organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of ethyl (3a-cis)-3a,8b-dihydr­­oxy-2-methyl-4-oxo-3a,8b-di­hydro-4H-indeno[1,2-b]furan-3-carboxyl­ate monohydrate

aCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal, and bSchool of Industrial Technology, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
*Correspondence e-mail: psidonio@pollux.fis.uc.pt

(Received 25 September 2009; accepted 28 September 2009; online 3 October 2009)

The crystal structure of the title compound, C15H14O6·H2O, has been redetermined from single-crystal X-ray data. The structure was originally determined by Peet et al. [J. Heterocycl. Chem. (1995), 32, 33–41] but the atomic coordinates were not reported or deposited in the Cambridge Structural Database. The ethyl substituent is disordered over two sites with refined occupancies of 0.815 (6) and 0.185 (6). The indeno group is almost planar [maximum deviation 0.0922 (14) Å] and makes an angle of 68.81 (4)° with the furan ring. The fused ring molecules are assembled in pairs by intermolecular O—H⋯O hydrogen bonds. The resulting dimers are also hydrogen bonded to the water molecules, forming double-stranded chains running along the a axis.

Related literature

For the previous report of the crystal structure, see: Peet et al. (1995[Peet, N. P., Huber, E. W. & Huffman, J. C. (1995). J. Heterocycl. Chem. 32, 33-41.]). For chemical background, see: Black et al. (1994[Black, D. C., Bowyer, M. C., Condie, G. C., Craig, D. C. & Kumar, N. (1994). Tetrahedron, 50, 10983-10994.]); Ruhemann (1910[Ruhemann, S. (1910). J. Chem. Soc. 97, 2025-2031.]); Kaiser et al. (1970[Kaiser, E. R., Colescott, L., Bossinger, C. D. & Cook, P. I. (1970). Anal. Biochem. 34, 595-598.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14O6·H2O

  • Mr = 308.28

  • Monoclinic, P 21 /c

  • a = 7.9740 (4) Å

  • b = 16.7524 (8) Å

  • c = 11.0041 (5) Å

  • β = 98.833 (2)°

  • V = 1452.53 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.49 × 0.46 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.894, Tmax = 0.975

  • 21608 measured reflections

  • 3509 independent reflections

  • 2820 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.154

  • S = 1.03

  • 3509 reflections

  • 215 parameters

  • 27 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O14—H14⋯O21i 0.82 1.90 2.7103 (17) 172
O21—H21⋯O22 0.82 1.94 2.724 (2) 159
O22—H22A⋯O14ii 0.83 (3) 2.45 (3) 3.124 (2) 140 (3)
O22—H22B⋯O17iii 0.89 (3) 2.11 (3) 2.972 (3) 163 (3)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x-1, y, z; (iii) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Ninhydrin (2,2-Dihydroxyindane-1,3-dione) is a chemical used to detect α-amino acids, proteins and dipeptides. When it reacts with these free amines, a deep blue or purple color known as Ruhemann's purple is evolved (Ruhemann, 1910; Kaiser et al., 1970). It is one of the most widely used reagent for chemical development of fingerprints on porous surfaces. Ninhydrin in benzene undergoes electrophilic substitution at C2 of 3,5-dimethoxyaniline leading to the formation of indeno[1,2-b]indole. The corresponding reaction in water undergoes electrophilic substitution at C4 (Black et al., 1994).

The ethyl substituent of the tile compound is disordered over two sites with refined occupancies of 0.815 (6) and 0.185 (6). The indeno moiety is almost planar, with atoms C11 and C12 deviating by -0.0574 (13) and 0.0922 (14) Å, respectively, from the indeno plane. The angle between the indeno group and the furan ring is 68.81 (4) °.

Related literature top

For the previous report of the crystal structure, see: Peet et al. (1995). For chemical background, see: Black et al. (1994); Ruhemann (1910); Kaiser et al. (1970).

Experimental top

A mixture of ninhydrin (1.78 g) and ethyl acetoacetate (1.27 ml) in molar ratio 1:1 were refluxed in acetone for thirty minutes in presence of Mg/HCl. The reaction mixture was filtered and dried at low pressure. The dried mass was crystallized with solvent system diethyl ether and hexane to give transparent crystals (mp 373–376 K) of title compound (2.68 g).

The melting point was determined on a Kofler block melting point apparatus and is uncorrected.

Refinement top

Hydrogen atoms not belonging to the water molecule were placed at calculated positions and refined as riding on their parent atoms, using SHELXL97 (Sheldrick, 2008) defaults [C—H = 0.93 Å, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N)]. The hydrogen atoms of the water molecule were included in the refinement riding on the O atom with Uiso = 1.5Ueq(O).

We have chosen to model the positional disorder of the ethyl substituint with two groups. The ethyl C atoms were refined anisotropically with the Uij values restrained to behave isotropically, with the ISOR instruction, and each C atom of one group was given the same displacement parameters as the corresponding atom of the other group with EADP instructions. The geometries of the two groups were made equivalent with SADI intructions.

Structure description top

Ninhydrin (2,2-Dihydroxyindane-1,3-dione) is a chemical used to detect α-amino acids, proteins and dipeptides. When it reacts with these free amines, a deep blue or purple color known as Ruhemann's purple is evolved (Ruhemann, 1910; Kaiser et al., 1970). It is one of the most widely used reagent for chemical development of fingerprints on porous surfaces. Ninhydrin in benzene undergoes electrophilic substitution at C2 of 3,5-dimethoxyaniline leading to the formation of indeno[1,2-b]indole. The corresponding reaction in water undergoes electrophilic substitution at C4 (Black et al., 1994).

The ethyl substituent of the tile compound is disordered over two sites with refined occupancies of 0.815 (6) and 0.185 (6). The indeno moiety is almost planar, with atoms C11 and C12 deviating by -0.0574 (13) and 0.0922 (14) Å, respectively, from the indeno plane. The angle between the indeno group and the furan ring is 68.81 (4) °.

For the previous report of the crystal structure, see: Peet et al. (1995). For chemical background, see: Black et al. (1994); Ruhemann (1910); Kaiser et al. (1970).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEPII (Spek, 2009) plot of the title compound. Displacement ellipsoids are drawn at the 50% probability level. For clarity only the ethyl group with the highest occupancy is shown.
[Figure 2] Fig. 2. Packing diagram, viewed down the a axis, with the hydrogen bonds depicted as dashed lines.
ethyl (3a-cis)-3a,8b-dihydroxy-2-methyl- 4-oxo-3a,8b-dihydro-4H-indeno[1,2-b]furan-3-carboxylate monohydrate top
Crystal data top
C15H14O6·H2OF(000) = 648
Mr = 308.28Dx = 1.410 Mg m3
Monoclinic, P21/cMelting point = 373–376 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.9740 (4) ÅCell parameters from 5159 reflections
b = 16.7524 (8) Åθ = 2.2–27.9°
c = 11.0041 (5) ŵ = 0.11 mm1
β = 98.833 (2)°T = 293 K
V = 1452.53 (12) Å3Parallelepipedic, colourless
Z = 40.49 × 0.46 × 0.22 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3509 independent reflections
Radiation source: fine-focus sealed tube2820 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 28.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.894, Tmax = 0.975k = 2222
21608 measured reflectionsl = 914
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0682P)2 + 0.9584P]
where P = (Fo2 + 2Fc2)/3
3509 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.50 e Å3
27 restraintsΔρmin = 0.38 e Å3
Crystal data top
C15H14O6·H2OV = 1452.53 (12) Å3
Mr = 308.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9740 (4) ŵ = 0.11 mm1
b = 16.7524 (8) ÅT = 293 K
c = 11.0041 (5) Å0.49 × 0.46 × 0.22 mm
β = 98.833 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3509 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2820 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.975Rint = 0.019
21608 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05527 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.50 e Å3
3509 reflectionsΔρmin = 0.38 e Å3
215 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O80.60398 (14)0.49466 (7)0.73529 (11)0.0366 (3)
O130.19037 (18)0.31575 (9)0.78551 (16)0.0590 (4)
O140.69530 (14)0.43316 (7)0.92132 (11)0.0353 (3)
H140.66870.47100.96170.053*
O170.04534 (18)0.49231 (10)0.79040 (16)0.0641 (5)
O180.10479 (19)0.57149 (12)0.64190 (19)0.0820 (6)
O210.36289 (15)0.43437 (7)0.95007 (10)0.0354 (3)
H210.26830.41760.95720.053*
C10.4633 (2)0.30757 (10)0.71894 (16)0.0368 (4)
C20.4601 (3)0.23627 (12)0.65306 (19)0.0488 (5)
H20.36060.20690.63380.059*
C30.6090 (3)0.21116 (13)0.6179 (2)0.0568 (5)
H30.61020.16420.57290.068*
C40.7575 (3)0.25430 (13)0.6479 (2)0.0552 (5)
H40.85720.23490.62470.066*
C50.7612 (2)0.32559 (12)0.71189 (18)0.0443 (4)
H50.86090.35490.73080.053*
C60.6107 (2)0.35153 (10)0.74655 (15)0.0331 (3)
C70.58235 (19)0.42670 (9)0.81511 (15)0.0298 (3)
C90.4506 (2)0.52675 (10)0.69420 (16)0.0353 (4)
C100.3220 (2)0.49272 (10)0.74201 (15)0.0349 (4)
C110.38915 (19)0.42608 (9)0.82712 (14)0.0295 (3)
C120.3265 (2)0.34408 (10)0.77556 (16)0.0364 (4)
C150.4550 (3)0.59275 (13)0.6050 (2)0.0521 (5)
H15A0.46360.57100.52550.078*
H15B0.55140.62620.63160.078*
H15C0.35300.62370.60030.078*
C160.1456 (2)0.51738 (12)0.72845 (19)0.0473 (5)
C19A0.0681 (3)0.6050 (2)0.6333 (4)0.0752 (11)0.815 (6)
H19A0.15280.56330.61680.090*0.815 (6)
H19B0.08260.63180.70920.090*0.815 (6)
C20A0.0827 (4)0.6619 (2)0.5313 (4)0.0808 (11)0.815 (6)
H20A0.18850.69000.52580.121*0.815 (6)
H20B0.07870.63360.45590.121*0.815 (6)
H22C0.00940.69930.54520.121*0.815 (6)
C19B0.0660 (10)0.5823 (6)0.5692 (13)0.0752 (11)0.185 (6)
H19C0.06560.56930.48330.090*0.185 (6)
H19D0.14910.54910.60080.090*0.185 (6)
C20B0.1022 (16)0.6673 (7)0.5842 (16)0.0808 (11)0.185 (6)
H20D0.21880.67790.55200.121*0.185 (6)
H20E0.03020.69880.54060.121*0.185 (6)
H20F0.08110.68090.67000.121*0.185 (6)
O220.0700 (2)0.39329 (12)1.03321 (17)0.0620 (4)
H22A0.014 (4)0.385 (2)0.981 (3)0.093*
H22B0.057 (4)0.4267 (19)1.094 (3)0.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O80.0297 (6)0.0356 (6)0.0467 (7)0.0007 (5)0.0130 (5)0.0072 (5)
O130.0427 (7)0.0543 (8)0.0839 (11)0.0176 (6)0.0219 (7)0.0161 (8)
O140.0289 (5)0.0400 (6)0.0368 (6)0.0009 (5)0.0037 (5)0.0057 (5)
O170.0353 (7)0.0791 (11)0.0817 (11)0.0117 (7)0.0211 (7)0.0296 (9)
O180.0373 (8)0.1084 (14)0.1015 (14)0.0201 (8)0.0146 (8)0.0643 (11)
O210.0326 (6)0.0419 (6)0.0340 (6)0.0026 (5)0.0124 (5)0.0021 (5)
C10.0393 (9)0.0326 (8)0.0386 (8)0.0005 (7)0.0060 (7)0.0035 (7)
C20.0557 (11)0.0380 (9)0.0515 (11)0.0015 (8)0.0048 (9)0.0099 (8)
C30.0738 (14)0.0420 (10)0.0554 (12)0.0103 (10)0.0124 (10)0.0158 (9)
C40.0573 (12)0.0542 (12)0.0580 (12)0.0178 (10)0.0211 (10)0.0093 (10)
C50.0384 (9)0.0474 (10)0.0491 (10)0.0074 (8)0.0131 (8)0.0057 (8)
C60.0335 (8)0.0329 (8)0.0334 (8)0.0041 (6)0.0063 (6)0.0015 (6)
C70.0267 (7)0.0301 (7)0.0336 (7)0.0002 (6)0.0078 (6)0.0002 (6)
C90.0356 (8)0.0340 (8)0.0374 (8)0.0035 (6)0.0096 (6)0.0020 (6)
C100.0308 (8)0.0367 (8)0.0377 (8)0.0023 (6)0.0070 (6)0.0026 (7)
C110.0253 (7)0.0312 (7)0.0330 (7)0.0005 (6)0.0075 (6)0.0011 (6)
C120.0323 (8)0.0347 (8)0.0423 (9)0.0032 (6)0.0067 (7)0.0027 (7)
C150.0534 (11)0.0497 (11)0.0564 (12)0.0053 (9)0.0182 (9)0.0179 (9)
C160.0333 (9)0.0512 (11)0.0577 (11)0.0062 (8)0.0080 (8)0.0149 (9)
C19A0.0372 (12)0.114 (3)0.076 (2)0.0281 (14)0.0150 (14)0.043 (2)
C20A0.0680 (18)0.102 (2)0.075 (3)0.0325 (17)0.0190 (17)0.028 (2)
C19B0.0372 (12)0.114 (3)0.076 (2)0.0281 (14)0.0150 (14)0.043 (2)
C20B0.0680 (18)0.102 (2)0.075 (3)0.0325 (17)0.0190 (17)0.028 (2)
O220.0539 (9)0.0752 (11)0.0602 (10)0.0025 (8)0.0193 (7)0.0090 (8)
Geometric parameters (Å, º) top
O8—C91.349 (2)C7—C111.566 (2)
O8—C71.4643 (19)C9—C101.349 (2)
O13—C121.205 (2)C9—C151.482 (3)
O14—C71.3658 (19)C10—C161.452 (2)
O14—H140.8200C10—C111.502 (2)
O17—C161.203 (2)C11—C121.540 (2)
O18—C161.319 (2)C15—H15A0.9600
O18—C19A1.478 (3)C15—H15B0.9600
O18—C19B1.481 (5)C15—H15C0.9600
O21—C111.4073 (19)C19A—C20A1.463 (4)
O21—H210.8200C19A—H19A0.9700
C1—C61.380 (2)C19A—H19B0.9700
C1—C21.395 (2)C20A—H20A0.9600
C1—C121.470 (2)C20A—H20B0.9600
C2—C31.370 (3)C20A—H22C0.9600
C2—H20.9300C19B—C20B1.468 (6)
C3—C41.384 (3)C19B—H19C0.9700
C3—H30.9300C19B—H19D0.9700
C4—C51.384 (3)C20B—H20D0.9600
C4—H40.9300C20B—H20E0.9600
C5—C61.384 (2)C20B—H20F0.9600
C5—H50.9300O22—H22A0.83 (3)
C6—C71.503 (2)O22—H22B0.89 (3)
C9—O8—C7109.07 (12)C10—C11—C7101.73 (12)
C7—O14—H14109.5C12—C11—C7104.03 (12)
C16—O18—C19A115.58 (18)O13—C12—C1127.76 (16)
C16—O18—C19B125.4 (6)O13—C12—C11124.31 (16)
C19A—O18—C19B31.6 (5)C1—C12—C11107.89 (13)
C11—O21—H21109.5C9—C15—H15A109.5
C6—C1—C2121.21 (17)C9—C15—H15B109.5
C6—C1—C12110.30 (15)H15A—C15—H15B109.5
C2—C1—C12128.35 (17)C9—C15—H15C109.5
C3—C2—C1117.51 (19)H15A—C15—H15C109.5
C3—C2—H2121.2H15B—C15—H15C109.5
C1—C2—H2121.2O17—C16—O18122.50 (18)
C2—C3—C4121.28 (18)O17—C16—C10124.07 (18)
C2—C3—H3119.4O18—C16—C10113.43 (16)
C4—C3—H3119.4C20A—C19A—O18105.1 (2)
C3—C4—C5121.52 (19)C20A—C19A—H19A110.7
C3—C4—H4119.2O18—C19A—H19A110.7
C5—C4—H4119.2C20A—C19A—H19B110.7
C6—C5—C4117.34 (18)O18—C19A—H19B110.7
C6—C5—H5121.3H19A—C19A—H19B108.8
C4—C5—H5121.3C19A—C20A—H20A109.5
C1—C6—C5121.12 (16)C19A—C20A—H20B109.5
C1—C6—C7111.65 (14)H20A—C20A—H20B109.5
C5—C6—C7127.23 (16)C19A—C20A—H22C109.5
O14—C7—O8109.19 (12)H20A—C20A—H22C109.5
O14—C7—C6111.45 (13)H20B—C20A—H22C109.5
O8—C7—C6108.04 (13)C20B—C19B—O18103.8 (5)
O14—C7—C11117.14 (13)C20B—C19B—H19C111.0
O8—C7—C11105.29 (12)O18—C19B—H19C111.0
C6—C7—C11105.22 (12)C20B—C19B—H19D111.0
O8—C9—C10113.90 (15)O18—C19B—H19D111.0
O8—C9—C15113.99 (15)H19C—C19B—H19D109.0
C10—C9—C15132.10 (17)C19B—C20B—H20D109.5
C9—C10—C16128.49 (16)C19B—C20B—H20E109.5
C9—C10—C11109.76 (14)H20D—C20B—H20E109.5
C16—C10—C11121.49 (15)C19B—C20B—H20F109.5
O21—C11—C10115.77 (13)H20D—C20B—H20F109.5
O21—C11—C12110.76 (13)H20E—C20B—H20F109.5
C10—C11—C12111.65 (13)H22A—O22—H22B117 (3)
O21—C11—C7111.96 (12)
C6—C1—C2—C30.6 (3)O14—C7—C11—O211.34 (19)
C12—C1—C2—C3174.61 (19)O8—C7—C11—O21120.20 (13)
C1—C2—C3—C40.9 (3)C6—C7—C11—O21125.78 (13)
C2—C3—C4—C51.7 (4)O14—C7—C11—C10125.58 (14)
C3—C4—C5—C61.1 (3)O8—C7—C11—C104.03 (15)
C2—C1—C6—C51.3 (3)C6—C7—C11—C10109.99 (14)
C12—C1—C6—C5174.74 (16)O14—C7—C11—C12118.30 (14)
C2—C1—C6—C7178.60 (16)O8—C7—C11—C12120.15 (13)
C12—C1—C6—C75.4 (2)C6—C7—C11—C126.13 (16)
C4—C5—C6—C10.4 (3)C6—C1—C12—O13168.21 (19)
C4—C5—C6—C7179.43 (17)C2—C1—C12—O137.4 (3)
C9—O8—C7—O14131.60 (14)C6—C1—C12—C119.40 (19)
C9—O8—C7—C6107.02 (14)C2—C1—C12—C11174.95 (18)
C9—O8—C7—C115.02 (16)O21—C11—C12—O1347.9 (2)
C1—C6—C7—O14127.18 (15)C10—C11—C12—O1382.7 (2)
C5—C6—C7—O1452.9 (2)C7—C11—C12—O13168.40 (18)
C1—C6—C7—O8112.85 (15)O21—C11—C12—C1129.76 (14)
C5—C6—C7—O867.0 (2)C10—C11—C12—C199.64 (15)
C1—C6—C7—C110.76 (18)C7—C11—C12—C19.31 (17)
C5—C6—C7—C11179.11 (17)C19A—O18—C16—O175.4 (4)
C7—O8—C9—C104.1 (2)C19B—O18—C16—O1729.6 (7)
C7—O8—C9—C15175.85 (15)C19A—O18—C16—C10173.7 (3)
O8—C9—C10—C16172.92 (18)C19B—O18—C16—C10151.3 (7)
C15—C9—C10—C167.1 (3)C9—C10—C16—O17166.7 (2)
O8—C9—C10—C111.3 (2)C11—C10—C16—O176.9 (3)
C15—C9—C10—C11178.71 (19)C9—C10—C16—O1812.3 (3)
C9—C10—C11—O21119.75 (16)C11—C10—C16—O18174.08 (18)
C16—C10—C11—O2154.9 (2)C16—O18—C19A—C20A179.3 (3)
C9—C10—C11—C12112.29 (16)C19B—O18—C19A—C20A62.8 (10)
C16—C10—C11—C1273.0 (2)C16—O18—C19B—C20B127.2 (10)
C9—C10—C11—C71.87 (18)C19A—O18—C19B—C20B45.5 (9)
C16—C10—C11—C7176.54 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14···O21i0.821.902.7103 (17)172
O21—H21···O220.821.942.724 (2)159
O22—H22A···O14ii0.83 (3)2.45 (3)3.124 (2)140 (3)
O22—H22B···O17iii0.89 (3)2.11 (3)2.972 (3)163 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z; (iii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC15H14O6·H2O
Mr308.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.9740 (4), 16.7524 (8), 11.0041 (5)
β (°) 98.833 (2)
V3)1452.53 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.49 × 0.46 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.894, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
21608, 3509, 2820
Rint0.019
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.154, 1.03
No. of reflections3509
No. of parameters215
No. of restraints27
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.38

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14···O21i0.821.902.7103 (17)171.5
O21—H21···O220.821.942.724 (2)159.2
O22—H22A···O14ii0.83 (3)2.45 (3)3.124 (2)140 (3)
O22—H22B···O17iii0.89 (3)2.11 (3)2.972 (3)163 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z; (iii) x, y+1, z+2.
 

Acknowledgements

The study was funded through USM short term grant No. 1001/PTEKIND/8140152. The authors acknowledge the USM for providing research facilities.

References

First citationBlack, D. C., Bowyer, M. C., Condie, G. C., Craig, D. C. & Kumar, N. (1994). Tetrahedron, 50, 10983–10994.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKaiser, E. R., Colescott, L., Bossinger, C. D. & Cook, P. I. (1970). Anal. Biochem. 34, 595–598.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPeet, N. P., Huber, E. W. & Huffman, J. C. (1995). J. Heterocycl. Chem. 32, 33–41.  CrossRef CAS Google Scholar
First citationRuhemann, S. (1910). J. Chem. Soc. 97, 2025–2031.  CrossRef Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds