organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[2-(Penta­fluoro­phen­yl)ethen­yl]-8-quinolyl acetate

aDepartment of Chemistry, Huangshan University, Huangshan 245041, People's Republic of China, bFaculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China, and cKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemstry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
*Correspondence e-mail: tigerhuo1974@yahoo.com.cn

(Received 27 September 2009; accepted 23 October 2009; online 28 October 2009)

The title compound, C19H10F5NO2, was synthesized by the 1:1 condensation of 2-methyl-8-hydroxy­quinaldine with penta­fluoro­benzaldehyde. It crystallizes with two almost identical mol­ecules in the asymmetric unit. The penta­fluoro­benzene ring is essentially coplanar with the quinoline ring, forming dihedral angles of 2.49 (17) and 8.72 (16)° in the two mol­ecules.

Related literature

For a recent review on the synthesis of quinoline derivatives, see: Zeng et al. (2006[Zeng, H., OuYang, X., Wang, T., Yuan, G., Zhang, G. & Zhang, X. (2006). Cryst. Growth Des. 6, 1697-1702.]).

[Scheme 1]

Experimental

Crystal data
  • C19H10F5NO2

  • Mr = 379.28

  • Monoclinic, P 21

  • a = 12.3149 (13) Å

  • b = 8.6730 (9) Å

  • c = 15.0491 (16) Å

  • β = 93.786 (2)°

  • V = 1603.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.40 × 0.37 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.946, Tmax = 0.968

  • 9498 measured reflections

  • 3695 independent reflections

  • 2952 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.108

  • S = 0.98

  • 3695 reflections

  • 490 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Herein, we report the crystal structure of (E)-2-[2-(pentafluorophenyl)ethenyl]-8-acetoxyquinoline, which was prepared via a reaction of 2-methyl-8-hydroxyquinaldine with pentafluorobenzaldehyde according to the procedure reported by Zeng et al. (2006). The title compound crystallizes with two almost identical molecules in asymmetric unit (Fig. 1.). The pentafluorobenzene ring is essentially coplanar with quinoline ring.

Related literature top

For a recent review on the synthesis of quinoline derivatives, see: Zeng et al. (2006).

Experimental top

To a solution of 8-hydroxyquinaldine(1.19 g, 7.5 mmol) in acetic anhydride (5 mL) was added pentafluorobenzaldehyde (1.47 g, 7.5 mmol). The mixture was heated under reflux for 14 h . After cooling down to room temperature, it was subsequently poured into ice water (50 mL) and stirred overnight. The yellow solid obtained was filtered and washed with water. The solid residue was recrystallized from CH2Cl2 to afford the title compound (2.13 g, 75%) mp 129-131 °C, 1H NMR (CDCl3, 300 MHz): 8.18 (d, J=8.7 Hz, 1H), 7.85 (d, J=16.5 Hz, 1H), 7.70 (dd, J=1.6 Hz, J=7.8 Hz 1H), 7.67 (d, J=16.5 Hz, 1H), 7.55 (t, J=8.4 Hz, 1H), 7.53 (d, J=8.1 Hz, 1H), 7.48 (dd, J=1.6 Hz, J=7.6 Hz, 1H), 2.56(s, 3H); 19F NMR (CDCl3, 282 MHz): -141.35 to 141.41(2F, m), -154.35 to 154.50(1F,m), -162.32 to 162.50 (2F, m); IR (KBr, cm-1): 3056, 1717, 1584, 1512, 1423, 1275, 1128, 987, 878, 765, 710; EI-MS m/z:(%) 379.0 [M+,0.86], 338.0 [(M-61)+, 20], 337.0 [(M-62)+, 100]; Elemental analysis: found C: 59.97, H: 2.30, N: 3.50 calculated for C19H10F5NO2: C, 60.17; H, 2.66; N, 3.69 (%)

Refinement top

All H atoms were positioned geometrically and refined using a riding model (including free rotation about the ethanol C-C bond), with C-H = 0.93-0.96 Å and with Uiso(H) = 1.2Ueq(C) or with Uiso(H) = 1.5Ueq(Cmethyl). Due to the absence of anomalous scatterers, the absolute structure could not be determined and was arbitrarily set. Friedel pairs were merged.

Structure description top

Herein, we report the crystal structure of (E)-2-[2-(pentafluorophenyl)ethenyl]-8-acetoxyquinoline, which was prepared via a reaction of 2-methyl-8-hydroxyquinaldine with pentafluorobenzaldehyde according to the procedure reported by Zeng et al. (2006). The title compound crystallizes with two almost identical molecules in asymmetric unit (Fig. 1.). The pentafluorobenzene ring is essentially coplanar with quinoline ring.

For a recent review on the synthesis of quinoline derivatives, see: Zeng et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the two molecules in the asymmetric unit of the title compound.
(E)-2-[2-(Pentafluorophenyl)ethenyl]-8-quinolyl acetate top
Crystal data top
C19H10F5NO2F(000) = 768
Mr = 379.28Dx = 1.571 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 12.3149 (13) ÅCell parameters from 3790 reflections
b = 8.6730 (9) Åθ = 2.1–27.0°
c = 15.0491 (16) ŵ = 0.14 mm1
β = 93.786 (2)°T = 293 K
V = 1603.8 (3) Å3Prismatic, colorless
Z = 40.40 × 0.37 × 0.23 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3695 independent reflections
Radiation source: fine-focus sealed tube2952 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1215
Tmin = 0.946, Tmax = 0.968k = 1011
9498 measured reflectionsl = 1819
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0647P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
3695 reflectionsΔρmax = 0.21 e Å3
490 parametersΔρmin = 0.19 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0061 (13)
Crystal data top
C19H10F5NO2V = 1603.8 (3) Å3
Mr = 379.28Z = 4
Monoclinic, P21Mo Kα radiation
a = 12.3149 (13) ŵ = 0.14 mm1
b = 8.6730 (9) ÅT = 293 K
c = 15.0491 (16) Å0.40 × 0.37 × 0.23 mm
β = 93.786 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3695 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2952 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.968Rint = 0.041
9498 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.108H-atom parameters constrained
S = 0.98Δρmax = 0.21 e Å3
3695 reflectionsΔρmin = 0.19 e Å3
490 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.33611 (15)0.0821 (3)0.65824 (12)0.0664 (6)
F20.49061 (15)0.2657 (3)0.73041 (16)0.0803 (7)
F30.49694 (18)0.3382 (3)0.90485 (18)0.0946 (8)
F40.3463 (2)0.2163 (4)1.00830 (16)0.1119 (10)
F50.19062 (18)0.0336 (3)0.93763 (12)0.0867 (8)
F60.36601 (15)0.4554 (3)0.08205 (11)0.0660 (6)
F70.19161 (18)0.2788 (4)0.07778 (15)0.0931 (8)
F80.06916 (18)0.2615 (4)0.22027 (18)0.1004 (9)
F90.12930 (17)0.4170 (3)0.37066 (14)0.0825 (7)
F100.30608 (16)0.5948 (3)0.37770 (11)0.0660 (6)
O10.16350 (15)0.2719 (3)0.84497 (13)0.0506 (5)
O20.02488 (19)0.4204 (3)0.89609 (14)0.0641 (6)
O30.61824 (15)1.0012 (3)0.43067 (12)0.0470 (5)
O40.67283 (19)0.7628 (3)0.46897 (16)0.0686 (7)
N10.01615 (17)0.2314 (3)0.71999 (14)0.0423 (5)
N20.60340 (17)0.8523 (3)0.27113 (14)0.0394 (5)
C10.1009 (2)0.3273 (4)0.70004 (18)0.0412 (6)
C20.1761 (2)0.3553 (4)0.76599 (19)0.0458 (7)
C30.2632 (2)0.4477 (5)0.7503 (2)0.0578 (8)
H30.31160.46350.79440.069*
C40.2803 (3)0.5196 (5)0.6673 (3)0.0663 (10)
H40.34060.58310.65670.080*
C50.2108 (3)0.4990 (4)0.6018 (2)0.0600 (9)
H50.22340.54830.54720.072*
C60.1195 (2)0.4022 (4)0.61722 (19)0.0487 (7)
C70.0439 (3)0.3736 (4)0.55332 (19)0.0532 (8)
H70.05290.41850.49720.064*
C80.0428 (3)0.2798 (4)0.57407 (18)0.0514 (7)
H80.09430.26210.53270.062*
C90.0542 (2)0.2100 (4)0.65838 (17)0.0418 (6)
C100.1487 (2)0.1104 (4)0.68194 (19)0.0460 (7)
H100.19910.09410.63960.055*
C110.1649 (2)0.0435 (4)0.76047 (19)0.0460 (7)
H110.11120.06110.79990.055*
C120.2539 (2)0.0531 (4)0.79412 (19)0.0454 (7)
C130.3347 (2)0.1141 (4)0.7447 (2)0.0493 (7)
C140.4153 (2)0.2109 (4)0.7816 (2)0.0560 (8)
C150.4186 (3)0.2449 (5)0.8695 (3)0.0647 (9)
C160.3431 (3)0.1861 (6)0.9211 (2)0.0691 (10)
C170.2627 (3)0.0916 (5)0.8837 (2)0.0592 (9)
C180.0773 (2)0.3068 (4)0.90196 (19)0.0505 (7)
C190.0608 (3)0.1843 (6)0.9706 (3)0.0765 (11)
H19A0.02310.22671.02290.115*
H19B0.01850.10220.94770.115*
H19C0.13020.14510.98560.115*
C200.6904 (2)0.9448 (3)0.28986 (17)0.0372 (6)
C210.7023 (2)1.0169 (4)0.37360 (17)0.0419 (6)
C220.7883 (2)1.1090 (4)0.3970 (2)0.0492 (7)
H220.79451.15490.45290.059*
C230.8684 (2)1.1348 (4)0.3357 (2)0.0542 (8)
H230.92751.19790.35170.065*
C240.8601 (2)1.0690 (4)0.2543 (2)0.0486 (7)
H240.91381.08680.21490.058*
C250.7707 (2)0.9734 (4)0.22833 (18)0.0415 (7)
C260.7552 (2)0.9032 (4)0.14474 (18)0.0468 (7)
H260.80520.91890.10200.056*
C270.6678 (2)0.8130 (4)0.12635 (18)0.0477 (7)
H270.65630.76830.07040.057*
C280.5935 (2)0.7863 (4)0.19247 (17)0.0398 (6)
C290.5021 (2)0.6793 (4)0.17519 (18)0.0446 (7)
H290.48940.63910.11820.053*
C300.4372 (2)0.6379 (4)0.23760 (18)0.0433 (6)
H300.45310.68080.29360.052*
C310.3443 (2)0.5342 (4)0.23035 (18)0.0414 (6)
C320.3102 (2)0.4496 (4)0.15604 (19)0.0483 (7)
C330.2199 (3)0.3571 (5)0.1518 (2)0.0618 (9)
C340.1585 (3)0.3476 (5)0.2244 (3)0.0637 (9)
C350.1887 (2)0.4275 (5)0.2996 (2)0.0576 (8)
C360.2797 (2)0.5173 (4)0.30251 (19)0.0479 (7)
C370.6063 (2)0.8611 (4)0.46929 (18)0.0503 (7)
C380.5006 (3)0.8545 (5)0.5107 (3)0.0732 (11)
H38A0.44260.84870.46500.110*
H38B0.49190.94550.54590.110*
H38C0.49880.76500.54820.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0666 (11)0.0732 (15)0.0619 (11)0.0130 (11)0.0232 (9)0.0028 (11)
F20.0549 (11)0.0711 (15)0.1170 (17)0.0146 (11)0.0214 (11)0.0119 (13)
F30.0722 (13)0.0779 (17)0.130 (2)0.0198 (13)0.0197 (13)0.0159 (16)
F40.1202 (19)0.142 (3)0.0729 (14)0.035 (2)0.0018 (13)0.0403 (17)
F50.0912 (14)0.114 (2)0.0575 (11)0.0362 (15)0.0268 (10)0.0183 (13)
F60.0671 (11)0.0779 (16)0.0541 (10)0.0180 (10)0.0122 (8)0.0129 (10)
F70.0866 (15)0.103 (2)0.0887 (15)0.0428 (15)0.0011 (12)0.0268 (16)
F80.0693 (13)0.107 (2)0.1263 (19)0.0491 (15)0.0166 (13)0.0048 (18)
F90.0727 (13)0.0947 (19)0.0836 (14)0.0132 (13)0.0324 (11)0.0185 (14)
F100.0714 (12)0.0817 (16)0.0459 (9)0.0095 (11)0.0111 (8)0.0016 (10)
O10.0426 (10)0.0584 (14)0.0512 (11)0.0076 (10)0.0065 (9)0.0020 (11)
O20.0658 (13)0.0701 (17)0.0568 (13)0.0208 (13)0.0067 (10)0.0049 (13)
O30.0470 (10)0.0479 (13)0.0477 (11)0.0005 (10)0.0149 (8)0.0014 (10)
O40.0649 (13)0.0676 (17)0.0754 (15)0.0162 (14)0.0199 (11)0.0228 (14)
N10.0400 (11)0.0435 (14)0.0433 (12)0.0035 (11)0.0014 (9)0.0011 (11)
N20.0336 (11)0.0426 (14)0.0427 (12)0.0016 (10)0.0073 (9)0.0035 (10)
C10.0348 (13)0.0412 (16)0.0473 (14)0.0060 (12)0.0003 (11)0.0007 (13)
C20.0399 (14)0.0467 (18)0.0509 (16)0.0044 (13)0.0025 (12)0.0012 (14)
C30.0445 (16)0.062 (2)0.0677 (19)0.0028 (16)0.0081 (14)0.0006 (19)
C40.0514 (18)0.062 (2)0.084 (2)0.0147 (18)0.0045 (16)0.006 (2)
C50.0581 (18)0.054 (2)0.0669 (19)0.0023 (17)0.0064 (16)0.0072 (18)
C60.0465 (16)0.0482 (19)0.0506 (15)0.0069 (14)0.0030 (12)0.0034 (14)
C70.0615 (18)0.056 (2)0.0423 (14)0.0057 (16)0.0010 (13)0.0055 (14)
C80.0571 (16)0.057 (2)0.0411 (14)0.0033 (16)0.0089 (12)0.0011 (15)
C90.0426 (14)0.0424 (17)0.0407 (13)0.0046 (12)0.0043 (11)0.0037 (13)
C100.0433 (15)0.0485 (19)0.0472 (15)0.0000 (13)0.0103 (12)0.0032 (13)
C110.0420 (14)0.0492 (18)0.0480 (15)0.0015 (13)0.0112 (11)0.0010 (14)
C120.0407 (14)0.0419 (17)0.0542 (16)0.0041 (13)0.0080 (12)0.0003 (14)
C130.0440 (15)0.0469 (19)0.0577 (17)0.0060 (14)0.0080 (13)0.0028 (15)
C140.0415 (16)0.0430 (19)0.084 (2)0.0001 (14)0.0062 (15)0.0094 (17)
C150.0505 (17)0.050 (2)0.092 (3)0.0023 (16)0.0093 (17)0.0047 (19)
C160.070 (2)0.073 (3)0.063 (2)0.006 (2)0.0021 (17)0.015 (2)
C170.0595 (18)0.063 (2)0.0555 (17)0.0064 (17)0.0108 (14)0.0055 (17)
C180.0454 (15)0.060 (2)0.0470 (15)0.0009 (16)0.0123 (12)0.0009 (15)
C190.074 (2)0.085 (3)0.069 (2)0.002 (2)0.0049 (18)0.018 (2)
C200.0337 (12)0.0340 (15)0.0442 (13)0.0044 (11)0.0042 (10)0.0066 (12)
C210.0396 (13)0.0425 (17)0.0446 (14)0.0012 (13)0.0100 (11)0.0041 (13)
C220.0486 (16)0.0466 (18)0.0525 (16)0.0019 (14)0.0035 (13)0.0012 (14)
C230.0429 (15)0.051 (2)0.069 (2)0.0127 (14)0.0024 (14)0.0026 (17)
C240.0390 (15)0.0490 (19)0.0588 (17)0.0066 (14)0.0099 (12)0.0107 (15)
C250.0372 (13)0.0403 (17)0.0479 (15)0.0009 (12)0.0098 (11)0.0090 (13)
C260.0461 (15)0.0518 (19)0.0442 (14)0.0007 (14)0.0164 (12)0.0086 (14)
C270.0511 (16)0.054 (2)0.0384 (14)0.0018 (15)0.0076 (12)0.0011 (14)
C280.0358 (13)0.0426 (16)0.0408 (13)0.0018 (12)0.0025 (10)0.0051 (13)
C290.0404 (14)0.0520 (19)0.0409 (14)0.0007 (13)0.0005 (11)0.0027 (13)
C300.0374 (13)0.0462 (17)0.0458 (14)0.0020 (12)0.0013 (11)0.0013 (13)
C310.0363 (12)0.0411 (17)0.0466 (14)0.0019 (12)0.0015 (11)0.0088 (13)
C320.0415 (14)0.053 (2)0.0508 (15)0.0039 (14)0.0026 (12)0.0020 (15)
C330.0545 (18)0.065 (2)0.0650 (19)0.0119 (17)0.0017 (15)0.0051 (18)
C340.0471 (17)0.060 (2)0.084 (2)0.0156 (17)0.0017 (16)0.0071 (19)
C350.0471 (16)0.062 (2)0.0647 (19)0.0013 (17)0.0139 (14)0.0155 (18)
C360.0452 (15)0.053 (2)0.0455 (15)0.0037 (14)0.0013 (12)0.0069 (14)
C370.0486 (16)0.060 (2)0.0432 (15)0.0032 (16)0.0080 (12)0.0048 (14)
C380.066 (2)0.079 (3)0.079 (2)0.008 (2)0.0320 (17)0.010 (2)
Geometric parameters (Å, º) top
F1—C131.332 (4)C12—C171.386 (4)
F2—C141.332 (4)C12—C131.387 (4)
F3—C151.341 (4)C13—C141.387 (5)
F4—C161.336 (4)C14—C151.354 (5)
F5—C171.339 (4)C15—C161.350 (5)
F6—C321.348 (3)C16—C171.378 (5)
F7—C331.331 (4)C18—C191.486 (5)
F8—C341.328 (4)C19—H19A0.9600
F9—C351.338 (3)C19—H19B0.9600
F10—C361.338 (4)C19—H19C0.9600
O1—C181.354 (3)C20—C211.406 (4)
O1—C21.391 (4)C20—C251.421 (3)
O2—C181.184 (4)C21—C221.354 (4)
O3—C371.359 (4)C22—C231.411 (4)
O3—C211.395 (3)C22—H220.9300
O4—C371.182 (4)C23—C241.349 (5)
N1—C91.323 (3)C23—H230.9300
N1—C11.352 (4)C24—C251.412 (4)
N2—C281.313 (4)C24—H240.9300
N2—C201.354 (3)C25—C261.399 (4)
C1—C61.411 (4)C26—C271.344 (4)
C1—C21.423 (4)C26—H260.9300
C2—C31.347 (4)C27—C281.415 (4)
C3—C41.400 (5)C27—H270.9300
C3—H30.9300C28—C291.469 (4)
C4—C51.359 (5)C29—C301.323 (4)
C4—H40.9300C29—H290.9300
C5—C61.411 (5)C30—C311.454 (4)
C5—H50.9300C30—H300.9300
C6—C71.404 (4)C31—C321.380 (4)
C7—C81.362 (5)C31—C361.395 (4)
C7—H70.9300C32—C331.370 (4)
C8—C91.405 (4)C33—C341.371 (5)
C8—H80.9300C34—C351.357 (5)
C9—C101.473 (4)C35—C361.363 (5)
C10—C111.320 (4)C37—C381.482 (4)
C10—H100.9300C38—H38A0.9600
C11—C121.443 (4)C38—H38B0.9600
C11—H110.9300C38—H38C0.9600
C18—O1—C2117.6 (2)H19A—C19—H19C109.5
C37—O3—C21117.1 (2)H19B—C19—H19C109.5
C9—N1—C1117.5 (2)N2—C20—C21119.0 (2)
C28—N2—C20118.1 (2)N2—C20—C25122.9 (2)
N1—C1—C6123.8 (3)C21—C20—C25118.1 (2)
N1—C1—C2118.6 (2)C22—C21—O3119.8 (2)
C6—C1—C2117.6 (3)C22—C21—C20121.9 (2)
C3—C2—O1120.1 (3)O3—C21—C20118.1 (2)
C3—C2—C1121.8 (3)C21—C22—C23119.5 (3)
O1—C2—C1117.8 (3)C21—C22—H22120.3
C2—C3—C4119.5 (3)C23—C22—H22120.3
C2—C3—H3120.3C24—C23—C22120.8 (3)
C4—C3—H3120.3C24—C23—H23119.6
C5—C4—C3121.6 (3)C22—C23—H23119.6
C5—C4—H4119.2C23—C24—C25120.7 (3)
C3—C4—H4119.2C23—C24—H24119.6
C4—C5—C6119.5 (3)C25—C24—H24119.6
C4—C5—H5120.3C26—C25—C24124.2 (2)
C6—C5—H5120.3C26—C25—C20116.7 (3)
C7—C6—C5123.4 (3)C24—C25—C20119.0 (3)
C7—C6—C1116.6 (3)C27—C26—C25119.9 (2)
C5—C6—C1120.0 (3)C27—C26—H26120.0
C8—C7—C6119.6 (3)C25—C26—H26120.0
C8—C7—H7120.2C26—C27—C28119.8 (3)
C6—C7—H7120.2C26—C27—H27120.1
C7—C8—C9119.6 (3)C28—C27—H27120.1
C7—C8—H8120.2N2—C28—C27122.5 (3)
C9—C8—H8120.2N2—C28—C29117.3 (2)
N1—C9—C8122.8 (3)C27—C28—C29120.2 (3)
N1—C9—C10117.2 (2)C30—C29—C28122.5 (3)
C8—C9—C10120.0 (3)C30—C29—H29118.7
C11—C10—C9122.9 (3)C28—C29—H29118.7
C11—C10—H10118.5C29—C30—C31128.6 (3)
C9—C10—H10118.5C29—C30—H30115.7
C10—C11—C12129.5 (3)C31—C30—H30115.7
C10—C11—H11115.2C32—C31—C36114.6 (3)
C12—C11—H11115.2C32—C31—C30125.8 (2)
C17—C12—C13114.6 (3)C36—C31—C30119.5 (3)
C17—C12—C11119.3 (3)F6—C32—C33116.1 (3)
C13—C12—C11126.1 (3)F6—C32—C31120.4 (3)
F1—C13—C14117.5 (3)C33—C32—C31123.5 (3)
F1—C13—C12120.0 (3)F7—C33—C32120.3 (3)
C14—C13—C12122.5 (3)F7—C33—C34120.6 (3)
F2—C14—C15120.7 (3)C32—C33—C34119.1 (3)
F2—C14—C13119.5 (3)F8—C34—C35120.4 (3)
C15—C14—C13119.8 (3)F8—C34—C33119.6 (3)
F3—C15—C16120.3 (4)C35—C34—C33119.9 (3)
F3—C15—C14119.6 (3)F9—C35—C34119.8 (3)
C16—C15—C14120.2 (3)F9—C35—C36120.3 (3)
F4—C16—C15121.0 (3)C34—C35—C36119.8 (3)
F4—C16—C17119.4 (3)F10—C36—C35117.9 (3)
C15—C16—C17119.6 (3)F10—C36—C31119.1 (3)
F5—C17—C16117.6 (3)C35—C36—C31123.0 (3)
F5—C17—C12119.1 (3)O4—C37—O3123.2 (3)
C16—C17—C12123.3 (3)O4—C37—C38127.0 (3)
O2—C18—O1123.1 (3)O3—C37—C38109.7 (3)
O2—C18—C19126.6 (3)C37—C38—H38A109.5
O1—C18—C19110.3 (3)C37—C38—H38B109.5
C18—C19—H19A109.5H38A—C38—H38B109.5
C18—C19—H19B109.5C37—C38—H38C109.5
H19A—C19—H19B109.5H38A—C38—H38C109.5
C18—C19—H19C109.5H38B—C38—H38C109.5
C9—N1—C1—C61.4 (4)C28—N2—C20—C21179.8 (3)
C9—N1—C1—C2178.4 (3)C28—N2—C20—C250.1 (4)
C18—O1—C2—C3115.3 (3)C37—O3—C21—C22112.4 (3)
C18—O1—C2—C171.0 (4)C37—O3—C21—C2072.5 (3)
N1—C1—C2—C3179.1 (3)N2—C20—C21—C22179.0 (3)
C6—C1—C2—C31.1 (5)C25—C20—C21—C221.2 (4)
N1—C1—C2—O15.4 (4)N2—C20—C21—O36.0 (4)
C6—C1—C2—O1174.7 (3)C25—C20—C21—O3173.8 (2)
O1—C2—C3—C4174.1 (3)O3—C21—C22—C23174.5 (3)
C1—C2—C3—C40.6 (5)C20—C21—C22—C230.4 (5)
C2—C3—C4—C50.2 (6)C21—C22—C23—C240.1 (5)
C3—C4—C5—C60.4 (6)C22—C23—C24—C250.4 (5)
C4—C5—C6—C7179.7 (3)C23—C24—C25—C26178.8 (3)
C4—C5—C6—C10.2 (5)C23—C24—C25—C201.2 (5)
N1—C1—C6—C70.3 (5)N2—C20—C25—C261.3 (4)
C2—C1—C6—C7179.6 (3)C21—C20—C25—C26178.4 (3)
N1—C1—C6—C5179.3 (3)N2—C20—C25—C24178.6 (3)
C2—C1—C6—C50.9 (5)C21—C20—C25—C241.6 (4)
C5—C6—C7—C8179.3 (3)C24—C25—C26—C27179.5 (3)
C1—C6—C7—C81.2 (5)C20—C25—C26—C270.5 (4)
C6—C7—C8—C91.5 (5)C25—C26—C27—C281.6 (5)
C1—N1—C9—C81.2 (4)C20—N2—C28—C272.4 (4)
C1—N1—C9—C10177.6 (3)C20—N2—C28—C29176.5 (2)
C7—C8—C9—N10.3 (5)C26—C27—C28—N23.2 (5)
C7—C8—C9—C10179.0 (3)C26—C27—C28—C29175.7 (3)
N1—C9—C10—C110.1 (5)N2—C28—C29—C306.2 (5)
C8—C9—C10—C11178.9 (3)C27—C28—C29—C30172.7 (3)
C9—C10—C11—C12178.3 (3)C28—C29—C30—C31179.9 (3)
C10—C11—C12—C17170.0 (3)C29—C30—C31—C324.7 (5)
C10—C11—C12—C1310.0 (6)C29—C30—C31—C36173.8 (3)
C17—C12—C13—F1178.5 (3)C36—C31—C32—F6179.7 (3)
C11—C12—C13—F11.5 (5)C30—C31—C32—F61.8 (5)
C17—C12—C13—C142.4 (5)C36—C31—C32—C330.7 (5)
C11—C12—C13—C14177.5 (3)C30—C31—C32—C33177.9 (3)
F1—C13—C14—F20.9 (5)F6—C32—C33—F70.2 (5)
C12—C13—C14—F2180.0 (3)C31—C32—C33—F7179.9 (3)
F1—C13—C14—C15178.9 (3)F6—C32—C33—C34179.1 (3)
C12—C13—C14—C152.0 (5)C31—C32—C33—C340.5 (6)
F2—C14—C15—F31.8 (6)F7—C33—C34—F81.1 (6)
C13—C14—C15—F3179.8 (3)C32—C33—C34—F8178.2 (3)
F2—C14—C15—C16178.6 (4)F7—C33—C34—C35179.7 (4)
C13—C14—C15—C160.6 (6)C32—C33—C34—C351.0 (6)
F3—C15—C16—F41.6 (7)F8—C34—C35—F91.5 (6)
C14—C15—C16—F4178.8 (4)C33—C34—C35—F9179.4 (4)
F3—C15—C16—C17179.5 (4)F8—C34—C35—C36179.0 (3)
C14—C15—C16—C170.1 (7)C33—C34—C35—C360.1 (6)
F4—C16—C17—F50.1 (6)F9—C35—C36—F100.9 (5)
C15—C16—C17—F5178.9 (4)C34—C35—C36—F10179.6 (3)
F4—C16—C17—C12179.4 (4)F9—C35—C36—C31179.3 (3)
C15—C16—C17—C120.5 (7)C34—C35—C36—C311.2 (5)
C13—C12—C17—F5177.6 (3)C32—C31—C36—F10180.0 (3)
C11—C12—C17—F52.4 (5)C30—C31—C36—F101.3 (4)
C13—C12—C17—C161.7 (6)C32—C31—C36—C351.6 (5)
C11—C12—C17—C16178.3 (4)C30—C31—C36—C35177.1 (3)
C2—O1—C18—O214.2 (4)C21—O3—C37—O413.1 (4)
C2—O1—C18—C19166.2 (3)C21—O3—C37—C38167.5 (3)

Experimental details

Crystal data
Chemical formulaC19H10F5NO2
Mr379.28
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)12.3149 (13), 8.6730 (9), 15.0491 (16)
β (°) 93.786 (2)
V3)1603.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.40 × 0.37 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.946, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
9498, 3695, 2952
Rint0.041
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.108, 0.98
No. of reflections3695
No. of parameters490
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (20802010), the Natural Science Foundation of Guangdong Province (No.07300884) and the 211 project of Guangdong University of Technology.

References

First citationBruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, H., OuYang, X., Wang, T., Yuan, G., Zhang, G. & Zhang, X. (2006). Cryst. Growth Des. 6, 1697–1702.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds