metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ2-chlorido-bis­­[chlorido(η6-hexa­methyl­benzene)ruthenium(II)]

aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510, Mexico
*Correspondence e-mail: simonho@unam.mx

(Received 29 September 2009; accepted 8 October 2009; online 17 October 2009)

Dimeric mol­ecules of the title compound, [Ru2Cl4(C12H18)2], are located on a crystallographic centre of inversion with one mol­ecule in the asymmetric unit. The hexa­methyl­benzene rings are in an η6-coordination to the ruthenium centres, which are bridged by two chloride ligands. In addition, the ruthenium centres are bonded to another chloride ligand. The aromatic rings and the Ru2Cl2 four-membered ring enclose a dihedral angle of 55.85 (6)°.

Related literature

For the properties and potential applications of half-sandwich ruthenium (II) complexes, see: Le Bozec et al. (1989[Le Bozec, H., Touchard, D. & Dixneuf, P. H. (1989). Adv. Organomet. Chem. 29, 163-247.]); Leyva et al. (2007[Leyva, L., Sirlin, C., Rubio, L., Franco, C., Le Lagadec, R., Bischoff, P., Gaiddon, C., Loeffler, J.-P. & Pfeffer, M. (2007). Eur. J. Inorg. Chem. pp. 3055-3066.]); Ryabov et al. (2001[Ryabov, A. D., Sukharev, V. S., Alexandrova, L., Le Lagadec, R. & Pfeffer, M. (2001). Inorg. Chem. 40, 6529-6532.]). For our work on the synthesis and catalytic applications of different ruthenium–arene complexes, see: Cerón-Camacho et al. (2006[Cerón-Camacho, R., Gómez-Benítez, V., Le Lagadec, R., Morales-Morales, D. & Toscano, R. A. (2006). J. Mol. Catal. A, 247, 124-129.]). For the synthesis, see: Bennett et al. (1982[Bennett, M. A., Huang, T. N., Matheson, T. W. & Smith, A. K. (1982). Inorg. Synth. 21, 74-78.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru2Cl4(C12H18)2]

  • Mr = 668.47

  • Monoclinic, P 21 /n

  • a = 8.9122 (15) Å

  • b = 8.5192 (15) Å

  • c = 16.642 (3) Å

  • β = 97.084 (3)°

  • V = 1253.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.64 mm−1

  • T = 298 K

  • 0.23 × 0.09 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.780, Tmax = 0.924

  • 10027 measured reflections

  • 2297 independent reflections

  • 1795 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.063

  • S = 0.90

  • 2297 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

For decades, arene ruthenium complexes have played an important role in organometallic chemistry as fundamental precursors for the synthesis of a plethora of species. This is particularly true for the synthesis of half sandwich ruthenium (II) complexes, species that have received considerable attention owing to their potential catalytic properties (Le Bozec et al., 1989), interesting anti-tumor and anti-carcinogenic activity (Leyva et al., 2007) and most recently for their potential applications in chemical and biological sensors (Ryabov, et al., 2001). Thus, given our continuous interest in the synthesis and catalytic applications of different ruthenium arene complexes (Cerón-Camacho et al., 2006) we determined the crystal structure of the title compound.

The asymmetric unit of the title compound consists of a half molecule, which is completed with a symmetry operation of 1 - x, 1 - y, 1 - z. The complex exhibits a typical η6 - arene coordination of the hexamethyl fragment to the ruthenium centres which are bridged by two chloro ligands. The coordination sphere of the Ru centres is completed by another chloro ligand. The aromatic rings and the Ru2Cl2 four-membered ring enclose a dihedral angle of 55.85 (6)°.

Related literature top

For the properties and potential applications of half-sandwich ruthenium (II) complexes, see: Le Bozec et al. (1989); Leyva et al. (2007); Ryabov et al. (2001). For our work on the synthesis and catalytic applications of different ruthenium–arene complexes, see: Cerón-Camacho et al. (2006). For the synthesis, see: Bennett et al. (1982).

Experimental top

The title compound was prepared according to the procedure reported by Bennett et al. (1982). The spectroscopic analysis agreed with that reported in the same reference.

Refinement top

H atoms were placed in geometrically idealized positions with C-H = 0.96 Å and with Uiso(H) = 1.2 Ueq(C) and refined using the riding model. The methyl groups were allowed to rotate but not to tip.

Structure description top

For decades, arene ruthenium complexes have played an important role in organometallic chemistry as fundamental precursors for the synthesis of a plethora of species. This is particularly true for the synthesis of half sandwich ruthenium (II) complexes, species that have received considerable attention owing to their potential catalytic properties (Le Bozec et al., 1989), interesting anti-tumor and anti-carcinogenic activity (Leyva et al., 2007) and most recently for their potential applications in chemical and biological sensors (Ryabov, et al., 2001). Thus, given our continuous interest in the synthesis and catalytic applications of different ruthenium arene complexes (Cerón-Camacho et al., 2006) we determined the crystal structure of the title compound.

The asymmetric unit of the title compound consists of a half molecule, which is completed with a symmetry operation of 1 - x, 1 - y, 1 - z. The complex exhibits a typical η6 - arene coordination of the hexamethyl fragment to the ruthenium centres which are bridged by two chloro ligands. The coordination sphere of the Ru centres is completed by another chloro ligand. The aromatic rings and the Ru2Cl2 four-membered ring enclose a dihedral angle of 55.85 (6)°.

For the properties and potential applications of half-sandwich ruthenium (II) complexes, see: Le Bozec et al. (1989); Leyva et al. (2007); Ryabov et al. (2001). For our work on the synthesis and catalytic applications of different ruthenium–arene complexes, see: Cerón-Camacho et al. (2006). For the synthesis, see: Bennett et al. (1982).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms omitted.
Di-µ2-chlorido-bis[chlorido(η6-hexamethylbenzene)ruthenium(II)] top
Crystal data top
[Ru2Cl4(C12H18)2]F(000) = 672
Mr = 668.47Dx = 1.771 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4016 reflections
a = 8.9122 (15) Åθ = 2.5–25.3°
b = 8.5192 (15) ŵ = 1.64 mm1
c = 16.642 (3) ÅT = 298 K
β = 97.084 (3)°Prism, red
V = 1253.9 (4) Å30.23 × 0.09 × 0.05 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2297 independent reflections
Radiation source: fine-focus sealed tube1795 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 0.83 pixels mm-1θmax = 25.4°, θmin = 2.5°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
k = 1010
Tmin = 0.780, Tmax = 0.924l = 2019
10027 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0193P)2]
where P = (Fo2 + 2Fc2)/3
2297 reflections(Δ/σ)max = 0.001
142 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Ru2Cl4(C12H18)2]V = 1253.9 (4) Å3
Mr = 668.47Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.9122 (15) ŵ = 1.64 mm1
b = 8.5192 (15) ÅT = 298 K
c = 16.642 (3) Å0.23 × 0.09 × 0.05 mm
β = 97.084 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2297 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1795 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.924Rint = 0.065
10027 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 0.90Δρmax = 0.48 e Å3
2297 reflectionsΔρmin = 0.38 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.37378 (4)0.37262 (4)0.55348 (2)0.02300 (11)
Cl10.24729 (13)0.30866 (15)0.42186 (7)0.0382 (3)
Cl20.61218 (11)0.35592 (12)0.49415 (6)0.0297 (3)
C10.4006 (5)0.4464 (5)0.6809 (2)0.0316 (11)
C20.2421 (5)0.4425 (5)0.6495 (2)0.0293 (10)
C30.1792 (5)0.3056 (5)0.6121 (2)0.0281 (10)
C40.2721 (5)0.1702 (5)0.6053 (3)0.0312 (11)
C50.4287 (5)0.1741 (5)0.6343 (3)0.0341 (11)
C60.4913 (5)0.3142 (6)0.6727 (2)0.0325 (11)
C70.4686 (6)0.5943 (6)0.7198 (3)0.0524 (15)
H7A0.38920.66610.72870.063*
H7B0.53350.64200.68490.063*
H7C0.52630.56880.77070.063*
C80.1465 (5)0.5866 (5)0.6552 (3)0.0458 (13)
H8A0.19760.67620.63650.055*
H8B0.12970.60270.71050.055*
H8C0.05120.57290.62220.055*
C90.0143 (5)0.2997 (6)0.5765 (3)0.0451 (13)
H9A0.02930.40250.57840.054*
H9B0.03910.22800.60730.054*
H9C0.00680.26490.52130.054*
C100.2020 (6)0.0244 (5)0.5645 (3)0.0504 (14)
H10A0.27590.05800.56770.060*
H10B0.16800.04700.50870.060*
H10C0.11770.00820.59110.060*
C110.5297 (6)0.0355 (6)0.6247 (3)0.0563 (15)
H11A0.54500.02230.67450.068*
H11B0.62540.07180.61100.068*
H11C0.48320.03130.58230.068*
C120.6585 (5)0.3210 (6)0.7036 (3)0.0537 (15)
H12A0.69840.42120.69050.064*
H12B0.71060.23920.67860.064*
H12C0.67220.30690.76130.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.02306 (18)0.02546 (19)0.02091 (18)0.00141 (17)0.00441 (13)0.00103 (17)
Cl10.0363 (7)0.0503 (8)0.0268 (6)0.0021 (6)0.0011 (5)0.0047 (5)
Cl20.0296 (6)0.0288 (6)0.0324 (6)0.0053 (5)0.0104 (5)0.0030 (5)
C10.036 (3)0.042 (3)0.018 (2)0.008 (2)0.008 (2)0.002 (2)
C20.033 (3)0.035 (3)0.022 (2)0.007 (2)0.012 (2)0.004 (2)
C30.027 (2)0.036 (3)0.023 (2)0.000 (2)0.0078 (19)0.007 (2)
C40.038 (3)0.029 (3)0.028 (2)0.003 (2)0.009 (2)0.006 (2)
C50.040 (3)0.034 (3)0.030 (3)0.004 (2)0.011 (2)0.010 (2)
C60.032 (3)0.048 (3)0.018 (2)0.003 (2)0.005 (2)0.011 (2)
C70.055 (3)0.064 (4)0.040 (3)0.014 (3)0.013 (3)0.017 (3)
C80.055 (3)0.040 (3)0.045 (3)0.015 (3)0.018 (3)0.006 (2)
C90.028 (3)0.061 (3)0.047 (3)0.005 (3)0.004 (2)0.004 (3)
C100.055 (3)0.035 (3)0.062 (4)0.005 (3)0.010 (3)0.003 (3)
C110.061 (4)0.048 (3)0.061 (4)0.018 (3)0.012 (3)0.010 (3)
C120.036 (3)0.081 (4)0.042 (3)0.004 (3)0.003 (2)0.014 (3)
Geometric parameters (Å, º) top
Ru1—C32.168 (4)C5—C111.505 (6)
Ru1—C42.175 (4)C6—C121.516 (6)
Ru1—C52.179 (4)C7—H7A0.9600
Ru1—C22.179 (4)C7—H7B0.9600
Ru1—C62.184 (4)C7—H7C0.9600
Ru1—C12.196 (4)C8—H8A0.9600
Ru1—Cl12.3993 (12)C8—H8B0.9600
Ru1—Cl2i2.4528 (11)C8—H8C0.9600
Ru1—Cl22.4549 (11)C9—H9A0.9600
Cl2—Ru1i2.4528 (11)C9—H9B0.9600
C1—C61.403 (6)C9—H9C0.9600
C1—C21.445 (6)C10—H10A0.9600
C1—C71.509 (6)C10—H10B0.9600
C2—C31.406 (6)C10—H10C0.9600
C2—C81.504 (5)C11—H11A0.9600
C3—C41.432 (6)C11—H11B0.9600
C3—C91.516 (6)C11—H11C0.9600
C4—C51.420 (6)C12—H12A0.9600
C4—C101.513 (6)C12—H12B0.9600
C5—C61.435 (6)C12—H12C0.9600
C3—Ru1—C438.51 (15)C5—C4—C3120.5 (4)
C3—Ru1—C569.46 (16)C5—C4—C10120.4 (4)
C4—Ru1—C538.06 (15)C3—C4—C10119.1 (4)
C3—Ru1—C237.75 (15)C5—C4—Ru171.1 (2)
C4—Ru1—C268.75 (16)C3—C4—Ru170.5 (2)
C5—Ru1—C281.93 (16)C10—C4—Ru1129.9 (3)
C3—Ru1—C681.49 (16)C4—C5—C6118.9 (4)
C4—Ru1—C668.64 (16)C4—C5—C11121.4 (4)
C5—Ru1—C638.39 (16)C6—C5—C11119.7 (4)
C2—Ru1—C668.72 (16)C4—C5—Ru170.8 (2)
C3—Ru1—C168.85 (16)C6—C5—Ru171.0 (2)
C4—Ru1—C181.11 (16)C11—C5—Ru1129.4 (3)
C5—Ru1—C168.71 (17)C1—C6—C5120.9 (4)
C2—Ru1—C138.56 (16)C1—C6—C12119.4 (4)
C6—Ru1—C137.35 (16)C5—C6—C12119.7 (4)
C3—Ru1—Cl192.23 (12)C1—C6—Ru171.8 (2)
C4—Ru1—Cl190.57 (12)C5—C6—Ru170.6 (2)
C5—Ru1—Cl1115.57 (13)C12—C6—Ru1129.8 (3)
C2—Ru1—Cl1119.79 (12)C1—C7—H7A109.5
C6—Ru1—Cl1153.69 (13)C1—C7—H7B109.5
C1—Ru1—Cl1158.35 (12)H7A—C7—H7B109.5
C3—Ru1—Cl2i117.98 (12)C1—C7—H7C109.5
C4—Ru1—Cl2i156.34 (12)H7A—C7—H7C109.5
C5—Ru1—Cl2i156.20 (13)H7B—C7—H7C109.5
C2—Ru1—Cl2i91.89 (12)C2—C8—H8A109.5
C6—Ru1—Cl2i118.07 (13)C2—C8—H8B109.5
C1—Ru1—Cl2i92.19 (12)H8A—C8—H8B109.5
Cl1—Ru1—Cl2i87.48 (4)C2—C8—H8C109.5
C3—Ru1—Cl2160.99 (12)H8A—C8—H8C109.5
C4—Ru1—Cl2122.48 (12)H8B—C8—H8C109.5
C5—Ru1—Cl293.65 (12)C3—C9—H9A109.5
C2—Ru1—Cl2151.86 (12)C3—C9—H9B109.5
C6—Ru1—Cl290.59 (12)H9A—C9—H9B109.5
C1—Ru1—Cl2114.09 (12)C3—C9—H9C109.5
Cl1—Ru1—Cl287.26 (4)H9A—C9—H9C109.5
Cl2i—Ru1—Cl281.00 (4)H9B—C9—H9C109.5
Ru1i—Cl2—Ru199.00 (4)C4—C10—H10A109.5
C6—C1—C2119.7 (4)C4—C10—H10B109.5
C6—C1—C7120.4 (4)H10A—C10—H10B109.5
C2—C1—C7119.8 (4)C4—C10—H10C109.5
C6—C1—Ru170.9 (2)H10A—C10—H10C109.5
C2—C1—Ru170.1 (2)H10B—C10—H10C109.5
C7—C1—Ru1130.1 (3)C5—C11—H11A109.5
C3—C2—C1119.8 (4)C5—C11—H11B109.5
C3—C2—C8120.5 (4)H11A—C11—H11B109.5
C1—C2—C8119.7 (4)C5—C11—H11C109.5
C3—C2—Ru170.7 (2)H11A—C11—H11C109.5
C1—C2—Ru171.3 (2)H11B—C11—H11C109.5
C8—C2—Ru1129.0 (3)C6—C12—H12A109.5
C2—C3—C4120.0 (4)C6—C12—H12B109.5
C2—C3—C9121.0 (4)H12A—C12—H12B109.5
C4—C3—C9119.0 (4)C6—C12—H12C109.5
C2—C3—Ru171.6 (2)H12A—C12—H12C109.5
C4—C3—Ru171.0 (2)H12B—C12—H12C109.5
C9—C3—Ru1128.6 (3)
C3—Ru1—Cl2—Ru1i176.8 (4)C9—C3—C4—C101.3 (6)
C4—Ru1—Cl2—Ru1i176.81 (14)Ru1—C3—C4—C10125.6 (4)
C5—Ru1—Cl2—Ru1i156.66 (13)C2—C3—C4—Ru154.2 (3)
C2—Ru1—Cl2—Ru1i77.0 (2)C9—C3—C4—Ru1124.3 (4)
C6—Ru1—Cl2—Ru1i118.35 (13)C3—Ru1—C4—C5133.7 (4)
C1—Ru1—Cl2—Ru1i88.37 (14)C2—Ru1—C4—C5104.6 (3)
Cl1—Ru1—Cl2—Ru1i87.88 (4)C6—Ru1—C4—C530.0 (3)
Cl2i—Ru1—Cl2—Ru1i0.0C1—Ru1—C4—C566.6 (3)
C3—Ru1—C1—C6104.2 (3)Cl1—Ru1—C4—C5133.4 (2)
C4—Ru1—C1—C666.3 (3)Cl2i—Ru1—C4—C5141.6 (3)
C5—Ru1—C1—C628.9 (3)Cl2—Ru1—C4—C546.3 (3)
C2—Ru1—C1—C6133.2 (4)C5—Ru1—C4—C3133.7 (4)
Cl1—Ru1—C1—C6134.7 (3)C2—Ru1—C4—C329.1 (2)
Cl2i—Ru1—C1—C6136.6 (2)C6—Ru1—C4—C3103.7 (3)
Cl2—Ru1—C1—C655.4 (3)C1—Ru1—C4—C367.1 (3)
C3—Ru1—C1—C229.0 (2)Cl1—Ru1—C4—C392.9 (2)
C4—Ru1—C1—C266.9 (3)Cl2i—Ru1—C4—C37.8 (5)
C5—Ru1—C1—C2104.3 (3)Cl2—Ru1—C4—C3180.0 (2)
C6—Ru1—C1—C2133.2 (4)C3—Ru1—C4—C10112.1 (5)
Cl1—Ru1—C1—C21.6 (5)C5—Ru1—C4—C10114.2 (5)
Cl2i—Ru1—C1—C290.3 (2)C2—Ru1—C4—C10141.1 (5)
Cl2—Ru1—C1—C2171.4 (2)C6—Ru1—C4—C10144.3 (5)
C3—Ru1—C1—C7141.7 (5)C1—Ru1—C4—C10179.1 (4)
C4—Ru1—C1—C7179.6 (5)Cl1—Ru1—C4—C1019.2 (4)
C5—Ru1—C1—C7143.0 (5)Cl2i—Ru1—C4—C10104.2 (4)
C2—Ru1—C1—C7112.7 (5)Cl2—Ru1—C4—C1067.9 (4)
C6—Ru1—C1—C7114.1 (5)C3—C4—C5—C61.9 (6)
Cl1—Ru1—C1—C7111.1 (4)C10—C4—C5—C6180.0 (4)
Cl2i—Ru1—C1—C722.4 (4)Ru1—C4—C5—C654.2 (4)
Cl2—Ru1—C1—C758.7 (5)C3—C4—C5—C11177.4 (4)
C6—C1—C2—C30.9 (6)C10—C4—C5—C110.7 (6)
C7—C1—C2—C3179.0 (4)Ru1—C4—C5—C11125.1 (4)
Ru1—C1—C2—C353.4 (3)C3—C4—C5—Ru152.3 (3)
C6—C1—C2—C8177.4 (4)C10—C4—C5—Ru1125.9 (4)
C7—C1—C2—C80.7 (6)C3—Ru1—C5—C428.7 (3)
Ru1—C1—C2—C8124.9 (4)C2—Ru1—C5—C465.6 (3)
C6—C1—C2—Ru152.5 (3)C6—Ru1—C5—C4131.3 (4)
C7—C1—C2—Ru1125.6 (4)C1—Ru1—C5—C4103.2 (3)
C4—Ru1—C2—C329.6 (2)Cl1—Ru1—C5—C453.6 (3)
C5—Ru1—C2—C366.7 (3)Cl2i—Ru1—C5—C4141.8 (3)
C6—Ru1—C2—C3104.1 (3)Cl2—Ru1—C5—C4142.3 (2)
C1—Ru1—C2—C3132.4 (4)C3—Ru1—C5—C6102.6 (3)
Cl1—Ru1—C2—C348.2 (3)C4—Ru1—C5—C6131.3 (4)
Cl2i—Ru1—C2—C3136.4 (2)C2—Ru1—C5—C665.7 (3)
Cl2—Ru1—C2—C3149.3 (2)C1—Ru1—C5—C628.1 (2)
C3—Ru1—C2—C1132.4 (4)Cl1—Ru1—C5—C6175.0 (2)
C4—Ru1—C2—C1102.8 (3)Cl2i—Ru1—C5—C610.5 (5)
C5—Ru1—C2—C165.8 (3)Cl2—Ru1—C5—C686.3 (2)
C6—Ru1—C2—C128.4 (3)C3—Ru1—C5—C11144.1 (5)
Cl1—Ru1—C2—C1179.3 (2)C4—Ru1—C5—C11115.4 (5)
Cl2i—Ru1—C2—C191.2 (2)C2—Ru1—C5—C11179.0 (5)
Cl2—Ru1—C2—C116.8 (4)C6—Ru1—C5—C11113.2 (5)
C3—Ru1—C2—C8114.0 (5)C1—Ru1—C5—C11141.4 (5)
C4—Ru1—C2—C8143.7 (5)Cl1—Ru1—C5—C1161.8 (5)
C5—Ru1—C2—C8179.3 (4)Cl2i—Ru1—C5—C11102.8 (5)
C6—Ru1—C2—C8141.9 (5)Cl2—Ru1—C5—C1126.9 (4)
C1—Ru1—C2—C8113.5 (5)C2—C1—C6—C50.6 (6)
Cl1—Ru1—C2—C865.8 (4)C7—C1—C6—C5178.7 (4)
Cl2i—Ru1—C2—C822.4 (4)Ru1—C1—C6—C552.8 (4)
Cl2—Ru1—C2—C896.7 (4)C2—C1—C6—C12178.2 (4)
C1—C2—C3—C40.2 (6)C7—C1—C6—C120.1 (6)
C8—C2—C3—C4178.5 (4)Ru1—C1—C6—C12126.1 (4)
Ru1—C2—C3—C453.9 (3)C2—C1—C6—Ru152.2 (3)
C1—C2—C3—C9178.3 (4)C7—C1—C6—Ru1125.9 (4)
C8—C2—C3—C90.0 (6)C4—C5—C6—C10.8 (6)
Ru1—C2—C3—C9124.5 (4)C11—C5—C6—C1178.5 (4)
C1—C2—C3—Ru153.7 (3)Ru1—C5—C6—C153.3 (4)
C8—C2—C3—Ru1124.6 (4)C4—C5—C6—C12179.6 (4)
C4—Ru1—C3—C2132.3 (4)C11—C5—C6—C120.3 (6)
C5—Ru1—C3—C2103.8 (3)Ru1—C5—C6—C12125.5 (4)
C6—Ru1—C3—C266.0 (3)C4—C5—C6—Ru154.1 (4)
C1—Ru1—C3—C229.6 (2)C11—C5—C6—Ru1125.2 (4)
Cl1—Ru1—C3—C2139.6 (2)C3—Ru1—C6—C166.1 (3)
Cl2i—Ru1—C3—C251.3 (3)C4—Ru1—C6—C1103.8 (3)
Cl2—Ru1—C3—C2132.3 (3)C5—Ru1—C6—C1133.6 (4)
C5—Ru1—C3—C428.4 (2)C2—Ru1—C6—C129.2 (2)
C2—Ru1—C3—C4132.3 (4)Cl1—Ru1—C6—C1143.8 (3)
C6—Ru1—C3—C466.2 (3)Cl2i—Ru1—C6—C151.1 (3)
C1—Ru1—C3—C4102.7 (3)Cl2—Ru1—C6—C1131.2 (2)
Cl1—Ru1—C3—C488.1 (2)C3—Ru1—C6—C567.5 (3)
Cl2i—Ru1—C3—C4176.4 (2)C4—Ru1—C6—C529.8 (2)
Cl2—Ru1—C3—C40.0 (5)C2—Ru1—C6—C5104.4 (3)
C4—Ru1—C3—C9112.4 (5)C1—Ru1—C6—C5133.6 (4)
C5—Ru1—C3—C9140.8 (4)Cl1—Ru1—C6—C510.1 (4)
C2—Ru1—C3—C9115.4 (5)Cl2i—Ru1—C6—C5175.2 (2)
C6—Ru1—C3—C9178.6 (4)Cl2—Ru1—C6—C595.1 (2)
C1—Ru1—C3—C9144.9 (5)C3—Ru1—C6—C12179.5 (5)
Cl1—Ru1—C3—C924.3 (4)C4—Ru1—C6—C12142.7 (5)
Cl2i—Ru1—C3—C964.1 (4)C5—Ru1—C6—C12113.0 (6)
Cl2—Ru1—C3—C9112.3 (4)C2—Ru1—C6—C12142.6 (5)
C2—C3—C4—C51.7 (6)C1—Ru1—C6—C12113.4 (6)
C9—C3—C4—C5176.9 (4)Cl1—Ru1—C6—C12102.8 (5)
Ru1—C3—C4—C552.5 (4)Cl2i—Ru1—C6—C1262.3 (5)
C2—C3—C4—C10179.8 (4)Cl2—Ru1—C6—C1217.8 (4)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ru2Cl4(C12H18)2]
Mr668.47
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.9122 (15), 8.5192 (15), 16.642 (3)
β (°) 97.084 (3)
V3)1253.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.64
Crystal size (mm)0.23 × 0.09 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.780, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
10027, 2297, 1795
Rint0.065
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.063, 0.90
No. of reflections2297
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.38

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The financial support of this research by CONACYT (F58692, 57556) and DGAPA-UNAM (IN227008, IN205209) is gratefully acknowledged.

References

First citationBennett, M. A., Huang, T. N., Matheson, T. W. & Smith, A. K. (1982). Inorg. Synth. 21, 74–78.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCerón-Camacho, R., Gómez-Benítez, V., Le Lagadec, R., Morales-Morales, D. & Toscano, R. A. (2006). J. Mol. Catal. A, 247, 124–129.  Google Scholar
First citationLe Bozec, H., Touchard, D. & Dixneuf, P. H. (1989). Adv. Organomet. Chem. 29, 163–247.  CAS Google Scholar
First citationLeyva, L., Sirlin, C., Rubio, L., Franco, C., Le Lagadec, R., Bischoff, P., Gaiddon, C., Loeffler, J.-P. & Pfeffer, M. (2007). Eur. J. Inorg. Chem. pp. 3055–3066.  Web of Science CSD CrossRef Google Scholar
First citationRyabov, A. D., Sukharev, V. S., Alexandrova, L., Le Lagadec, R. & Pfeffer, M. (2001). Inorg. Chem. 40, 6529–6532.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds