organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-[4-(4-Meth­oxy­phen­yl)-2,6-di­methyl-1,4-di­hydro­pyridine-3,5-di­yl]di­ethanone

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India.
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 12 September 2009; accepted 12 October 2009; online 17 October 2009)

In the title compound, C18H21NO3, which belongs to the family of calcium channel blockers, the dihydropyridine ring assumes a flattened boat conformation. The two carbonyl units adopt a synperiplanar conformation with respect to the double bonds in the dihydro­pyridine ring. The methoxy­phenyl ring is almost perpendicular to the prydine ring [dihedral angle = 89.01 (7)°]. In the crystal, the mol­ecules are connected by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For general background, see: Ganjali et al. (2007[Ganjali, M. R., Rezapour, M., Rasoolipour, S., Norouzi, P. & Adib, M. (2007). J. Braz. Chem. Soc. 18, 352-358.]); Xia et al. (2005[Xia, J. J. & Wang, G. W. (2005). One-Pot Synthesis and Aromatization of 1,4-Dihydropyridines in Refluxing Water in Thieme eJournals, Synthesis 2005, pp. 2379-2383. New York: Georg Thieme Verlag Stuttgart.]). For hybridization, see: Beddoes et al.(1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21NO3

  • Mr = 299.36

  • Orthorhombic, P b c a

  • a = 12.0781 (3) Å

  • b = 8.9650 (2) Å

  • c = 29.3755 (8) Å

  • V = 3180.78 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.983

  • 36021 measured reflections

  • 4055 independent reflections

  • 2828 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.148

  • S = 1.05

  • 4055 reflections

  • 208 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.869 (19) 2.03 (2) 2.8961 (19) 173.1 (18)
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,4-Dihydropyridine compounds are the important class of calcium channel blockers and as such commercialized in, for instance nifedipine, amlodipine or nimodipine (Xia et al., 2005). Pyridine derivatives can be used as a suitable neutral ionophore for preparing an Er(III) membrane sensor with high selectivity, which are utilized for direct monitoring of Er(III) in binary mixtures and indirect determination of fluoride ions in mouth wash preparations (Ganjali et al., 2007).

The ORTEP plot of the molecule is shown in Fig. 1. The pyridine ring assumes a flattened boat conformation with puckering parameters (Cremer & Pople, 1975) q2= 0.2975 (16)Å, q3 = -0.0900 (16)Å, φ = 355.2 (3)° and asymmetry parameters (Nardelli, 1983) Δs(N1,C4) = 3.26 (16)°. The methyl groups attached at C2 and C6 positions of the pyridine ring adopt equatorial oriention as can be seen from the torsion angles [C7-C2-N1-C6=]-165.71 (15)° and [C19-C6-N1-C2 =]164.36 (15)°. Both the carboxylate groups at 3rd and 5th positions in the pyridine ring, have synperiplanar(sp) conformation with respect to the double bonds in the dihydropyridine ring which are evident from the torsion angles [C2-C3-C8-O1=]-6.3 (3)°) and [C6-C5-C17-O3=]-17.3 (3)°. The methoxyphenyl ring is almost perpendicular to the best plane of the prydine ring as can be seen from the dihedral angle of 89.01 (7)°. The sum of the bond angles around atom N1[357.06°] of the pyridine ring is in accordance with sp2 hybridization (Beddoes et al., 1986).

Atom N1(x,y,z) of the pyridine ring donates a proton to atom O1(-1/2+x,y,1/2-z), leading to a zig-zag chain running along the a - axis (Fig. 2).

Related literature top

For general background, see: Ganjali et al. (2007); Xia et al. (2005). For hybridization, see: Beddoes et al.(1986). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

Dimethyl-4-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate was prepared by heating the mixture of 4-methoxybenzaldehyde (10 mmol), methylacetoacetate (20 mmol) and ammonium acetate (10 mmol) at 80oC for 2 hours and 45 min (monitored by TLC). After completion of the reaction, the mixture was cooled to room temperature and kept for 3 days to get the solid product. The obtained solid was washed with diethyl ether and collected separately. The purity of the crude product was checked through TLC and recrystallized using acetone and ether.

Refinement top

H atoms were positioned geometrically (C-H = 0.93-0.98Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.The components of the anisotropic displacement parameters of C5 and C6 in the direction of the bond between them were restrained to be equal within an effective standard deviation of 0.001.

Structure description top

1,4-Dihydropyridine compounds are the important class of calcium channel blockers and as such commercialized in, for instance nifedipine, amlodipine or nimodipine (Xia et al., 2005). Pyridine derivatives can be used as a suitable neutral ionophore for preparing an Er(III) membrane sensor with high selectivity, which are utilized for direct monitoring of Er(III) in binary mixtures and indirect determination of fluoride ions in mouth wash preparations (Ganjali et al., 2007).

The ORTEP plot of the molecule is shown in Fig. 1. The pyridine ring assumes a flattened boat conformation with puckering parameters (Cremer & Pople, 1975) q2= 0.2975 (16)Å, q3 = -0.0900 (16)Å, φ = 355.2 (3)° and asymmetry parameters (Nardelli, 1983) Δs(N1,C4) = 3.26 (16)°. The methyl groups attached at C2 and C6 positions of the pyridine ring adopt equatorial oriention as can be seen from the torsion angles [C7-C2-N1-C6=]-165.71 (15)° and [C19-C6-N1-C2 =]164.36 (15)°. Both the carboxylate groups at 3rd and 5th positions in the pyridine ring, have synperiplanar(sp) conformation with respect to the double bonds in the dihydropyridine ring which are evident from the torsion angles [C2-C3-C8-O1=]-6.3 (3)°) and [C6-C5-C17-O3=]-17.3 (3)°. The methoxyphenyl ring is almost perpendicular to the best plane of the prydine ring as can be seen from the dihedral angle of 89.01 (7)°. The sum of the bond angles around atom N1[357.06°] of the pyridine ring is in accordance with sp2 hybridization (Beddoes et al., 1986).

Atom N1(x,y,z) of the pyridine ring donates a proton to atom O1(-1/2+x,y,1/2-z), leading to a zig-zag chain running along the a - axis (Fig. 2).

For general background, see: Ganjali et al. (2007); Xia et al. (2005). For hybridization, see: Beddoes et al.(1986). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perpective view of the molecule, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of the molecules viewed down a axis.
1,1'-[4-(4-Methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-diyl]diethanone top
Crystal data top
C18H21NO3F(000) = 1280
Mr = 299.36Dx = 1.250 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4055 reflections
a = 12.0781 (3) Åθ = 1.4–28.6°
b = 8.9650 (2) ŵ = 0.09 mm1
c = 29.3755 (8) ÅT = 293 K
V = 3180.78 (14) Å3Block, light yellow
Z = 80.25 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
4055 independent reflections
Radiation source: fine-focus sealed tube2828 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and φ scansθmax = 28.6°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1614
Tmin = 0.979, Tmax = 0.983k = 1210
36021 measured reflectionsl = 3739
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0637P)2 + 1.0129P]
where P = (Fo2 + 2Fc2)/3
4055 reflections(Δ/σ)max = 0.003
208 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C18H21NO3V = 3180.78 (14) Å3
Mr = 299.36Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.0781 (3) ŵ = 0.09 mm1
b = 8.9650 (2) ÅT = 293 K
c = 29.3755 (8) Å0.25 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
4055 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2828 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.983Rint = 0.032
36021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.21 e Å3
4055 reflectionsΔρmin = 0.18 e Å3
208 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.52089 (13)0.12861 (18)0.28911 (5)0.0418 (4)
C30.60545 (12)0.18029 (17)0.31531 (5)0.0392 (3)
C40.57919 (12)0.24866 (17)0.36162 (5)0.0378 (3)
H40.63430.32650.36750.045*
C50.46584 (13)0.32299 (17)0.36102 (5)0.0409 (3)
C60.38706 (12)0.27123 (18)0.33254 (5)0.0422 (3)
C70.52978 (15)0.0360 (2)0.24679 (6)0.0595 (5)
H7A0.56130.09490.22280.089*
H7B0.45740.00250.23790.089*
H7C0.57630.04870.25260.089*
C80.72005 (13)0.1649 (2)0.30089 (6)0.0487 (4)
C90.81050 (15)0.2381 (3)0.32811 (8)0.0741 (6)
H9A0.81860.18750.35670.111*
H9B0.79180.34070.33340.111*
H9C0.87890.23270.31150.111*
C100.59067 (12)0.13184 (16)0.39902 (5)0.0368 (3)
C110.67301 (14)0.14207 (18)0.43151 (5)0.0460 (4)
H110.72160.22250.43040.055*
C120.68580 (14)0.03681 (19)0.46561 (5)0.0486 (4)
H120.74230.04670.48690.058*
C130.61449 (13)0.08222 (17)0.46774 (5)0.0438 (4)
C140.53161 (14)0.09579 (19)0.43563 (6)0.0478 (4)
H140.48330.17650.43680.057*
C150.52023 (13)0.00946 (17)0.40189 (5)0.0434 (4)
H150.46410.00150.38050.052*
C160.70171 (18)0.1747 (2)0.53459 (6)0.0664 (5)
H16A0.77410.17420.52110.100*
H16B0.69640.25580.55580.100*
H16C0.68950.08220.55020.100*
C170.44451 (17)0.44728 (19)0.39277 (6)0.0547 (5)
C180.5199 (2)0.4709 (2)0.43225 (7)0.0728 (6)
H18A0.49050.54800.45140.109*
H18B0.59180.50000.42140.109*
H18C0.52610.38000.44930.109*
C190.26738 (14)0.3160 (2)0.33045 (7)0.0589 (5)
H19A0.24690.36400.35840.088*
H19B0.22240.22890.32610.088*
H19C0.25640.38370.30550.088*
N10.41402 (11)0.16250 (16)0.30102 (5)0.0441 (3)
O10.74715 (11)0.09406 (19)0.26662 (4)0.0754 (5)
O20.62054 (12)0.19260 (14)0.49995 (4)0.0596 (4)
O30.36634 (16)0.5314 (2)0.38831 (6)0.1011 (6)
H10.3631 (16)0.135 (2)0.2819 (6)0.057 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0386 (8)0.0492 (9)0.0374 (7)0.0028 (7)0.0024 (6)0.0020 (6)
C30.0345 (7)0.0462 (8)0.0370 (7)0.0005 (6)0.0022 (6)0.0023 (6)
C40.0386 (7)0.0384 (8)0.0364 (7)0.0017 (6)0.0021 (6)0.0010 (6)
C50.0446 (8)0.0388 (8)0.0393 (7)0.0045 (6)0.0071 (6)0.0067 (6)
C60.0384 (7)0.0456 (9)0.0426 (8)0.0069 (6)0.0071 (6)0.0113 (6)
C70.0497 (10)0.0809 (13)0.0479 (9)0.0060 (9)0.0051 (8)0.0174 (9)
C80.0378 (8)0.0648 (11)0.0435 (8)0.0005 (7)0.0069 (7)0.0053 (8)
C90.0388 (9)0.1061 (17)0.0773 (13)0.0135 (11)0.0059 (9)0.0123 (13)
C100.0387 (8)0.0364 (7)0.0351 (7)0.0025 (6)0.0030 (6)0.0027 (6)
C110.0473 (9)0.0436 (8)0.0470 (9)0.0054 (7)0.0054 (7)0.0002 (7)
C120.0517 (9)0.0502 (9)0.0440 (8)0.0015 (8)0.0097 (7)0.0014 (7)
C130.0490 (9)0.0414 (8)0.0410 (8)0.0093 (7)0.0043 (7)0.0038 (7)
C140.0475 (9)0.0407 (8)0.0552 (9)0.0036 (7)0.0007 (7)0.0042 (7)
C150.0416 (8)0.0432 (8)0.0454 (8)0.0025 (7)0.0051 (6)0.0006 (7)
C160.0765 (13)0.0739 (13)0.0488 (10)0.0138 (11)0.0043 (9)0.0162 (9)
C170.0683 (12)0.0430 (9)0.0529 (10)0.0123 (8)0.0117 (8)0.0041 (7)
C180.0929 (16)0.0552 (11)0.0704 (13)0.0078 (11)0.0053 (11)0.0226 (10)
C190.0413 (9)0.0695 (12)0.0660 (11)0.0145 (8)0.0062 (8)0.0108 (9)
N10.0335 (7)0.0551 (8)0.0438 (7)0.0018 (6)0.0028 (6)0.0005 (6)
O10.0454 (7)0.1195 (12)0.0613 (8)0.0014 (8)0.0170 (6)0.0231 (8)
O20.0696 (8)0.0534 (7)0.0559 (7)0.0045 (6)0.0023 (6)0.0167 (6)
O30.1203 (14)0.0915 (12)0.0916 (12)0.0615 (11)0.0129 (10)0.0239 (10)
Geometric parameters (Å, º) top
C2—C31.360 (2)C11—C121.385 (2)
C2—N11.3715 (19)C11—H110.9300
C2—C71.499 (2)C12—C131.373 (2)
C3—C81.454 (2)C12—H120.9300
C3—C41.526 (2)C13—O21.3711 (19)
C4—C51.523 (2)C13—C141.381 (2)
C4—C101.524 (2)C14—C151.375 (2)
C4—H40.9800C14—H140.9300
C5—C61.349 (2)C15—H150.9300
C5—C171.476 (2)C16—O21.422 (2)
C6—N11.383 (2)C16—H16A0.9600
C6—C191.502 (2)C16—H16B0.9600
C7—H7A0.9600C16—H16C0.9600
C7—H7B0.9600C17—O31.216 (2)
C7—H7C0.9600C17—C181.490 (3)
C8—O11.234 (2)C18—H18A0.9600
C8—C91.504 (3)C18—H18B0.9600
C9—H9A0.9600C18—H18C0.9600
C9—H9B0.9600C19—H19A0.9600
C9—H9C0.9600C19—H19B0.9600
C10—C111.381 (2)C19—H19C0.9600
C10—C151.391 (2)N1—H10.869 (19)
C3—C2—N1119.13 (14)C12—C11—H11118.8
C3—C2—C7127.17 (14)C13—C12—C11119.51 (15)
N1—C2—C7113.69 (14)C13—C12—H12120.2
C2—C3—C8121.17 (14)C11—C12—H12120.2
C2—C3—C4119.04 (13)O2—C13—C12123.99 (15)
C8—C3—C4119.72 (13)O2—C13—C14116.52 (15)
C5—C4—C10113.01 (12)C12—C13—C14119.49 (15)
C5—C4—C3110.63 (12)C15—C14—C13120.29 (15)
C10—C4—C3110.35 (12)C15—C14—H14119.9
C5—C4—H4107.5C13—C14—H14119.9
C10—C4—H4107.5C14—C15—C10121.58 (14)
C3—C4—H4107.5C14—C15—H15119.2
C6—C5—C17121.90 (15)C10—C15—H15119.2
C6—C5—C4119.39 (14)O2—C16—H16A109.5
C17—C5—C4118.68 (15)O2—C16—H16B109.5
C5—C6—N1119.43 (14)H16A—C16—H16B109.5
C5—C6—C19127.76 (16)O2—C16—H16C109.5
N1—C6—C19112.80 (15)H16A—C16—H16C109.5
C2—C7—H7A109.5H16B—C16—H16C109.5
C2—C7—H7B109.5O3—C17—C5122.42 (18)
H7A—C7—H7B109.5O3—C17—C18118.06 (17)
C2—C7—H7C109.5C5—C17—C18119.51 (16)
H7A—C7—H7C109.5C17—C18—H18A109.5
H7B—C7—H7C109.5C17—C18—H18B109.5
O1—C8—C3122.60 (16)H18A—C18—H18B109.5
O1—C8—C9117.72 (15)C17—C18—H18C109.5
C3—C8—C9119.67 (15)H18A—C18—H18C109.5
C8—C9—H9A109.5H18B—C18—H18C109.5
C8—C9—H9B109.5C6—C19—H19A109.5
H9A—C9—H9B109.5C6—C19—H19B109.5
C8—C9—H9C109.5H19A—C19—H19B109.5
H9A—C9—H9C109.5C6—C19—H19C109.5
H9B—C9—H9C109.5H19A—C19—H19C109.5
C11—C10—C15116.79 (14)H19B—C19—H19C109.5
C11—C10—C4121.19 (13)C2—N1—C6123.26 (14)
C15—C10—C4122.01 (13)C2—N1—H1116.0 (13)
C10—C11—C12122.34 (15)C6—N1—H1117.8 (13)
C10—C11—H11118.8C13—O2—C16116.70 (14)
N1—C2—C3—C8171.57 (15)C5—C4—C10—C1558.19 (18)
C7—C2—C3—C88.0 (3)C3—C4—C10—C1566.27 (18)
N1—C2—C3—C411.4 (2)C15—C10—C11—C120.2 (2)
C7—C2—C3—C4169.03 (16)C4—C10—C11—C12179.46 (15)
C2—C3—C4—C530.7 (2)C10—C11—C12—C130.3 (3)
C8—C3—C4—C5152.27 (14)C11—C12—C13—O2179.63 (15)
C2—C3—C4—C1095.13 (17)C11—C12—C13—C140.5 (2)
C8—C3—C4—C1081.92 (18)O2—C13—C14—C15179.49 (15)
C10—C4—C5—C695.93 (16)C12—C13—C14—C150.3 (2)
C3—C4—C5—C628.38 (19)C13—C14—C15—C100.2 (2)
C10—C4—C5—C1782.28 (17)C11—C10—C15—C140.4 (2)
C3—C4—C5—C17153.41 (14)C4—C10—C15—C14179.66 (14)
C17—C5—C6—N1174.94 (14)C6—C5—C17—O317.3 (3)
C4—C5—C6—N16.9 (2)C4—C5—C17—O3164.55 (19)
C17—C5—C6—C195.9 (3)C6—C5—C17—C18161.94 (18)
C4—C5—C6—C19172.25 (15)C4—C5—C17—C1816.2 (2)
C2—C3—C8—O16.3 (3)C3—C2—N1—C613.9 (2)
C4—C3—C8—O1170.70 (16)C7—C2—N1—C6165.71 (15)
C2—C3—C8—C9173.28 (18)C5—C6—N1—C216.4 (2)
C4—C3—C8—C99.7 (2)C19—C6—N1—C2164.36 (15)
C5—C4—C10—C11122.56 (16)C12—C13—O2—C164.3 (2)
C3—C4—C10—C11112.98 (16)C14—C13—O2—C16176.55 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.869 (19)2.03 (2)2.8961 (19)173.1 (18)
Symmetry code: (i) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H21NO3
Mr299.36
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)12.0781 (3), 8.9650 (2), 29.3755 (8)
V3)3180.78 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.979, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
36021, 4055, 2828
Rint0.032
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.148, 1.05
No. of reflections4055
No. of parameters208
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.18

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.869 (19)2.03 (2)2.8961 (19)173.1 (18)
Symmetry code: (i) x1/2, y, z+1/2.
 

Acknowledgements

MT thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection. VV thanks the DST-India for funding the project under the Fast-Track Proposal scheme.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGanjali, M. R., Rezapour, M., Rasoolipour, S., Norouzi, P. & Adib, M. (2007). J. Braz. Chem. Soc. 18, 352–358.  Web of Science CrossRef CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, J. J. & Wang, G. W. (2005). One-Pot Synthesis and Aromatization of 1,4-Dihydropyridines in Refluxing Water in Thieme eJournals, Synthesis 2005, pp. 2379–2383. New York: Georg Thieme Verlag Stuttgart.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds