
C130.0466 (6)0.0443 (6)0.0531 (7)0.0171 (5)0.0063 (5)0.0099 (5)
C140.0374 (5)0.0363 (5)0.0525 (6)0.0135 (4)0.0101 (5)0.0134 (4)
C150.0532 (7)0.0634 (8)0.0559 (7)0.0281 (6)0.0154 (6)0.0192 (6)
C160.0810 (10)0.0730 (10)0.0530 (8)0.0312 (8)0.0074 (7)0.0168 (7)
C170.0655 (9)0.0618 (9)0.0740 (10)0.0196 (7)0.0122 (7)0.0197 (7)
C180.0425 (7)0.0569 (8)0.0917 (11)0.0185 (6)0.0011 (7)0.0237 (7)
C190.0410 (6)0.0506 (7)0.0660 (8)0.0195 (5)0.0136 (5)0.0199 (6)
C200.0460 (7)0.0478 (7)0.0863 (10)0.0084 (6)0.0184 (7)0.0154 (7)
C210.0466 (7)0.0664 (9)0.0634 (8)0.0150 (6)0.0062 (6)0.0037 (7)
C220.0423 (6)0.0429 (6)0.0523 (6)0.0161 (5)0.0160 (5)0.0012 (5)
C230.0482 (7)0.0603 (8)0.0567 (7)0.0163 (6)0.0078 (6)0.0002 (6)
C240.0541 (8)0.0866 (10)0.0687 (10)0.0134 (8)0.0045 (7)0.0170 (8)
C250.0692 (11)0.0643 (9)0.1014 (14)0.0008 (8)0.0184 (10)0.0282 (8)
C260.0941 (13)0.0401 (8)0.1177 (16)0.0155 (8)0.0353 (12)0.0011 (8)
C270.0710 (9)0.0430 (7)0.0821 (10)0.0227 (6)0.0206 (8)0.0062 (6)
N10.0362 (4)0.0361 (4)0.0446 (5)0.0151 (4)0.0113 (4)0.0094 (4)
N20.0549 (6)0.0398 (5)0.0472 (5)0.0194 (4)0.0190 (4)0.0108 (4)
O10.0640 (6)0.0426 (5)0.0640 (5)0.0224 (4)0.0311 (4)0.0117 (4)
O20.0388 (5)0.0738 (7)0.0890 (7)0.0197 (4)0.0237 (5)0.0137 (5)
Geometric parameters (Å, º) top
C2—N11.4802 (13)C14—C151.3816 (17)
C2—C141.5193 (16)C14—C191.3917 (16)
C2—C31.5395 (15)C15—C161.389 (2)
C2—H20.9800C15—H150.9300
C3—C41.5132 (17)C16—C171.368 (2)
C3—C201.5256 (18)C16—H160.9300
C3—C211.5384 (19)C17—C181.370 (2)
C4—O21.2075 (14)C17—H170.9300
C4—C51.5001 (17)C18—C191.379 (2)
C5—C61.5339 (15)C18—H180.9300
C5—H5A0.9700C19—H190.9300
C5—H5B0.9700C20—H20A0.9600
C6—N11.4786 (13)C20—H20B0.9600
C6—C221.5201 (16)C20—H20C0.9600
C6—H60.9800C21—H21A0.9600
C7—O11.2159 (13)C21—H21B0.9600
C7—N21.3715 (15)C21—H21C0.9600
C7—N11.3779 (13)C22—C271.3839 (19)
C8—C91.3783 (16)C22—C231.385 (2)
C8—C131.3856 (16)C23—C241.381 (2)
C8—N21.4115 (14)C23—H230.9300
C9—C101.3856 (17)C24—C251.366 (3)
C9—H90.9300C24—H240.9300
C10—C111.368 (2)C25—C261.369 (3)
C10—H100.9300C25—H250.9300
C11—C121.365 (2)C26—C271.392 (2)
C11—H110.9300C26—H260.9300
C12—C131.3765 (18)C27—H270.9300
C12—H120.9300N2—H2A0.864 (16)
C13—H130.9300
N1—C2—C14109.54 (9)C14—C15—C16120.74 (13)
N1—C2—C3110.26 (9)C14—C15—H15119.6
C14—C2—C3119.32 (9)C16—C15—H15119.6
N1—C2—H2105.6C17—C16—C15120.48 (14)
C14—C2—H2105.6C17—C16—H16119.8
C3—C2—H2105.6C15—C16—H16119.8
C4—C3—C20111.63 (10)C16—C17—C18119.82 (14)
C4—C3—C21106.12 (11)C16—C17—H17120.1
C20—C3—C21109.08 (11)C18—C17—H17120.1
C4—C3—C2110.60 (9)C17—C18—C19119.84 (13)
C20—C3—C2111.34 (10)C17—C18—H18120.1
C21—C3—C2107.87 (10)C19—C18—H18120.1
O2—C4—C5120.53 (11)C18—C19—C14121.52 (13)
O2—C4—C3122.26 (11)C18—C19—H19119.2
C5—C4—C3117.19 (9)C14—C19—H19119.2
C4—C5—C6117.78 (10)C3—C20—H20A109.5
C4—C5—H5A107.9C3—C20—H20B109.5
C6—C5—H5A107.9H20A—C20—H20B109.5
C4—C5—H5B107.9C3—C20—H20C109.5
C6—C5—H5B107.9H20A—C20—H20C109.5
H5A—C5—H5B107.2H20B—C20—H20C109.5
N1—C6—C22113.61 (9)C3—C21—H21A109.5
N1—C6—C5112.05 (9)C3—C21—H21B109.5
C22—C6—C5108.49 (9)H21A—C21—H21B109.5
N1—C6—H6107.5C3—C21—H21C109.5
C22—C6—H6107.5H21A—C21—H21C109.5
C5—C6—H6107.5H21B—C21—H21C109.5
O1—C7—N2122.47 (10)C27—C22—C23118.93 (13)
O1—C7—N1122.90 (10)C27—C22—C6119.72 (13)
N2—C7—N1114.63 (9)C23—C22—C6121.35 (12)
C9—C8—C13119.39 (10)C24—C23—C22120.53 (16)
C9—C8—N2123.48 (10)C24—C23—H23119.7
C13—C8—N2117.08 (10)C22—C23—H23119.7
C8—C9—C10119.03 (12)C25—C24—C23120.28 (19)
C8—C9—H9120.5C25—C24—H24119.9
C10—C9—H9120.5C23—C24—H24119.9
C11—C10—C9121.42 (13)C24—C25—C26119.99 (16)
C11—C10—H10119.3C24—C25—H25120.0
C9—C10—H10119.3C26—C25—H25120.0
C12—C11—C10119.36 (12)C25—C26—C27120.40 (18)
C12—C11—H11120.3C25—C26—H26119.8
C10—C11—H11120.3C27—C26—H26119.8
C11—C12—C13120.31 (12)C22—C27—C26119.87 (18)
C11—C12—H12119.8C22—C27—H27120.1
C13—C12—H12119.8C26—C27—H27120.1
C12—C13—C8120.47 (12)C7—N1—C6121.29 (9)
C12—C13—H13119.8C7—N1—C2116.56 (8)
C8—C13—H13119.8C6—N1—C2120.31 (8)
C15—C14—C19117.59 (12)C7—N2—C8125.58 (9)
C15—C14—C2126.22 (10)C7—N2—H2A115.1 (10)
C19—C14—C2116.09 (10)C8—N2—H2A113.3 (10)
N1—C2—C3—C457.33 (13)C16—C17—C18—C190.2 (2)
C14—C2—C3—C470.71 (13)C17—C18—C19—C140.6 (2)
N1—C2—C3—C20177.95 (10)C15—C14—C19—C181.17 (18)
C14—C2—C3—C2054.01 (14)C2—C14—C19—C18175.36 (11)
N1—C2—C3—C2158.31 (12)N1—C6—C22—C27129.49 (12)
C14—C2—C3—C21173.65 (10)C5—C6—C22—C27105.18 (13)
C20—C3—C4—O229.31 (18)N1—C6—C22—C2351.43 (14)
C21—C3—C4—O289.41 (15)C5—C6—C22—C2373.89 (13)
C2—C3—C4—O2153.86 (13)C27—C22—C23—C240.55 (19)
C20—C3—C4—C5149.20 (12)C6—C22—C23—C24178.53 (12)
C21—C3—C4—C592.08 (13)C22—C23—C24—C250.6 (2)
C2—C3—C4—C524.65 (15)C23—C24—C25—C260.0 (3)
O2—C4—C5—C6158.95 (12)C24—C25—C26—C270.7 (3)
C3—C4—C5—C622.51 (17)C23—C22—C27—C260.1 (2)
C4—C5—C6—N136.49 (15)C6—C22—C27—C26179.15 (13)
C4—C5—C6—C22162.73 (11)C25—C26—C27—C220.7 (2)
C13—C8—C9—C100.85 (19)O1—C7—N1—C6166.29 (11)
N2—C8—C9—C10178.19 (12)N2—C7—N1—C613.92 (15)
C8—C9—C10—C111.0 (2)O1—C7—N1—C21.72 (16)
C9—C10—C11—C120.1 (2)N2—C7—N1—C2178.49 (10)
C10—C11—C12—C130.8 (2)C22—C6—N1—C771.04 (14)
C11—C12—C13—C80.9 (2)C5—C6—N1—C7165.56 (10)
C9—C8—C13—C120.09 (19)C22—C6—N1—C2124.96 (11)
N2—C8—C13—C12177.42 (12)C5—C6—N1—C21.56 (14)
N1—C2—C14—C15100.75 (13)C14—C2—N1—C7107.12 (10)
C3—C2—C14—C1527.62 (17)C3—C2—N1—C7119.65 (10)
N1—C2—C14—C1975.44 (12)C14—C2—N1—C688.14 (11)
C3—C2—C14—C19156.19 (10)C3—C2—N1—C645.08 (13)
C19—C14—C15—C161.00 (19)O1—C7—N2—C810.60 (19)
C2—C14—C15—C16175.14 (12)N1—C7—N2—C8169.19 (11)
C14—C15—C16—C170.2 (2)C9—C8—N2—C739.03 (18)
C15—C16—C17—C180.4 (2)C13—C8—N2—C7143.58 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.932.563.4488 (17)161
C20—H20B···O1ii0.962.523.4520 (17)162
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC26H26N2O2
Mr398.49
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.6648 (2), 10.7938 (3), 11.4233 (3)
α, β, γ (°)101.303 (2), 90.158 (1), 113.191 (1)
V3)1069.91 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.12 × 0.12 × 0.10
Data collection
DiffractometerBruker Kappa APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.991, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
26776, 6362, 4483
Rint0.027
(sin θ/λ)max1)0.709
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.129, 1.03
No. of reflections6362
No. of parameters278
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.16

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.932.563.4488 (17)161.2
C20—H20B···O1ii0.962.523.4520 (17)162.4
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.
 

Acknowledgements

MT thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection. SP thanks the UGC, India, for financial support.

References

First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sargeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. & Andreeva, E. I. (1989). Khim. Farm. Zh. 23, 421–427.  CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPalani, A., Shapiro, S., Josien, H., Bara, T., Clader, J. W., Greenlee, W. J., Cox, K., Strizki, J. M., Bahige, M. & Baroudy, B. M. (2002). J. Med. Chem. 45, 3143–3160.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds