organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[N-(2,4-Di­fluoro­phen­yl)carbamo­yl]-3,4,5,6-tetra­fluoro­benzoic acid

aCollege of Pharmacy, The University of Arizona, 1295 N. Martin Avenue, Tucson, AZ 85721, USA, and bDepartment of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721, USA
*Correspondence e-mail: guod@pharmacy.arizona.edu

(Received 14 September 2009; accepted 21 September 2009; online 3 October 2009)

The title compound, C14H5F6NO3, was synthesized by condensation of tetra­fluoro­phthalic anhydride and 2,4-difluoro­aniline. It was then recrystallized from hexane to give a nonmerohedral twin with two crystallographically unique mol­ecules in the asymmetric unit. The refined twin fraction is 0.460 (3). Torsional differences between the aryl rings and the central amide group account for the presence of two unique mol­ecules. The compound packs as double tapes formed by O—H⋯O and N—H⋯O hydrogen-bonding inter­actions between each unique mol­ecule and its symmetry equivalents.

Related literature

For the synthesis of a related structure, see: Collin et al. (2001[Collin, X., Robert, J., Wielgosz, G., Le Baut, G., Bobin-Dubigeon, C., Grimaud, N. & Petit, J. (2001). Eur. J. Med. Chem. 36, 639-649.]). For anti­tumor effects of thalidomide analogs, see: Ng et al. (2004[Ng, S. S. W., MacPherson, G. R., Gütschow, M., Eger, K. & Figg, W. D. (2004). Clin. Cancer Res. 10, 4192-4197.]).

[Scheme 1]

Experimental

Crystal data
  • C14H5F6NO3

  • Mr = 349.19

  • Triclinic, [P \overline 1]

  • a = 7.5293 (4) Å

  • b = 7.6795 (5) Å

  • c = 24.1969 (15) Å

  • α = 89.809 (5)°

  • β = 82.747 (4)°

  • γ = 68.712 (4)°

  • V = 1291.83 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.65 mm−1

  • T = 100 K

  • 0.27 × 0.19 × 0.09 mm

Data collection
  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 1996[Sheldrick, G. M. (1996). TWINABS. University of Göttingen, Germany.]) Tmin = 0.664, Tmax = 0.868

  • 7781 measured reflections

  • 3296 independent reflections

  • 2467 reflections with I > 2σ(I)

  • Rint = 0.074

  • θmax = 58.5°

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.182

  • S = 0.99

  • 3296 reflections

  • 434 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.84 1.84 2.666 (6) 168
N1—H1⋯O2ii 0.88 2.09 2.902 (7) 154
O53—H53⋯O51iii 0.84 1.84 2.675 (6) 170
N51—H51⋯O52iv 0.88 2.07 2.902 (8) 157
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+1, -y+1, -z; (iii) -x+2, -y-1, -z+1; (iv) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Analogs of thalidomide have demonstrated promising anti-cancer activity (Ng et al., 2004). Inhibition of the angiogenesis activity of 2-(2,4-difluorophenyl)-4,5,6,7-tetrafluoroisoindoline-1,3-dione led us to synthesize and test the activity of its degradation product, 2-(2,4-difluorophenylcarbamoyl)-3,4,5,6-tetrafluorobenzoic acid, (I). In the course of doing so we determined its crystal structure.

Compound (I) was recrystallized from hexane to yield, concomitantly, small needle and prism-like crystals. Both crystal morphologies have the same unit cell parameters and data were collected on a prism crystal. Although the crystal was reasonably large the diffraction was phenomenally weak. With 60 second exposures using Cu radiation data could only be observed up to a resolution of 1 Å; the dataset was truncated at this resolution. The diffraction pattern is a non-merohedral twin with a refined twin fraction ration of 0.460 (3). A room temperature redetermination of the unit cell, using a fresh crystal, showed that twinning was still present and does not result from flash-cooling to 100 K.

The structure features two crystallographically independent molecules in the asymmetric unit. The structural discussion is limited to molecule A (atoms F1 > C14) with equivalent results for molecule B (F51 > C14) presented in square brackets. The asymmetric unit is shown in Figure 1. Figure 2 shows an overlay of both molecules,formed by overlaying the central amide group.Molecular dimensions are unexceptional. The plane of the more highly-substituted aryl ring is rotated by 69.41 (5)° [69.64 (4)°] from the amide group, and the carboxylic acid group is rotated by 58.70 (2)° [61.10 (3)°] from the aryl ring. The plane of the second aryl ring is rotated by 70.25 (4)° [66.54 (4)°] from the amide group. As can be see from Figure 3 and from the direction of rotation is different for each molecule, most easily appreciated by considering the torsion angle N1–C1–C2–C3 - 49.0 (8)° [48.5 (10)°] (similar magnitude, opposite direction).

As shown in Figures 3 and 4 the compound packs as a double tape structure with each crystallographically unique molecule hydrogen-bonded to its symmetry equivalents via O–H···O and N–H···O hydrogen bonding interactions. Each tape runs parallel to the a axis.

Related literature top

For the synthesis of a related structure, see Collin et al. (2001). For antitumor effects of thalidomide analogs, see Ng et al. (2004).

Experimental top

Compound (I) was synthesized by coupling tetraflurophthalic anhydride (1 g, 4.54 mmol) and 2,4-difluoroaniline (0.59 g, 4.54 mmol) using 4-dimethylaminopyridine (56 mg, 0.454 mmol) as the catalyst and dry dichloromethane (10 ml) as the solvent. The mixture was stirred at ambient temperature for 72 h. After evaporation of the solvent, the reaction mixture was partitioned between ethyl acetate and 2 N HCl. The aqueous phase was then extracted twice more with ethyl acetate. The combined extracts were evaporated to a solid in vacuo. The solid was treated with diethyl ether at room temperature and the undissolved residue was discarded. The remaining solution was evaporated to give a white powder, which was recrystallized from hexane.

Refinement top

All H-atoms were placed geometrically and refined with Uiso(H) = 1.2Ueq(X) (X = C, H, O) and fixed distances of: O–H, 0.84 Å; N–H, 0.88 Å; C–H, 0.95 Å. The structure was refined as a non-merohedral twin (twin law: -1 0 0 / 0 -1 0 / -1 0.31 1). The fraction of the minor twin domain was 0.460 (3).

Structure description top

Analogs of thalidomide have demonstrated promising anti-cancer activity (Ng et al., 2004). Inhibition of the angiogenesis activity of 2-(2,4-difluorophenyl)-4,5,6,7-tetrafluoroisoindoline-1,3-dione led us to synthesize and test the activity of its degradation product, 2-(2,4-difluorophenylcarbamoyl)-3,4,5,6-tetrafluorobenzoic acid, (I). In the course of doing so we determined its crystal structure.

Compound (I) was recrystallized from hexane to yield, concomitantly, small needle and prism-like crystals. Both crystal morphologies have the same unit cell parameters and data were collected on a prism crystal. Although the crystal was reasonably large the diffraction was phenomenally weak. With 60 second exposures using Cu radiation data could only be observed up to a resolution of 1 Å; the dataset was truncated at this resolution. The diffraction pattern is a non-merohedral twin with a refined twin fraction ration of 0.460 (3). A room temperature redetermination of the unit cell, using a fresh crystal, showed that twinning was still present and does not result from flash-cooling to 100 K.

The structure features two crystallographically independent molecules in the asymmetric unit. The structural discussion is limited to molecule A (atoms F1 > C14) with equivalent results for molecule B (F51 > C14) presented in square brackets. The asymmetric unit is shown in Figure 1. Figure 2 shows an overlay of both molecules,formed by overlaying the central amide group.Molecular dimensions are unexceptional. The plane of the more highly-substituted aryl ring is rotated by 69.41 (5)° [69.64 (4)°] from the amide group, and the carboxylic acid group is rotated by 58.70 (2)° [61.10 (3)°] from the aryl ring. The plane of the second aryl ring is rotated by 70.25 (4)° [66.54 (4)°] from the amide group. As can be see from Figure 3 and from the direction of rotation is different for each molecule, most easily appreciated by considering the torsion angle N1–C1–C2–C3 - 49.0 (8)° [48.5 (10)°] (similar magnitude, opposite direction).

As shown in Figures 3 and 4 the compound packs as a double tape structure with each crystallographically unique molecule hydrogen-bonded to its symmetry equivalents via O–H···O and N–H···O hydrogen bonding interactions. Each tape runs parallel to the a axis.

For the synthesis of a related structure, see Collin et al. (2001). For antitumor effects of thalidomide analogs, see Ng et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Version 2.2; Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with displacment ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. An overlay of the amide groups of molecules A (green) and B (blue) with an r.m.s. deviation of 0.0149 Å.
[Figure 3] Fig. 3. Hydrogen bonding interactions (blue dotted lines; red dotted lines indicate hydrogen bonding continuation) in (I).
[Figure 4] Fig. 4. A b-axis projection of the crystal packing in (I). The colour scheme is that used in Figure 2.
2-[N-(2,4-Difluorophenyl)carbamoyl]-3,4,5,6-tetrafluorobenzoic acid top
Crystal data top
C14H5F6NO3Z = 4
Mr = 349.19F(000) = 696
Triclinic, P1Dx = 1.795 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 7.5293 (4) ÅCell parameters from 617 reflections
b = 7.6795 (5) Åθ = 3.7–56.9°
c = 24.1969 (15) ŵ = 1.65 mm1
α = 89.809 (5)°T = 100 K
β = 82.747 (4)°Prism, colorless
γ = 68.712 (4)°0.27 × 0.19 × 0.09 mm
V = 1291.83 (13) Å3
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
3296 independent reflections
Radiation source: microsource2467 reflections with I > 2σ(I)
Silicon monochromatorRint = 0.074
φ and ω scansθmax = 58.5°, θmin = 1.8°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 1996)
h = 88
Tmin = 0.664, Tmax = 0.868k = 88
7781 measured reflectionsl = 026
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1222P)2]
where P = (Fo2 + 2Fc2)/3
3296 reflections(Δ/σ)max < 0.001
434 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C14H5F6NO3γ = 68.712 (4)°
Mr = 349.19V = 1291.83 (13) Å3
Triclinic, P1Z = 4
a = 7.5293 (4) ÅCu Kα radiation
b = 7.6795 (5) ŵ = 1.65 mm1
c = 24.1969 (15) ÅT = 100 K
α = 89.809 (5)°0.27 × 0.19 × 0.09 mm
β = 82.747 (4)°
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
3296 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 1996)
2467 reflections with I > 2σ(I)
Tmin = 0.664, Tmax = 0.868Rint = 0.074
7781 measured reflectionsθmax = 58.5°
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 0.99Δρmax = 0.40 e Å3
3296 reflectionsΔρmin = 0.43 e Å3
434 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.6312 (6)0.7940 (5)0.07802 (17)0.0314 (10)
F20.5202 (6)0.7903 (6)0.18695 (17)0.0342 (11)
F30.5293 (7)0.4660 (6)0.23442 (17)0.0380 (12)
F40.6469 (7)0.1469 (6)0.17134 (17)0.0368 (11)
F50.8026 (6)0.3185 (6)0.11126 (18)0.0310 (10)
F60.9832 (7)0.7035 (7)0.23925 (18)0.0441 (13)
O10.9457 (6)0.3317 (6)0.0108 (2)0.0233 (11)
O20.6865 (7)0.1123 (7)0.01592 (19)0.0252 (12)
O30.9119 (7)0.0116 (6)0.0722 (2)0.0279 (12)
H30.94110.10780.05130.034*
N10.6934 (8)0.5969 (8)0.0258 (2)0.0208 (13)
H10.57820.67370.01150.025*
C10.7927 (10)0.4594 (10)0.0057 (3)0.0221 (17)
C20.7033 (10)0.4683 (10)0.0659 (3)0.0233 (17)
C30.6390 (10)0.6307 (10)0.0997 (3)0.0252 (17)
C40.5817 (10)0.6302 (10)0.1557 (3)0.0257 (17)
C50.5853 (11)0.4681 (11)0.1803 (3)0.0270 (18)
C60.6523 (11)0.3034 (10)0.1465 (3)0.0289 (19)
C70.7083 (10)0.3010 (10)0.0908 (3)0.0210 (16)
C80.7685 (10)0.1238 (10)0.0551 (3)0.0229 (16)
C90.7661 (10)0.6233 (10)0.0807 (3)0.0216 (16)
C100.8250 (11)0.4836 (10)0.1232 (3)0.0285 (18)
C110.8983 (11)0.5061 (10)0.1755 (3)0.0288 (18)
H110.93960.40740.20320.035*
C120.9107 (11)0.6748 (12)0.1869 (3)0.032 (2)
C130.8517 (11)0.8235 (11)0.1472 (3)0.0289 (18)
H130.85820.94140.15660.035*
C140.7839 (11)0.7933 (11)0.0938 (3)0.0285 (18)
H140.74870.88990.06550.034*
F510.7042 (6)0.2634 (6)0.41888 (17)0.0305 (10)
F520.6881 (7)0.2199 (6)0.31022 (18)0.0402 (12)
F530.7306 (6)0.1187 (6)0.26531 (18)0.0383 (11)
F540.7893 (7)0.4145 (6)0.33004 (18)0.0350 (11)
F550.6962 (6)0.1608 (5)0.60603 (17)0.0311 (11)
F560.8200 (6)0.2169 (6)0.73646 (18)0.0413 (12)
O510.9354 (7)0.1677 (7)0.5081 (2)0.0264 (12)
O520.6925 (7)0.3957 (7)0.4849 (2)0.0259 (12)
O530.9737 (7)0.5342 (6)0.4286 (2)0.0279 (12)
H530.98750.62550.44910.034*
N510.6738 (9)0.1005 (8)0.5249 (2)0.0251 (14)
H510.57130.17780.51190.030*
C510.7952 (11)0.0447 (10)0.4919 (3)0.0245 (17)
C520.7609 (10)0.0563 (10)0.4324 (3)0.0253 (17)
C530.7284 (11)0.0938 (10)0.3988 (3)0.0269 (17)
C540.7213 (11)0.0727 (10)0.3424 (3)0.0270 (18)
C550.7409 (11)0.1006 (11)0.3196 (3)0.0268 (18)
C560.7748 (10)0.2496 (10)0.3531 (3)0.0236 (17)
C570.7811 (10)0.2303 (10)0.4091 (3)0.0221 (17)
C580.8084 (11)0.3979 (10)0.4460 (3)0.0246 (17)
C590.7037 (11)0.1344 (10)0.5794 (3)0.0272 (18)
C600.7205 (10)0.0006 (10)0.6193 (3)0.0252 (17)
C610.7593 (11)0.0240 (11)0.6723 (3)0.0307 (18)
H610.77550.07070.69860.037*
C620.7733 (12)0.1938 (11)0.6849 (3)0.032 (2)
C630.7495 (11)0.3315 (11)0.6487 (3)0.0299 (19)
H630.75750.44700.65950.036*
C640.7138 (11)0.3034 (11)0.5961 (3)0.0300 (18)
H640.69550.40070.57060.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.040 (3)0.024 (2)0.032 (2)0.014 (2)0.003 (2)0.0027 (19)
F20.040 (3)0.029 (2)0.032 (2)0.010 (2)0.005 (2)0.006 (2)
F30.047 (3)0.033 (3)0.022 (2)0.002 (2)0.001 (2)0.0010 (19)
F40.052 (3)0.021 (2)0.032 (2)0.008 (2)0.002 (2)0.0045 (19)
F50.029 (2)0.027 (2)0.038 (3)0.010 (2)0.013 (2)0.0016 (19)
F60.052 (3)0.051 (3)0.023 (2)0.016 (2)0.006 (2)0.007 (2)
O10.015 (3)0.018 (3)0.034 (3)0.002 (2)0.005 (2)0.006 (2)
O20.024 (3)0.027 (3)0.028 (3)0.013 (2)0.003 (2)0.003 (2)
O30.035 (3)0.014 (3)0.033 (3)0.004 (2)0.015 (2)0.001 (2)
N10.005 (3)0.024 (3)0.031 (3)0.001 (2)0.009 (3)0.005 (3)
C10.027 (4)0.019 (4)0.030 (4)0.016 (4)0.011 (3)0.001 (3)
C20.019 (4)0.033 (4)0.029 (4)0.020 (3)0.009 (3)0.001 (3)
C30.016 (4)0.018 (4)0.038 (4)0.003 (3)0.005 (4)0.001 (3)
C40.027 (4)0.029 (4)0.025 (4)0.013 (3)0.007 (3)0.007 (3)
C50.024 (4)0.025 (4)0.029 (4)0.004 (3)0.009 (3)0.000 (3)
C60.030 (4)0.022 (4)0.036 (5)0.009 (4)0.009 (4)0.015 (4)
C70.016 (4)0.024 (4)0.024 (4)0.008 (3)0.006 (3)0.004 (3)
C80.023 (4)0.028 (4)0.021 (4)0.014 (3)0.001 (3)0.002 (3)
C90.015 (4)0.026 (4)0.022 (4)0.004 (3)0.008 (3)0.002 (3)
C100.031 (4)0.026 (4)0.031 (4)0.012 (4)0.005 (4)0.005 (3)
C110.031 (4)0.018 (4)0.031 (4)0.002 (3)0.004 (4)0.005 (3)
C120.024 (4)0.044 (5)0.025 (4)0.009 (4)0.003 (3)0.003 (4)
C130.027 (4)0.024 (4)0.038 (5)0.009 (3)0.011 (4)0.012 (4)
C140.032 (4)0.032 (4)0.028 (4)0.015 (4)0.014 (3)0.006 (4)
F510.035 (2)0.022 (2)0.036 (2)0.0108 (19)0.010 (2)0.0055 (19)
F520.052 (3)0.035 (3)0.034 (3)0.015 (2)0.011 (2)0.013 (2)
F530.047 (3)0.042 (3)0.027 (2)0.017 (2)0.007 (2)0.005 (2)
F540.042 (3)0.026 (2)0.035 (3)0.007 (2)0.011 (2)0.005 (2)
F550.036 (2)0.018 (2)0.039 (3)0.010 (2)0.000 (2)0.0043 (19)
F560.036 (3)0.051 (3)0.036 (3)0.015 (2)0.007 (2)0.008 (2)
O510.031 (3)0.019 (3)0.031 (3)0.011 (3)0.006 (2)0.001 (2)
O520.024 (3)0.021 (3)0.033 (3)0.008 (2)0.001 (3)0.005 (2)
O530.023 (3)0.020 (3)0.041 (3)0.008 (2)0.004 (2)0.009 (2)
N510.024 (3)0.022 (3)0.027 (3)0.005 (3)0.009 (3)0.002 (3)
C510.029 (4)0.024 (4)0.028 (4)0.016 (4)0.009 (4)0.010 (3)
C520.019 (4)0.026 (4)0.030 (4)0.006 (3)0.005 (3)0.002 (3)
C530.021 (4)0.024 (4)0.036 (5)0.008 (3)0.005 (4)0.005 (4)
C540.022 (4)0.024 (4)0.033 (4)0.007 (3)0.005 (3)0.018 (4)
C550.018 (4)0.033 (5)0.025 (4)0.002 (3)0.006 (3)0.003 (4)
C560.018 (4)0.026 (4)0.032 (4)0.013 (3)0.007 (3)0.001 (4)
C570.014 (4)0.022 (4)0.028 (4)0.005 (3)0.003 (3)0.006 (3)
C580.021 (4)0.014 (4)0.038 (5)0.003 (3)0.011 (4)0.001 (3)
C590.024 (4)0.027 (4)0.026 (4)0.004 (3)0.003 (3)0.008 (3)
C600.015 (4)0.018 (4)0.041 (5)0.004 (3)0.005 (3)0.001 (3)
C610.031 (4)0.028 (4)0.028 (4)0.005 (3)0.004 (3)0.003 (3)
C620.033 (5)0.029 (5)0.025 (4)0.001 (4)0.003 (4)0.003 (4)
C630.032 (5)0.026 (4)0.033 (4)0.011 (4)0.005 (4)0.003 (4)
C640.029 (4)0.025 (4)0.036 (5)0.010 (4)0.004 (4)0.006 (4)
Geometric parameters (Å, º) top
F1—C31.342 (8)F51—C531.332 (8)
F2—C41.342 (8)F52—C541.336 (8)
F3—C51.326 (8)F53—C551.337 (9)
F4—C61.353 (8)F54—C561.348 (8)
F5—C101.364 (8)F55—C601.361 (8)
F6—C121.365 (9)F56—C621.367 (9)
O1—C11.230 (9)O51—C511.240 (8)
O2—C81.214 (8)O52—C581.195 (9)
O3—H30.840O53—H530.840
O3—C81.309 (8)O53—C581.321 (9)
N1—H10.880N51—H510.880
N1—C11.349 (9)N51—C511.341 (10)
N1—C91.416 (9)N51—C591.405 (10)
C1—C21.517 (10)C51—C521.504 (10)
C2—C31.388 (10)C52—C531.375 (11)
C2—C71.408 (10)C52—C571.401 (10)
C3—C41.369 (10)C53—C541.384 (11)
C4—C51.371 (11)C54—C551.393 (11)
C5—C61.400 (11)C55—C561.366 (11)
C6—C71.359 (11)C56—C571.371 (11)
C7—C81.506 (10)C57—C581.532 (10)
C9—C101.396 (11)C59—C601.390 (10)
C9—C141.391 (10)C59—C641.391 (11)
C10—C111.351 (10)C60—C611.378 (11)
C11—H110.950C61—H610.950
C11—C121.357 (11)C61—C621.383 (11)
C12—C131.399 (11)C62—C631.348 (11)
C13—H130.950C63—H630.950
C13—C141.378 (11)C63—C641.366 (11)
C14—H140.950C64—H640.950
H3—O3—C8109.5H53—O53—C58109.5
H1—N1—C1118.5H51—N51—C51118.6
H1—N1—C9118.5H51—N51—C59118.6
C1—N1—C9123.0 (6)C51—N51—C59122.7 (6)
O1—C1—N1125.2 (7)O51—C51—N51122.9 (6)
O1—C1—C2119.4 (6)O51—C51—C52118.8 (7)
N1—C1—C2115.4 (6)N51—C51—C52118.2 (6)
C1—C2—C3122.6 (6)C51—C52—C53122.1 (7)
C1—C2—C7118.8 (6)C51—C52—C57118.6 (6)
C3—C2—C7118.1 (7)C53—C52—C57119.0 (7)
F1—C3—C2120.4 (7)F51—C53—C52121.6 (6)
F1—C3—C4118.0 (6)F51—C53—C54117.7 (7)
C2—C3—C4121.6 (7)C52—C53—C54120.7 (7)
F2—C4—C3119.8 (6)F52—C54—C53120.1 (7)
F2—C4—C5119.4 (6)F52—C54—C55119.9 (7)
C3—C4—C5120.8 (7)C53—C54—C55119.9 (7)
F3—C5—C4121.4 (7)F53—C55—C54119.4 (7)
F3—C5—C6120.7 (7)F53—C55—C56121.4 (7)
C4—C5—C6117.9 (7)C54—C55—C56119.1 (7)
F4—C6—C5116.7 (7)F54—C56—C55117.6 (6)
F4—C6—C7120.9 (7)F54—C56—C57120.8 (7)
C5—C6—C7122.3 (7)C55—C56—C57121.5 (7)
C2—C7—C6119.4 (7)C52—C57—C56119.8 (7)
C2—C7—C8119.5 (6)C52—C57—C58120.1 (6)
C6—C7—C8121.0 (6)C56—C57—C58120.1 (7)
O2—C8—O3125.7 (7)O52—C58—O53127.9 (7)
O2—C8—C7122.0 (6)O52—C58—C57122.0 (7)
O3—C8—C7112.3 (6)O53—C58—C57110.1 (7)
N1—C9—C10122.7 (6)N51—C59—C60120.9 (7)
N1—C9—C14119.7 (6)N51—C59—C64121.8 (7)
C10—C9—C14117.5 (7)C60—C59—C64117.2 (7)
F5—C10—C9118.0 (6)F55—C60—C59119.2 (6)
F5—C10—C11118.8 (6)F55—C60—C61117.9 (7)
C9—C10—C11123.2 (7)C59—C60—C61122.9 (7)
C10—C11—H11121.2C60—C61—H61122.0
C10—C11—C12117.6 (7)C60—C61—C62116.0 (7)
H11—C11—C12121.2H61—C61—C62122.0
F6—C12—C11119.5 (7)F56—C62—C61117.0 (7)
F6—C12—C13117.6 (7)F56—C62—C63119.6 (7)
C11—C12—C13122.9 (7)C61—C62—C63123.4 (7)
C12—C13—H13121.1C62—C63—H63120.4
C12—C13—C14117.8 (7)C62—C63—C64119.3 (7)
H13—C13—C14121.1H63—C63—C64120.4
C9—C14—C13120.9 (7)C59—C64—C63121.0 (7)
C9—C14—H14119.6C59—C64—H64119.5
C13—C14—H14119.6C63—C64—H64119.5
C9—N1—C1—O17.7 (10)C59—N51—C51—O515.3 (11)
C9—N1—C1—C2172.3 (6)C59—N51—C51—C52173.6 (6)
O1—C1—C2—C3131.0 (7)O51—C51—C52—C53130.4 (8)
O1—C1—C2—C740.5 (9)O51—C51—C52—C5743.4 (10)
N1—C1—C2—C349.0 (8)N51—C51—C52—C5348.5 (10)
N1—C1—C2—C7139.5 (6)N51—C51—C52—C57137.7 (7)
C1—C2—C3—F18.5 (10)C51—C52—C53—F517.6 (11)
C1—C2—C3—C4171.5 (7)C51—C52—C53—C54171.8 (7)
C7—C2—C3—F1180.0 (6)C57—C52—C53—F51178.6 (6)
C7—C2—C3—C40.0 (11)C57—C52—C53—C542.0 (12)
F1—C3—C4—F20.0 (10)F51—C53—C54—F521.1 (11)
F1—C3—C4—C5179.7 (6)F51—C53—C54—C55178.4 (6)
C2—C3—C4—F2180.0 (6)C52—C53—C54—F52179.5 (7)
C2—C3—C4—C50.3 (11)C52—C53—C54—C552.2 (12)
F2—C4—C5—F30.0 (11)F52—C54—C55—F531.6 (11)
F2—C4—C5—C6179.3 (6)F52—C54—C55—C56180.0 (7)
C3—C4—C5—F3179.7 (6)C53—C54—C55—F53178.9 (7)
C3—C4—C5—C61.1 (11)C53—C54—C55—C562.7 (11)
F3—C5—C6—F43.4 (10)F53—C55—C56—F542.8 (11)
F3—C5—C6—C7179.1 (7)F53—C55—C56—C57178.5 (6)
C4—C5—C6—F4177.4 (6)C54—C55—C56—F54178.8 (6)
C4—C5—C6—C71.6 (11)C54—C55—C56—C573.1 (11)
F4—C6—C7—C2176.9 (6)F54—C56—C57—C52178.4 (6)
F4—C6—C7—C80.8 (11)F54—C56—C57—C581.1 (10)
C5—C6—C7—C21.4 (11)C55—C56—C57—C522.9 (11)
C5—C6—C7—C8176.3 (7)C55—C56—C57—C58176.6 (7)
C1—C2—C7—C6171.3 (6)C51—C52—C57—C56171.7 (6)
C1—C2—C7—C811.0 (9)C51—C52—C57—C588.7 (10)
C3—C2—C7—C60.6 (10)C53—C52—C57—C562.3 (11)
C3—C2—C7—C8177.2 (6)C53—C52—C57—C58177.2 (7)
C2—C7—C8—O257.0 (9)C52—C57—C58—O5259.1 (10)
C2—C7—C8—O3124.7 (7)C52—C57—C58—O53119.9 (7)
C6—C7—C8—O2120.8 (8)C56—C57—C58—O52120.4 (8)
C6—C7—C8—O357.6 (9)C56—C57—C58—O5360.5 (9)
C1—N1—C9—C1057.0 (9)C51—N51—C59—C6057.9 (10)
C1—N1—C9—C14121.9 (7)C51—N51—C59—C64123.5 (8)
N1—C9—C10—F53.1 (10)N51—C59—C60—F553.9 (11)
N1—C9—C10—C11178.6 (7)N51—C59—C60—C61176.7 (7)
C14—C9—C10—F5178.0 (6)C64—C59—C60—F55174.8 (6)
C14—C9—C10—C110.3 (11)C64—C59—C60—C614.6 (11)
F5—C10—C11—C12177.0 (6)F55—C60—C61—C62176.8 (6)
C9—C10—C11—C121.3 (11)C59—C60—C61—C622.6 (11)
C10—C11—C12—F6179.7 (7)C60—C61—C62—F56177.2 (7)
C10—C11—C12—C130.1 (11)C60—C61—C62—C630.6 (12)
F6—C12—C13—C14178.1 (6)F56—C62—C63—C64176.3 (7)
C11—C12—C13—C142.1 (11)C61—C62—C63—C641.5 (12)
C12—C13—C14—C93.1 (10)C62—C63—C64—C590.7 (12)
N1—C9—C14—C13179.1 (6)N51—C59—C64—C63177.7 (7)
C10—C9—C14—C131.9 (10)C60—C59—C64—C633.6 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.841.842.666 (6)168
N1—H1···O2ii0.882.092.902 (7)154
O53—H53···O51iii0.841.842.675 (6)170
N51—H51···O52iv0.882.072.902 (8)157
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+1, z; (iii) x+2, y1, z+1; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H5F6NO3
Mr349.19
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.5293 (4), 7.6795 (5), 24.1969 (15)
α, β, γ (°)89.809 (5), 82.747 (4), 68.712 (4)
V3)1291.83 (13)
Z4
Radiation typeCu Kα
µ (mm1)1.65
Crystal size (mm)0.27 × 0.19 × 0.09
Data collection
DiffractometerBruker Kappa APEXII DUO CCD
Absorption correctionMulti-scan
(TWINABS; Sheldrick, 1996)
Tmin, Tmax0.664, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
7781, 3296, 2467
Rint0.074
θmax (°)58.5
(sin θ/λ)max1)0.553
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.182, 0.99
No. of reflections3296
No. of parameters434
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.43

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Version 2.2; Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.841.842.666 (6)168.0
N1—H1···O2ii0.882.092.902 (7)153.5
O53—H53···O51iii0.841.842.675 (6)169.6
N51—H51···O52iv0.882.072.902 (8)156.6
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+1, z; (iii) x+2, y1, z+1; (iv) x+1, y, z+1.
 

Acknowledgements

We thank the National Science Foundation for funding the diffractometer purchase (grant No. CHE-0741837).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCollin, X., Robert, J., Wielgosz, G., Le Baut, G., Bobin-Dubigeon, C., Grimaud, N. & Petit, J. (2001). Eur. J. Med. Chem. 36, 639–649.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNg, S. S. W., MacPherson, G. R., Gütschow, M., Eger, K. & Figg, W. D. (2004). Clin. Cancer Res. 10, 4192-4197.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds