organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­methyl­phenyl 4-methyl­benzoate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 25 September 2009; accepted 28 September 2009; online 3 October 2009)

In the title compound, C16H16O2, the two aromatic rings form a dihedral angle of 49.1 (1)°. In the crystal structure, there are no classical hydrogen bonds. The long axes of the mol­ecules are directed along the c axis.

Related literature

For the preparation of the compound, see: Nayak & Gowda (2009[Nayak, R. & Gowda, B. T. (2009). Z. Naturforsch. Teil A. In preparation.]). For background to our study of the effect of substituents on the crystal structures of aryl benzoates and for related structures, see: Gowda, Foro et al. (2007[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o3867.], 2008[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1581.]); Gowda, Tokarčík et al. (2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1280.], 2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2620.]). For phenyl benzoate, see: Adams & Morsi (1976[Adams, J. M. & Morsi, S. E. (1976). Acta Cryst. B32, 1345-1347.]);

[Scheme 1]

Experimental

Crystal data
  • C16H16O2

  • Mr = 240.29

  • Monoclinic, P 21 /n

  • a = 11.8022 (3) Å

  • b = 7.4959 (2) Å

  • c = 15.6288 (4) Å

  • β = 107.760 (3)°

  • V = 1316.75 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.52 × 0.38 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur2 diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.96, Tmax = 0.991

  • 15897 measured reflections

  • 2497 independent reflections

  • 1917 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.126

  • S = 1.09

  • 2497 reflections

  • 167 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of studying the substituent effects on the crystal structures of aryl benzoates (Gowda, Foro et al., 2007; 2008; Gowda, Tokarčík et al., 2008; 2009), the structure of 2,4-dimethylphenyl 4-methylbenzoate (I) has been determined. The structure of (I) (Fig. 1) is similar to those of phenyl benzoate (II)(Adams & Morsi, 1976), phenyl 4-methylbenzoate (III) (Gowda, Tokarčík et al., 2009), 2-methylphenyl 4-methylbenzoate (IV) (Gowda, Foro et al., 2008), 4-methylphenyl 4-methylbenzoate (V) (Gowda, Foro et al., 2007) and 2,4-dimethylphenyl benzoate (VI) (Gowda, Tokarčík et al., 2008). The central –O—C=O group makes a dihedral angle of 6.1 (1)° with the benzoyl ring and 54.9 (1)° with the disubstituted phenyl ring. The two benzene rings make the dihedral angle of 49.1 (1)°, compared to the values of 55.7° for (II), 76.0 (1)° (III), 73.04 (8)° (IV), 63.57 (5)° (V) and 80.25 (5)° (VI). There are no classical hydrogen bonds in the crystal structure. The packing of molecules as viewed along the b axis is shown in Fig.2. The long axes of the molecules are directed along the c axis.

Related literature top

For the preparation of the compound, see: Nayak & Gowda (2009). For background to our study of the effect of substituents on the crystal structures of aryl benzoates and for related structures, see: Gowda, Foro et al. (2007, 2008); Gowda, Tokarčík et al. (2008, 2009). For phenyl benzoate, see: Adams & Morsi (1976);

Experimental top

The title compound was prepared according to the literature method (Nayak & Gowda, 2009). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2009). Colorless Single crystals of the title compound were obtained by slow evaporation of its ethanol solution. The X-ray diffraction studies were made at room temperature.

Refinement top

H atoms were placed in calculated positions and subsequently constrained to ride on their parent atoms, with C–H distances of 0.93 Å (C-aromatic) and 0.96 Å (C-methyl). The Uiso(H) values were set at 1.2 Ueq(C aromatic) and 1.5 Ueq(C methyl). The C15 methyl group exhibits orientational disorder of the H atoms, which were treated using the SHELX instruction AFIX 127.

Structure description top

As part of studying the substituent effects on the crystal structures of aryl benzoates (Gowda, Foro et al., 2007; 2008; Gowda, Tokarčík et al., 2008; 2009), the structure of 2,4-dimethylphenyl 4-methylbenzoate (I) has been determined. The structure of (I) (Fig. 1) is similar to those of phenyl benzoate (II)(Adams & Morsi, 1976), phenyl 4-methylbenzoate (III) (Gowda, Tokarčík et al., 2009), 2-methylphenyl 4-methylbenzoate (IV) (Gowda, Foro et al., 2008), 4-methylphenyl 4-methylbenzoate (V) (Gowda, Foro et al., 2007) and 2,4-dimethylphenyl benzoate (VI) (Gowda, Tokarčík et al., 2008). The central –O—C=O group makes a dihedral angle of 6.1 (1)° with the benzoyl ring and 54.9 (1)° with the disubstituted phenyl ring. The two benzene rings make the dihedral angle of 49.1 (1)°, compared to the values of 55.7° for (II), 76.0 (1)° (III), 73.04 (8)° (IV), 63.57 (5)° (V) and 80.25 (5)° (VI). There are no classical hydrogen bonds in the crystal structure. The packing of molecules as viewed along the b axis is shown in Fig.2. The long axes of the molecules are directed along the c axis.

For the preparation of the compound, see: Nayak & Gowda (2009). For background to our study of the effect of substituents on the crystal structures of aryl benzoates and for related structures, see: Gowda, Foro et al. (2007, 2008); Gowda, Tokarčík et al. (2008, 2009). For phenyl benzoate, see: Adams & Morsi (1976);

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction , 2009); data reduction: CrysAlis RED (Oxford Diffraction , 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound as viewed along the b-axis.
2,4-Dimethylphenyl 4-methylbenzoate top
Crystal data top
C16H16O2F(000) = 512
Mr = 240.29Dx = 1.212 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8238 reflections
a = 11.8022 (3) Åθ = 2.6–29.1°
b = 7.4959 (2) ŵ = 0.08 mm1
c = 15.6288 (4) ÅT = 295 K
β = 107.760 (3)°Block, colourless
V = 1316.75 (6) Å30.52 × 0.38 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur2
diffractometer with a Sapphire CCD detector
2497 independent reflections
Graphite monochromator1917 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.018
ω scansθmax = 25.7°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1414
Tmin = 0.96, Tmax = 0.991k = 99
15897 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0673P)2 + 0.1263P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2497 reflectionsΔρmax = 0.15 e Å3
167 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (2)
Crystal data top
C16H16O2V = 1316.75 (6) Å3
Mr = 240.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.8022 (3) ŵ = 0.08 mm1
b = 7.4959 (2) ÅT = 295 K
c = 15.6288 (4) Å0.52 × 0.38 × 0.12 mm
β = 107.760 (3)°
Data collection top
Oxford Diffraction Xcalibur2
diffractometer with a Sapphire CCD detector
2497 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1917 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 0.991Rint = 0.018
15897 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.09Δρmax = 0.15 e Å3
2497 reflectionsΔρmin = 0.14 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.40414 (14)0.71817 (19)0.01638 (9)0.0553 (4)
C20.51327 (13)0.76241 (18)0.02574 (9)0.0527 (4)
C30.51869 (13)0.7825 (2)0.11255 (9)0.0579 (4)
H30.59130.81180.12070.069*
C40.42059 (14)0.7608 (2)0.18776 (9)0.0604 (4)
C50.31413 (15)0.7133 (2)0.17447 (10)0.0701 (5)
H50.24730.69580.2240.084*
C60.30490 (14)0.6913 (2)0.08916 (10)0.0670 (4)
H60.23280.65890.0810.08*
C70.33024 (12)0.79735 (19)0.10460 (10)0.0550 (4)
C80.36066 (12)0.78320 (18)0.20315 (9)0.0515 (4)
C90.45901 (12)0.6895 (2)0.25536 (9)0.0563 (4)
H90.50790.62990.22810.068*
C100.48429 (13)0.6843 (2)0.34706 (9)0.0602 (4)
H100.55040.62080.3810.072*
C110.41410 (14)0.77096 (19)0.39020 (10)0.0593 (4)
C120.31643 (14)0.8645 (2)0.33777 (11)0.0669 (4)
H120.26770.92380.36530.08*
C130.28975 (13)0.8717 (2)0.24585 (10)0.0632 (4)
H130.22390.93610.21210.076*
C140.62123 (14)0.7885 (2)0.05441 (10)0.0680 (4)
H14A0.60630.88210.09150.102*
H14B0.68790.82030.03460.102*
H14C0.63840.67980.08840.102*
C150.43107 (18)0.7894 (3)0.28053 (10)0.0820 (5)
H15A0.51340.80250.27670.123*0.5
H15B0.38840.89530.30620.123*0.5
H15C0.39810.68860.31770.123*0.5
H15D0.35320.78840.32370.123*0.5
H15E0.47820.69570.29420.123*0.5
H15F0.46850.90230.28270.123*0.5
C160.44110 (17)0.7610 (2)0.49069 (11)0.0781 (5)
H16A0.40140.65960.50590.117*
H16B0.41380.86790.5120.117*
H16C0.52540.74920.51830.117*
O10.40148 (9)0.69351 (15)0.07226 (6)0.0647 (3)
O20.25305 (10)0.88935 (17)0.05767 (7)0.0784 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0661 (9)0.0529 (8)0.0450 (8)0.0106 (7)0.0143 (6)0.0031 (6)
C20.0564 (8)0.0514 (8)0.0461 (8)0.0135 (6)0.0092 (6)0.0001 (6)
C30.0614 (9)0.0608 (9)0.0507 (8)0.0127 (7)0.0157 (7)0.0010 (6)
C40.0715 (10)0.0599 (9)0.0454 (8)0.0123 (7)0.0111 (7)0.0027 (6)
C50.0696 (10)0.0784 (11)0.0503 (9)0.0004 (8)0.0004 (7)0.0058 (7)
C60.0607 (9)0.0752 (11)0.0612 (10)0.0030 (7)0.0125 (7)0.0009 (8)
C70.0523 (8)0.0551 (9)0.0580 (8)0.0018 (6)0.0176 (6)0.0054 (6)
C80.0521 (7)0.0507 (8)0.0537 (8)0.0020 (6)0.0191 (6)0.0046 (6)
C90.0560 (8)0.0596 (9)0.0561 (8)0.0043 (6)0.0215 (6)0.0064 (7)
C100.0592 (8)0.0648 (9)0.0568 (9)0.0011 (7)0.0179 (7)0.0098 (7)
C110.0710 (9)0.0559 (9)0.0548 (8)0.0110 (7)0.0247 (7)0.0020 (7)
C120.0757 (10)0.0668 (10)0.0682 (10)0.0058 (8)0.0367 (8)0.0008 (8)
C130.0616 (8)0.0649 (10)0.0663 (9)0.0112 (7)0.0245 (7)0.0082 (7)
C140.0628 (9)0.0794 (11)0.0526 (9)0.0122 (8)0.0041 (7)0.0054 (7)
C150.0993 (13)0.0965 (14)0.0477 (9)0.0158 (10)0.0185 (9)0.0004 (8)
C160.1006 (13)0.0819 (12)0.0553 (9)0.0093 (10)0.0287 (9)0.0016 (8)
O10.0757 (7)0.0698 (7)0.0500 (6)0.0191 (5)0.0213 (5)0.0094 (5)
O20.0729 (7)0.0965 (9)0.0624 (7)0.0288 (6)0.0154 (5)0.0131 (6)
Geometric parameters (Å, º) top
C1—C61.376 (2)C10—C111.380 (2)
C1—C21.380 (2)C10—H100.93
C1—O11.4075 (16)C11—C121.384 (2)
C2—C31.3858 (19)C11—C161.506 (2)
C2—C141.5023 (19)C12—C131.375 (2)
C3—C41.385 (2)C12—H120.93
C3—H30.93C13—H130.93
C4—C51.381 (2)C14—H14A0.96
C4—C151.508 (2)C14—H14B0.96
C5—C61.380 (2)C14—H14C0.96
C5—H50.93C15—H15A0.96
C6—H60.93C15—H15B0.96
C7—O21.1982 (16)C15—H15C0.96
C7—O11.3519 (17)C15—H15D0.96
C7—C81.475 (2)C15—H15E0.96
C8—C131.388 (2)C15—H15F0.96
C8—C91.3889 (19)C16—H16A0.96
C9—C101.373 (2)C16—H16B0.96
C9—H90.93C16—H16C0.96
C6—C1—C2122.28 (14)C12—C13—H13119.9
C6—C1—O1121.70 (14)C8—C13—H13119.9
C2—C1—O1115.94 (13)C2—C14—H14A109.5
C1—C2—C3116.94 (13)C2—C14—H14B109.5
C1—C2—C14121.63 (13)H14A—C14—H14B109.5
C3—C2—C14121.43 (14)C2—C14—H14C109.5
C4—C3—C2122.82 (15)H14A—C14—H14C109.5
C4—C3—H3118.6H14B—C14—H14C109.5
C2—C3—H3118.6C4—C15—H15A109.5
C5—C4—C3117.76 (14)C4—C15—H15B109.5
C5—C4—C15121.77 (14)H15A—C15—H15B109.5
C3—C4—C15120.46 (15)C4—C15—H15C109.5
C6—C5—C4121.29 (14)H15A—C15—H15C109.5
C6—C5—H5119.4H15B—C15—H15C109.5
C4—C5—H5119.4C4—C15—H15D109.5
C1—C6—C5118.88 (15)H15A—C15—H15D141.1
C1—C6—H6120.6H15B—C15—H15D56.3
C5—C6—H6120.6H15C—C15—H15D56.3
O2—C7—O1123.10 (13)C4—C15—H15E109.5
O2—C7—C8125.31 (13)H15A—C15—H15E56.3
O1—C7—C8111.59 (12)H15B—C15—H15E141.1
C13—C8—C9118.54 (13)H15C—C15—H15E56.3
C13—C8—C7118.51 (13)H15D—C15—H15E109.5
C9—C8—C7122.93 (13)C4—C15—H15F109.5
C10—C9—C8120.28 (14)H15A—C15—H15F56.3
C10—C9—H9119.9H15B—C15—H15F56.3
C8—C9—H9119.9H15C—C15—H15F141.1
C9—C10—C11121.70 (14)H15D—C15—H15F109.5
C9—C10—H10119.1H15E—C15—H15F109.5
C11—C10—H10119.1C11—C16—H16A109.5
C10—C11—C12117.70 (14)C11—C16—H16B109.5
C10—C11—C16121.25 (15)H16A—C16—H16B109.5
C12—C11—C16121.04 (14)C11—C16—H16C109.5
C13—C12—C11121.51 (14)H16A—C16—H16C109.5
C13—C12—H12119.2H16B—C16—H16C109.5
C11—C12—H12119.2C7—O1—C1119.70 (11)
C12—C13—C8120.27 (14)
C6—C1—C2—C31.2 (2)O1—C7—C8—C96.60 (19)
O1—C1—C2—C3178.26 (12)C13—C8—C9—C100.4 (2)
C6—C1—C2—C14179.04 (14)C7—C8—C9—C10178.54 (13)
O1—C1—C2—C142.0 (2)C8—C9—C10—C110.1 (2)
C1—C2—C3—C40.3 (2)C9—C10—C11—C120.1 (2)
C14—C2—C3—C4179.44 (14)C9—C10—C11—C16178.61 (14)
C2—C3—C4—C51.5 (2)C10—C11—C12—C130.1 (2)
C2—C3—C4—C15178.28 (14)C16—C11—C12—C13178.80 (15)
C3—C4—C5—C61.2 (2)C11—C12—C13—C80.4 (2)
C15—C4—C5—C6178.55 (15)C9—C8—C13—C120.6 (2)
C2—C1—C6—C51.5 (2)C7—C8—C13—C12178.81 (14)
O1—C1—C6—C5178.35 (14)O2—C7—O1—C113.5 (2)
C4—C5—C6—C10.2 (3)C8—C7—O1—C1166.00 (12)
O2—C7—C8—C135.2 (2)C6—C1—O1—C762.88 (19)
O1—C7—C8—C13175.27 (13)C2—C1—O1—C7120.07 (15)
O2—C7—C8—C9172.89 (15)

Experimental details

Crystal data
Chemical formulaC16H16O2
Mr240.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)11.8022 (3), 7.4959 (2), 15.6288 (4)
β (°) 107.760 (3)
V3)1316.75 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.52 × 0.38 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur2
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.96, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
15897, 2497, 1917
Rint0.018
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.126, 1.09
No. of reflections2497
No. of parameters167
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction , 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

References

First citationAdams, J. M. & Morsi, S. E. (1976). Acta Cryst. B32, 1345–1347.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o3867.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1581.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1280.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNayak, R. & Gowda, B. T. (2009). Z. Naturforsch. Teil A. In preparation.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds